
Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Implementing Escape Continuations in C

Jean-Michel Hufflen

University of Franche-Comté, CNRS,
FEMTO-ST institute, F-25000 Besançon, France

14 December 2023

1/1/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Motivation

Continuation semantics

Examples

Bridge Scheme/C

Future work

2/2/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Functions setjmp and longjmp

Included into the C language:

#include <setjmp.h>

int setjmp(jmp_buf env) ;
void longjmp(jmp_buf env, int val) ;

setjmp(env) memoizes the current environment into the
env variable and returns 0.
longjmp(env,val) starts over from the return point where
env was saved, but the returned value at this point is now
val.

3/3/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Functions setjmp and longjmp

Included into the C language:

#include <setjmp.h>

int setjmp(jmp_buf env) ;
void longjmp(jmp_buf env, int val) ;

setjmp(env) memoizes the current environment into the
env variable and returns 0.

longjmp(env,val) starts over from the return point where
env was saved, but the returned value at this point is now
val.

4/3/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Functions setjmp and longjmp

Included into the C language:

#include <setjmp.h>

int setjmp(jmp_buf env) ;
void longjmp(jmp_buf env, int val) ;

setjmp(env) memoizes the current environment into the
env variable and returns 0.
longjmp(env,val) starts over from the return point where
env was saved, but the returned value at this point is now
val.

5/3/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Using setjmp/longjmp

If you write something like:

if (setjmp(env)) . . .︸︷︷︸
Ë

; else . . .︸︷︷︸
Ê

;

that allows you to start a computation at Ê; if you want to
escape it, use:

longjmp(env,1)

and the computation will terminate by running Ë, getting rid
of Ê.

A kind of goto, but to a place already reached, or a kind of
backtrack.
These functions have been used to implement a rough
mechanism of exceptions but, in reality, they are closed to
continuations.

6/4/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Using setjmp/longjmp

If you write something like:

if (setjmp(env)) . . .︸︷︷︸
Ë

; else . . .︸︷︷︸
Ê

;

that allows you to start a computation at Ê; if you want to
escape it, use:

longjmp(env,1)

and the computation will terminate by running Ë, getting rid
of Ê.
A kind of goto, but to a place already reached,

or a kind of
backtrack.
These functions have been used to implement a rough
mechanism of exceptions but, in reality, they are closed to
continuations.

7/4/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Using setjmp/longjmp

If you write something like:

if (setjmp(env)) . . .︸︷︷︸
Ë

; else . . .︸︷︷︸
Ê

;

that allows you to start a computation at Ê; if you want to
escape it, use:

longjmp(env,1)

and the computation will terminate by running Ë, getting rid
of Ê.
A kind of goto, but to a place already reached, or a kind of
backtrack.

These functions have been used to implement a rough
mechanism of exceptions but, in reality, they are closed to
continuations.

8/4/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Using setjmp/longjmp

If you write something like:

if (setjmp(env)) . . .︸︷︷︸
Ë

; else . . .︸︷︷︸
Ê

;

that allows you to start a computation at Ê; if you want to
escape it, use:

longjmp(env,1)

and the computation will terminate by running Ë, getting rid
of Ê.
A kind of goto, but to a place already reached, or a kind of
backtrack.
These functions have been used to implement a rough
mechanism of exceptions but, in reality, they are closed to
continuations.

9/4/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Continuations in Scheme

(F1 (call/cc G1)) ≡ (F1 (G1 6←−F1))

If F1 is invoked within G1’s body, it is applied and yields a
direct result, without returning to a caller.

‘(F1 ...)’ is for
‘normal’ run.
Examples:

(+ 1 (call/cc (lambda (f1) (* 2 (f1 2023))))) =⇒
2024

(+ 1 (call/cc (lambda (f1) (* 2 2023)))) =⇒ 4047

Continuations captured by means of the call/cc function
may be saved and applied overwhelmingly, but we are not
interested in this feature.
call/ec ⇐= escape continuations, dynamic extent only.

10/5/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Continuations in Scheme

(F1 (call/cc G1)) ≡ (F1 (G1 6←−F1))

If F1 is invoked within G1’s body, it is applied and yields a
direct result, without returning to a caller. ‘(F1 ...)’ is for
‘normal’ run.

Examples:

(+ 1 (call/cc (lambda (f1) (* 2 (f1 2023))))) =⇒
2024

(+ 1 (call/cc (lambda (f1) (* 2 2023)))) =⇒ 4047

Continuations captured by means of the call/cc function
may be saved and applied overwhelmingly, but we are not
interested in this feature.
call/ec ⇐= escape continuations, dynamic extent only.

11/5/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Continuations in Scheme

(F1 (call/cc G1)) ≡ (F1 (G1 6←−F1))

If F1 is invoked within G1’s body, it is applied and yields a
direct result, without returning to a caller. ‘(F1 ...)’ is for
‘normal’ run.
Examples:

(+ 1 (call/cc (lambda (f1) (* 2 (f1 2023))))) =⇒
2024

(+ 1 (call/cc (lambda (f1) (* 2 2023)))) =⇒ 4047

Continuations captured by means of the call/cc function
may be saved and applied overwhelmingly, but we are not
interested in this feature.
call/ec ⇐= escape continuations, dynamic extent only.

12/5/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Continuations in Scheme

(F1 (call/cc G1)) ≡ (F1 (G1 6←−F1))

If F1 is invoked within G1’s body, it is applied and yields a
direct result, without returning to a caller. ‘(F1 ...)’ is for
‘normal’ run.
Examples:

(+ 1 (call/cc (lambda (f1) (* 2 (f1 2023))))) =⇒
2024

(+ 1 (call/cc (lambda (f1) (* 2 2023)))) =⇒ 4047

Continuations captured by means of the call/cc function
may be saved and applied overwhelmingly, but we are not
interested in this feature.

call/ec ⇐= escape continuations, dynamic extent only.

13/5/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Continuations in Scheme

(F1 (call/cc G1)) ≡ (F1 (G1 6←−F1))

If F1 is invoked within G1’s body, it is applied and yields a
direct result, without returning to a caller. ‘(F1 ...)’ is for
‘normal’ run.
Examples:

(+ 1 (call/cc (lambda (f1) (* 2 (f1 2023))))) =⇒
2024

(+ 1 (call/cc (lambda (f1) (* 2 2023)))) =⇒ 4047

Continuations captured by means of the call/cc function
may be saved and applied overwhelmingly, but we are not
interested in this feature.
call/ec ⇐= escape continuations, dynamic extent only.

14/5/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Programming languages with continuations

call/cc present in some languages, e.g., Ruby.

Standard ML of New Jersey provides typed continuations,
and escape continuations as typed control continuations
(being ’a control_cont type).
Haskell ⇐= continuation monad.
Compiling such languages by generating C code—e.g.,
bigloo—a C compiler being in charge of low-level details.

15/6/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Programming languages with continuations

call/cc present in some languages, e.g., Ruby.
Standard ML of New Jersey provides typed continuations,
and escape continuations as typed control continuations
(being ’a control_cont type).

Haskell ⇐= continuation monad.
Compiling such languages by generating C code—e.g.,
bigloo—a C compiler being in charge of low-level details.

16/6/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Programming languages with continuations

call/cc present in some languages, e.g., Ruby.
Standard ML of New Jersey provides typed continuations,
and escape continuations as typed control continuations
(being ’a control_cont type).
Haskell ⇐= continuation monad.

Compiling such languages by generating C code—e.g.,
bigloo—a C compiler being in charge of low-level details.

17/6/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Programming languages with continuations

call/cc present in some languages, e.g., Ruby.
Standard ML of New Jersey provides typed continuations,
and escape continuations as typed control continuations
(being ’a control_cont type).
Haskell ⇐= continuation monad.
Compiling such languages by generating C code—e.g.,
bigloo—a C compiler being in charge of low-level details.

18/6/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

C compiler certified

Some research projects aim to ensure that C codes are
correctly put into action.
I Frama-C, developed using OCaml, but not fully proved

yet,

I an attempt to use Coq (CompCert).

19/7/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

C compiler certified

Some research projects aim to ensure that C codes are
correctly put into action.
I Frama-C, developed using OCaml, but not fully proved

yet,
I an attempt to use Coq (CompCert).

20/7/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

A continuation semantics for C

Functions:

mExp : Exp→ Envf → Env→ State→ Ce → (D × State)

where:
I State is the program’s state,
I Env and Envf are environments,
I Ce = (D × State)→ (D × State),
I D is the set of all possible values.

21/8/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Example: assignment

mExp : Exp→ Envf → Env→ State→ Ce → (D × State)

mExp (assignment(var , e)) ρf ρ s k =
let k0 = (v0, s0) 7→ k(v0, s0 ⊕ [ρ(var) 7→ v0])
in mExp e ρf ρ s k0
end

Within such a framework, the future of any computation is
always explicit.

22/9/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Example: assignment

mExp : Exp→ Envf → Env→ State→ Ce → (D × State)

mExp (assignment(var , e)) ρf ρ s k =
let k0 = (v0, s0) 7→ k(v0, s0 ⊕ [ρ(var) 7→ v0])
in mExp e ρf ρ s k0
end

Within such a framework, the future of any computation is
always explicit.

23/9/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Functions setjmp/longjmp

mExp : Exp→ Envf → Env→ State→ Ce → (D × State)

mExp (setjmp(env)) ρf ρ s k =
(0, s ⊕ [ρ(env) 7→ (k , s)])

mExp (longjmp(env), e) ρf ρ s k =
let (k0, s0) = s(ρ(env))
in mExp e ρf ρ s0 k0
end

24/10/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Functions setjmp/longjmp

mExp : Exp→ Envf → Env→ State→ Ce → (D × State)

mExp (setjmp(env)) ρf ρ s k =
(0, s ⊕ [ρ(env) 7→ (k , s)])

mExp (longjmp(env), e) ρf ρ s k =
let (k0, s0) = s(ρ(env))
in mExp e ρf ρ s0 k0
end

25/10/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our framework

Showing examples: tree-sum-ep.scm—or tree-sum-ep.sml if a
strongly typed language is preferred—and tree-sum.c.

26/11/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our framework (continued)

A function launches a computation by means of recursive
auxiliary functions.

These auxiliary functions are not internal, so all the
arguments are explicit.
In particular, one argument of them expresses the way to
escape a recursive computation leading to a dead end. For a
C program, this is a variable being type jmp_buf.
One way to express escaping a computation.

27/12/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our framework (continued)

A function launches a computation by means of recursive
auxiliary functions.
These auxiliary functions are not internal, so all the
arguments are explicit.

In particular, one argument of them expresses the way to
escape a recursive computation leading to a dead end. For a
C program, this is a variable being type jmp_buf.
One way to express escaping a computation.

28/12/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our framework (continued)

A function launches a computation by means of recursive
auxiliary functions.
These auxiliary functions are not internal, so all the
arguments are explicit.
In particular, one argument of them expresses the way to
escape a recursive computation leading to a dead end. For a
C program, this is a variable being type jmp_buf.

One way to express escaping a computation.

29/12/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our framework (continued)

A function launches a computation by means of recursive
auxiliary functions.
These auxiliary functions are not internal, so all the
arguments are explicit.
In particular, one argument of them expresses the way to
escape a recursive computation leading to a dead end. For a
C program, this is a variable being type jmp_buf.
One way to express escaping a computation.

30/12/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

More formally

(call/ec (lambda (exit-0) . . .︸︷︷︸
Ê

))

vs

if (setjmp(env)) . . .︸︷︷︸
escape

function’s
call

; else . . .︸︷︷︸
Ê

in
C

;

31/13/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Basic equivalences

Between Scheme types and C ones, e.g., integers, trees. . .

32/14/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our functions

Let f be a Scheme (or Standard ML) function, let x (resp. y)
be an element of f ’s domain (resp. codomain); if we denote
the respective implementations in C by C (f ), C (x), C (y),
then:

f (x) = y =⇒ C (f )(C (x)) = C (y)

How? Operational semantics of Scheme and continuation
semantics of C.
By induction on the level of recursive calls.
Strong induction.

33/15/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our functions

Let f be a Scheme (or Standard ML) function, let x (resp. y)
be an element of f ’s domain (resp. codomain); if we denote
the respective implementations in C by C (f ), C (x), C (y),
then:

f (x) = y =⇒ C (f )(C (x)) = C (y)

How?

Operational semantics of Scheme and continuation
semantics of C.
By induction on the level of recursive calls.
Strong induction.

34/15/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our functions

Let f be a Scheme (or Standard ML) function, let x (resp. y)
be an element of f ’s domain (resp. codomain); if we denote
the respective implementations in C by C (f ), C (x), C (y),
then:

f (x) = y =⇒ C (f )(C (x)) = C (y)

How? Operational semantics of Scheme and continuation
semantics of C.

By induction on the level of recursive calls.
Strong induction.

35/15/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our functions

Let f be a Scheme (or Standard ML) function, let x (resp. y)
be an element of f ’s domain (resp. codomain); if we denote
the respective implementations in C by C (f ), C (x), C (y),
then:

f (x) = y =⇒ C (f )(C (x)) = C (y)

How? Operational semantics of Scheme and continuation
semantics of C.
By induction on the level of recursive calls.

Strong induction.

36/15/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Our functions

Let f be a Scheme (or Standard ML) function, let x (resp. y)
be an element of f ’s domain (resp. codomain); if we denote
the respective implementations in C by C (f ), C (x), C (y),
then:

f (x) = y =⇒ C (f )(C (x)) = C (y)

How? Operational semantics of Scheme and continuation
semantics of C.
By induction on the level of recursive calls.
Strong induction.

37/15/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Future work

Several ways to escape dead-end computations.

Make explicit rules as patterns.
Implementation of C’s continuation semantics using Coq.
Writing the complete article ⇐= looking for proof-readers
next spring.

38/16/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Future work

Several ways to escape dead-end computations.
Make explicit rules as patterns.

Implementation of C’s continuation semantics using Coq.
Writing the complete article ⇐= looking for proof-readers
next spring.

39/16/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Future work

Several ways to escape dead-end computations.
Make explicit rules as patterns.
Implementation of C’s continuation semantics using Coq.

Writing the complete article ⇐= looking for proof-readers
next spring.

40/16/16



Implementing
Escape

Continuations in
C

Jean-Michel
Hufflen

Plan

Motivation

Continuation
semantics

Examples

Bridge
Scheme/C

Future work

Future work

Several ways to escape dead-end computations.
Make explicit rules as patterns.
Implementation of C’s continuation semantics using Coq.
Writing the complete article ⇐= looking for proof-readers
next spring.

41/16/16


	Plan
	Motivation
	Continuation semantics
	Examples
	Bridge Scheme/C
	Future work

