The combinatorics of free bifibrations

Bryce Clarke & Gabriel Scherer & Noam Zeilberger

17th Workshop on Computational Logic and Applications Jagiellonian University, Kraków, 14-15 December 2023

One category living over another category, such that *objects* of the category above may be pushed and pulled along *arrows* of the category below.

One category living over another category, such that *objects* of the category above may be pushed and pulled along *arrows* of the category below.

One category living over another category, such that *objects* of the category above may be pushed and pulled along *arrows* of the category below.

$$\begin{array}{ccc} \mathcal{D} & & S & \xrightarrow{f_{S}} & f_{*} & S \\ \downarrow & & & & \\ \mathcal{C} & & A & \xrightarrow{f} & B \end{array}$$

One category living over another category, such that *objects* of the category above may be pushed and pulled along *arrows* of the category below.

One category living over another category, such that *objects* of the category above may be pushed and pulled along *arrows* of the category below.

One category living over another category, such that *objects* of the category above may be pushed and pulled along *arrows* of the category below.

Formally:

...and these liftings should be "universal" in an appropriate sense.

What is a bifibration? (cont.)

Pushing and pulling along an arrow $f : A \rightarrow B$ of C induces an *adjunction*

between the *fibers* of A and B.

This leads to an equivalent way of seeing bifibrations $\mathcal{D} \to \mathcal{C}$, as pseudofunctors $\mathcal{C} \to \mathcal{A}dj$ into the category of small categories and adjunctions.

A simple example

Let Set be the category of sets and functions.

Let Subset be the category whose objects are subsets, and whose arrows $(S \subseteq A) \longrightarrow (T \subseteq B)$ are functions $f : A \rightarrow B$ such that $a \in S$ implies $f(a) \in T$.

The evident forgetful functor $Subset \rightarrow Set$ is a bifibration:

Subset
$$S \xrightarrow{f_S} f(S)$$
 $g^{-1}(T) \xrightarrow{\bar{g}_T} T$ \downarrow \sqcap \sqcap \sqcap \land \square \square \square \land \land \square \square \land $A \xrightarrow{f} B$ $B \xrightarrow{g} C$

(Adjunction property: $f(S) \subseteq R \iff S \subseteq f^{-1}(R)$.)

Pushforward and pullback may be used to express:

- strongest postconditions and weakest preconditions in program logic
- existential and universal quantification in predicate logic
- diamond and box in modal logic
- \blacktriangleright \otimes and $\ensuremath{\mathfrak{F}}$ in linear logic

Our problem

Most functors are not bifibrations.

Given a functor $p : \mathcal{D} \to \mathcal{C}$, how do we construct the **free bifibration** over p?

A relatively little-studied problem:

- Robert Dawson, Robert Paré, and Dorette Pronk. Adjoining adjoints. Advances in Mathematics, 178(1):99–140, 2003.
- François Lamarche. Path functors in Cat. Unpublished, 2010. https://hal.inria.fr/hal-00831430.

Developed alternative constructions of the free bifibration over a functor $p: \mathcal{D} \rightarrow \mathcal{C}$

- ▶ a *proof-theoretic* construction, using sequent calculus
- ▶ an *algebraic* construction, using double categories
- ▶ a *topological* construction, using string diagrams

(These provide three different perspectives, but all closely related.)

We also discovered examples of specific functors $p : \mathcal{D} \to \mathcal{C}$, such that the free bifibration over p has some surprisingly nice combinatorics.

A sequent calculus for the free bifibration over $p : \mathcal{D} \to \mathcal{C}$

Formulas ($S \sqsubset A$): $\frac{X \in \mathcal{D} \quad p(X) = A}{X \sqsubset A} \qquad \qquad \frac{S \sqsubset A \quad f : A \to B}{f \colon S \sqsubset B} \qquad \qquad \frac{f : A \to B \quad T \sqsubset B}{f^* T \sqsubset A}$ Proofs $(S \Longrightarrow T)$: $\begin{array}{cccc} S \Longrightarrow I & S \Longrightarrow T \\ \hline \frac{fg}{f_* S \Longrightarrow r} L_f & \frac{S \Longrightarrow T}{S \Longrightarrow f_* T} R_f & \frac{S \Longrightarrow I}{f^* S \Longrightarrow T} L_{\bar{f}} & \frac{S \Longrightarrow I}{S \Longrightarrow f^* T} R_{\bar{f}} \end{array}$ $\frac{\alpha: X \longrightarrow Y \in \mathcal{D} \quad p(\alpha) = g}{X \Longrightarrow Y} \alpha$

Equational theory on derivations

Need to impose four permutation equivalences on derivations, including

$$\frac{S \underset{fg}{\Longrightarrow} T}{S \underset{fgh}{\Longrightarrow} h_* T} \underset{R_h}{R_h} \sim \frac{S \underset{fg}{\Longrightarrow} T}{f_* S \underset{g}{\Longrightarrow} T} \underset{L_f}{L_f} \qquad \frac{S \underset{g}{\Longrightarrow} T}{f_* S \underset{g}{\Longrightarrow} h_* T} \underset{R_h}{R_h} \qquad \frac{S \underset{g}{\Longrightarrow} T}{f^* S \underset{fgh}{\Longrightarrow} h_* T} \underset{R_h}{R_h} \sim \frac{S \underset{g}{\Longrightarrow} T}{f^* S \underset{fgh}{\Longrightarrow} h_* T} \underset{R_h}{S \underset{fgh}{\Biggr} h_* T} \underset{R_h}{S \underset{fgh}{\underset} h_* T} \underset{R_h}{S \underset{fgh}{\Biggr} h_* T} \underset{R_h}{S \underset{fgh}{s} h_* T} \underset{R_h}{S \underset{fgh$$

plus their symmetric versions with pushforward and pullback swapped.

Arrows of BFib(p) are equivalence classes of proofs. Composition is by cut-elimination.

Example derivations

Construction via the double category of zigzags, and via string diagrams

Canonical forms in general

A challenge in understanding free bifibrations is getting a handle on the equivalence classes (of proofs/double cells/string diagrams) induced by the permutation relations. Note that equivalence is in general undecidable!¹

Nevertheless, we (believe we) have a normal form based on maximal multifocusing...

¹By adapting a construction in: Robert Dawson, Robert Paré, and Dorette Pronk. Undecidability of the free adjoint construction. *Applied Categorical Structures*, 11:403–419, 2003.

Now for some examples!

Example #1

Consider the following functor:

~

Build the free bifibration $\mathscr{B}Fib(p_0) \rightarrow 2$, and look at the fiber of 0.

-1

Objects are isomorphic to even-length alternating push/pull sequences $f^* f_* \cdots f^* f_* 0$

Let $d_{m,n}$ be the number of arrows $(f^* f_*)^m 0 \longrightarrow (f^* f_*)^n 0$?

Puzzle: what is $d_{m,n}$?

 $d_{2,1} = 1$

 $d_{1,2} = 2$

$$\frac{\overline{0 \Longrightarrow 0} \operatorname{id}_{0}}{\overline{0 \Longrightarrow f_{*} 0} R_{f}}$$

$$\frac{\overline{f^{*} f_{*} 0 \Longrightarrow f_{*} 0} L_{f}}{\overline{f^{*} f_{*} 0 \Longrightarrow f^{*} f_{*} 0} L_{\overline{f}}}$$

$$\frac{\overline{f^{*} f_{*} 0 \Longrightarrow f^{*} f_{*} 0}{f^{*} f_{*} 0 \Longrightarrow f^{*} f_{*} 0} R_{\overline{f}}$$

$$\frac{\overline{f^{*} f_{*} 0 \Longrightarrow f^{*} f_{*} 0}{f^{*} f_{*} 0 \Longrightarrow f^{*} f_{*} 0} R_{\overline{f}}$$

$$\frac{\overline{f^{*} f_{*} 0 \Longrightarrow f^{*} f_{*} f^{*} f_{*} 0}{f^{*} f_{*} f^{*} f_{*} 0} R_{\overline{f}}$$

 $d_{2,2} = 3$

Example #1 continued

Arrows $(f^* f_*)^m 0 \longrightarrow (f^* f_*)^n 0$ correspond to monotone maps $m \rightarrow n!$ Indeed, the free bifibration over $p_0 : 1 \rightarrow 2$ captures the adjunction

between the category Δ of finite ordinals and order-preserving maps, and the category Δ_{\perp} of non-empty finite ordinals and order-and-least-element-preserving maps.

... So what's the answer to the puzzle?

Example #1 continued

Arrows $(f^* f_*)^m 0 \longrightarrow (f^* f_*)^n 0$ correspond to monotone maps $m \rightarrow n!$ Indeed, the free bifibration over $p_0 : 1 \rightarrow 2$ captures the adjunction

between the category Δ of finite ordinals and order-preserving maps, and the category Δ_{\perp} of non-empty finite ordinals and order-and-least-element-preserving maps.

... So what's the answer to the puzzle? $d_{m,n} = \binom{n+m-1}{m}$

Example #2

Now consider the following functor:

Build the free bifibration $\mathscr{B}Fib(p_0) \rightarrow \mathbb{N}$, and look at the fiber of 0. Puzzle: what are its objects?

A category with Dyck walks as objects!

 $f^* f^* f_* f_* f_* f^* f_* f^* f^* f_* f_* f_* f_* f_* f_* 0 =$

But what is a morphism of Dyck walks??

The BFib(-) construction gives an answer. Is it something natural/known?

Reconstructing the Batanin-Joyal category of trees

Dyck paths have a well-known, canonical bijection with (finite rooted plane) trees.

Reconstructing the Batanin-Joyal category of trees

Consider natural transformations $\theta: S \Rightarrow T$. $\begin{array}{c} \downarrow & \downarrow \\ S(2) & \xrightarrow{-\theta_2} & T(2) \\ \downarrow & \downarrow \\ S(1) & \xrightarrow{-\theta_1} & T(1) \\ \downarrow & \downarrow \\ S(0) = 1 & \underbrace{-} & T(0) \end{array}$

In other words, map nodes to nodes of the same height, respecting parents.

Reconstructing the Batanin-Joyal category of trees

Theorem: $\mathscr{B}Fib(p_0 : 1 \to \mathbb{N})_0 \cong \mathsf{PTree}$.

(More generally, $B \operatorname{Fib}(p_0)_k \cong \mathsf{PTree}_k = \mathsf{category}$ of finite rooted plane trees whose rightmost branch is pointed by a node of height k.)

Example #2 continued

Fix a walk W, and consider the following pair of sequences:

 $in[W]_n = \#\{\theta: S \Rightarrow W \mid |S| = n\} \qquad out[W]_n = \#\{\theta: W \Rightarrow T \mid |T| = n\}$

These seem to be always nice!

W	out[W]	in[W]
ϵ	A000108	A000007
UD	A000245	A000012
UUDD	A000344	A011782
UDUD	A099376	A000027

	W	out[W]	in[W]	
	UUUDDD	A000588	A001519	
7	UUDUDD	A003517	A001792	
2	UUDDUD	A003517	A000079	
2	UDUUDD	A003517	A000079	
7	UDUDUD	A000344	A000217	
	UUDUUDDD	A003518	A061667	

Conclusion

We have a clean and simple construction of the free bifibration over a functor.

An application of proof theory, w/complementary algebraic & topological perspectives.

Some surprisingly rich combinatorics emerges as if out of thin air.

Dziękuję!