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CIAA 2024 in Akita (Septermber 3 to 6)
28th International Conference on Implementation and Application of Automata

• Topics: algorithms on automata, automata and logic, bioinformatics, complexity of automata 
operations, compilers, computer-aided verification, concurrency, data structure design for 
automata, data and image compression, design and architecture of automata software, digital 
libraries, DNA/molecular/membrane computing, document engineering, editors, environments, 
experimental studies and practical experience, implementation of verification methods and model 
checking, industrial applications, natural language and speech processing, networking, new 
algorithms for manipulating automata, object-oriented modeling, pattern-matching, pushdown 
automata and context-free grammars, quantum computing, structured and semi-structured 
documents, symbolic manipulation environments for automata, transducers and multi-tape 
automata, techniques for graphical display of automata, VLSI, viruses and related phenomena, 
and the world-wide web. 

• The proceedings will be published by in the series of LNCS


• Tentative submission deadline: April 14, 2024



About Akita

• In Tohoku (northern Japan) region


• The latitude of Akita City is 39.72°N  

• Reachable from Tokyo, Nagoya, Osaka:


• By plane (1~1.5 hours)


• By bullet train (3.5~6 hours)

• Lot of snow in winter: 
There is a ski resort 15 minutes by car  
from Akita university



Snowboarding in Akita (Febrary 16, 2023)
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Density of formal languages
The density of a language  over  
is defined as 

. 

L A

δA(L) = lim
n→∞

1
n

n−1

∑
i= 0

#(L ∩ Ai)
#(Ai)

7

Here  denotes the cardinality of .#(X) X

 can be regarded as the (average) 
probability that a randomly chosen  
word is in .

δA(L)

L



Density of formal languages
The density of a language  over  
is defined as 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L A

δA(L) = lim
n→∞

1
n

n−1

∑
i= 0

#(L ∩ Ai)
#(Ai) Example 2:   for any .δA(A*wA*) = 1 w

Example 3:  
　　　　　　        does not have a density.

L⊥ = {w ∈ A* ∣ 3n ≤ |w | < 3n+ 1 for some even n}

Example 1: δA((AA)*) = 1
2 .
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Theorem [Berstel 1973]: 
Every regular language do have a rational density, and It is computable.
Every unambiguous context-free language do have an algebraic density.
Theorem [Kemp 1980]:  
There is a context-free language whose density is transcendental.
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Problem:  
Does every context-free language  have a density? (  converges?)L δA(L)
Theorem [Nakamura 2019]: 
it is undecidable whether a given context-free language  satisfies .L δA(L) = 1
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Theorem [Kozik, CLA’05]: it is undecidable whether   

converges or not for a given context-free language .

lim
n→∞

#(L ∩ An)
#(An)

L



A*

L

K1

M1

K2

M2

・ 
・ 
・
・ 
・ 
・

 is said to be -measurable if there exists an infinite sequence of pairs of 
languages  in  such that  and .
L )

(Mn, Kn)n∈ℕ ) Mn ⊆ L ⊆ Kn lim
n→∞

δA(Kn∖Mn) = 0

-measurability [S., SOFSEM’21] (cf. [Buck, 1946]))
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Example of a regular measurable language
Theorem: 

 over  is regular measurable., = {w ∈ A ∣ |w |a = |w |b } A = {a, b}

Then, for each ,  and  k ≥ 1 , ⊆ Lk δA(Lk) = 1
k

→ 0 (if k → ∞) .

Thus the infinite sequence  converges to .(∅, Lk)k≥1 ,

Proof: Let   for each .Lk = {w ∈ A* ∣ |w |a = |w |b mod k} k ≥ 1

12

the # of occurrences of  in a w
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Original motivation of mesurability
• A non-empty word  is said to be primitive if it can not be represented as a 

power of shorter words, i.e., . 
 denotes the set of all primitive  words over .

w
w = un ⇒ u = w (and n = 1)

0 {a, b}

Primitive worsd conjecture [Dömösi-Horvath-Ito 1991]: 
 is not context-free.0

ababa ∈ 0Example： ababab = (ab)3 ∉ 0

My naive idea: while every context-free language is  
               regular measurable,  is regular immeasurable.0



Summary of [S., SOFSEM’21]

Many complex context-free 
languages.

Regular measurable languages

There are uncountably many regular  
measurable languages.

,
2

A (simple) deterministic CFL

= {w ∈ {a, b}* ∣ |w |a > |w |b }

0
The set of all primitive words

= {w ∈ A ∣ |w |a = |w |b }
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Some properties of -measurability [S. DLT’21])
Notation:      ℳA()) = {L ⊆ A* ∣ L is )-measurable}

•  is closed under Boolean operations and left-and-right quotients if  
 is closed under these operations.

ℳA())
)

•  can be defined as the Carathéodory extension of , 
a standard notion from measure theory.
ℳA()) )

• “Is a given CFG generates a regular measurable languages?”  
is undecidable.
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Notation:      ℳA()) = {L ⊆ A* ∣ L is )-measurable}

Q: How about the decidability of -measurability for some 
     subclass  of regular languages? 

)
)

• “Is a given CFG generates a regular measurable languages?”  
is undecidable.

Some properties of -measurability [S. DLT’21])
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• -measurability for DFAs is decidable in linear time [SYN 2022], 
where  is the class of all piecewise testable languages.
45

45

Definition:  is piecewise testable [Simon 1972] if it can be 
represented as a finite Boolean combination of languages of the form 

 where .

L

Lw = A*a1A*a2…A*anA* w = a1a2⋯an

Decidability
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• -measurability for DFAs is decidable in linear time [SYN 2022], 
where  is the class of all piecewise testable languages.
45

45

Definition:  is alphabet testable if it can be represented as a finite 
Boolean combination of languages of the form  (where ) .

L
A*aA* a ∈ A

• -measurability for DFAs is coNP-complete [SYN 2022], 
where  is the class of all alphabet testable languages.
75

75

Decidability
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• -measurability for DFAs is decidable in linear time [SYN 2022], 
where  is the class of all piecewise testable languages.
45

45

• The decidability of -measurability for DFAs is decidable [S. CIAA’23], 
where  is the class of all generalised definite languages.

89
89

Definition:  is generalised defintie if it can be represented as a finite 
Boolean combination of languages of the form 

L
uA*, A*v .

• -measurability for DFAs is coNP-complete [SYN 2022], 
where  is the class of all alphabet testable languages.
75

75

Decidability
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Notation:      ℳA()) = {L ⊆ A* ∣ L is )-measurable}
• -measurability for DFAs is decidable in linear time [SYN 2022], 

where  is the class of all piecewise testable languages.
45

45

• The decidability of -measurability for DFAs is decidable [S. CIAA’23], 
where  is the class of all generalised definite languages.

89
89

• -measurability for DFAs is coNP-complete [SYN 2022], 
where  is the class of all alphabet testable languages.
75

75

• Hierarchy is strict [S. DLT’22]: .ℳA(75) ⊊ ℳA(45) ⊊ ℳA(89)

Decidability
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Theorem [S. DLT’22]: 
A language  is -measurable if and only if  or  contains the language  

.
L 75 L L

⋂
a∈A

A*aA*

Characterisation of - and -meaurability75 45

A language  is -measurable if and only if  or  contains the language 
 for some , where  is the set of all words containing  as a 

subsequence (scattered subword).

L 45 L L
Lw w ∈ A* Lw w

Corollary: 
If a given language  is regular, then -measurability is decidable  
(because the inclusion problem is decidable for regular languages).

L 75
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Theorem [S. DLT’22]: 
A language  is -measurable if and only if  or  contains the language  

.
L 75 L L

⋂
a∈A

A*aA*

A language  is -measurable if and only if  or  contains the language 
 for some , where  is the set of all words containing  as a 

subsequence (scattered subword).

L 45 L L
Lw w ∈ A* Lw w

Theorem [SYN 2022]:  
The -measurability for DFAs is coNP-complete, while the -measurability 
for DFAs is decidable in linear time.

75 45

Characterisation of - and -meaurability75 45
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Definite languages [Brzozowski 1962] [Ginzburg 1966]

Notation:   denotes the (finite) Boolean closure of .ℬ()) )

9 = ℬ{A*w ∣ w ∈ A*}
Definite:

<9 = ℬ{wA* ∣ w ∈ A*}
Reverse definite:

89 = ℬ{uA*v ∣ u, v ∈ A*}
Generalised definite:
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Sink component (a.k.a bottom strongly connected component)

Definition: Let  be a deterministic automaton.= = (Q, ⋅ ,q0, F)
 A subset  is called sink if it satisfies following: 
 (1)  is strongly connected:  
 (2)  has no outgoing transition: .

S⊆ Q
S ∀p, q ∈ S∃w ∈ A* p ⋅ w = q
S ∀p ∈ S∀w ∈ A* p ⋅ w ∈ S

q0 q5

q1 q2

q3 q4

a

b

b

a, b

a

a, b

a, b

a, b

1

Sink components can be considered  
as a minimal SCC with respect to the 
reachability relation.
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Characterisation of RD-measurable REGs
Theorem: Let  be a minimal deterministic automaton. TFAE:  
                (1)  is -measurable.  
                (2) Every sink component of  is a singleton (contains only one state).

= = (Q, ⋅ ,q0, F)
L(=) <9

=

q0 q5

q1 q2

q3 q4

a

b

b

a, b

a

a, b

a, b

a, b

1

-immeasurable<9 -measurable<9

q0 q5

q1 q2

q3 q4

a

b

b

a

a, b

a

a, b

b

a, b

1
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Characterisation of RD-measurable REGs
Theorem: Let  be a minimal deterministic automaton. TFAE:  
                (1)  is -measurable.  
                (2) Every sink component of  is a singleton (contains only one state).

= = (Q, ⋅ ,q0, F)
L(=) <9

=

Corollary: -measurability for minimal DFAs are decidable in linear time.<9

Corollary: -measurability for DFAs are decidable.9
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Characterisation of GD-measurable REGs

Theorem: Let  be a deterministic automaton, and  
                 be its all sink components. 
                Define  , 
                 and .  

                Let                  and         . 

                Then  is -measurable if and only if  .

= = (Q, ⋅ ,q0, F)
Q1, …, Qk

Pi = {w ∈ A* ∣ q0 ⋅ w ∈ Qi}
Si = {w ∈ A* ∣ Qi ⋅ w ⊆ F} S′�i = {w ∈ A* ∣ Qi ⋅ w ∩ F = ∅}

M =
k

⋃
i= 1

Pi Si M′� =
k

⋃
i= 1

Pi S′�i

L(=) 89 δA(M) + δA(M′�) = 1
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k
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Characterisation of GD-measurable REGs
Intuition:  is a largest subset of   
that can be represented as a 
 (possibly infinite) union of languages 
of the form 

M L(=)

uA*w .

That is,  is a largest 
-measurable subset of .

M
89 L(=)
Also,  is a largest 

-measurable subset of .
M′�

89 L(=)

This condition means  and .δA(L(=)) = δA(M) δA(L(=)) = δA(M′�)
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Characterisation of GD-measurable REGs

Corollary: -measurability for DFAs is decidable (in PSPACE). 
                (because the density of a regular language is computable  
                  and  are regular by the construction)

89

M, M′�
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Summary

• -measurability and -measurability for DFAs is decidable in linear time,  
while -measurability for DFA is coNP-complete.
45 <9

75

• -measurability is decidable for DFAs (in PSPACE).89

Progress: we (S., Y. Nakamura and Y. Yamaguchi) found that it is in PTIME.
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Open problem
Is the measuring power of  and  (the class of all star-free languages) 
equivalent or not?

89 BC

[S. DLT’22]: ℳA(75) ⊊ ℳA(45) ⊊ ℳA(89) .⊆ ℳA(BC)
Is this inclusion strict?

How much -measurability and  are weaker than regular measurability?89 BC

Definition:  is star-free if and only if it can be represented as a finite 
Boolean combination and concatenation finite languages.

L
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Application?
The decidable characterisation of -measurability gives us the following 
approximation scheme:

89

Input   : an automaton  and an admissible error ratio . 
Output: an automaton  (if exists) such that 
              (1) ,       (2)  is generalised definite,  
                       and (3) .

= ϵ > 0
ℬ

L(=) ⊆ L(ℬ) L(ℬ)
|δA(L(=)) −δA(L(=)) | ≤ ϵ

Can we apply this scheme to, say,  
      obtain an efficient regular expression matching algorithm?  
                            (or other decision problems, e.g., inclusion ?)



Dziękuję!

(Akita-Inu)
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