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Computation model

Turing machine = automaton with infinite tape

finite automaton

pushdown automaton

automaton with counters

automaton with some structure
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Given: a model, two its configurations s and t

Question: is there a run from s to t?

Central one for a computation model

Why this problem?
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undecidable

the same as reachability problem

what for other models?
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Theorem
The reachability problem for two-counter automaton is 

undecidable.

Two-counter automaton

configuration = state + two nonnegative counters

transition: increments / decrements counters

zero-tests possible
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for
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Proof continuation

the auxiliary counter can be the same

The reachability problem for
automaton with three counters is undecidable

(x, y, z) encoded as (2x･3y･5z, 0)

The reachability problem for
automaton with two counters is undecidable
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Theorem
Turing machine with space M can be simulated by:

- three-counter automaton with counters up to exp(M)
- two-counter automaton with counters up to 2-exp(M)

Hardness

Reachability for three-counter automaton with counters
bounded by 2-exp with ExpSpace-complete
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Counters without zero-tests

Just one zero-tested counter

Just one pushdown

Other
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(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7) 

p(4,0,6) 

p(1,1,7) 

q(4,0,7) Petri nets



Short history of reachability



Short history of reachability

Lipton `76: ExpSpace-hardness



Short history of reachability

Lipton `76: ExpSpace-hardness

Mayr `81: decidability of reachability



Short history of reachability

Lipton `76: ExpSpace-hardness

Mayr `81: decidability of reachability

Leroux, Schmitz `15: triple-Ackermann



Short history of reachability

Lipton `76: ExpSpace-hardness

Mayr `81: decidability of reachability

Leroux, Schmitz `19: Ackermann

Leroux, Schmitz `15: triple-Ackermann



Short history of reachability

Lipton `76: ExpSpace-hardness

Mayr `81: decidability of reachability

Leroux, Schmitz `19: Ackermann

Cz., Lasota, Lazic, Leroux, Mazowiecki `19: 
Tower-hardness

Leroux, Schmitz `15: triple-Ackermann



Short history of reachability

Lipton `76: ExpSpace-hardness

Mayr `81: decidability of reachability

Leroux, Schmitz `19: Ackermann

Cz., Lasota, Lazic, Leroux, Mazowiecki `19: 
Tower-hardness

Leroux & Cz., Orlikowski`21: Ackermann-hardness

Leroux, Schmitz `15: triple-Ackermann
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Functions Fk

F1(n) = 2n Fk+1(n) = Fk ￮…￮ Fk(1)

composed n times

F2(n) = 2n F3(n) = Tower(n)

Ack(n) = Fn(n)
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Special cases of VASS

dimension 2: NL-complete

dim 3: NP-hard, in Tower

dim 6: ExpSpace-hard

dim 8: Tower-hard

many striking open problems!



One zero-test



One zero-test

one zero-tested counter: NL-complete



One zero-test

VASS + one zero-tested counter: decidable

one zero-tested counter: NL-complete



One zero-test

VASS + one zero-tested counter: decidable

Klaus Reinhardt 2008

one zero-tested counter: NL-complete



One zero-test

VASS + one zero-tested counter: decidable

in fact nested zero-tests

Klaus Reinhardt 2008

one zero-tested counter: NL-complete
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One pushdown

CYK algorithm for context-free grammars

VASS with pushdown: open

one counter with pushdown: open

pushdown automaton: in PTime
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Other

more exotic combinations

reachability for very simple models is hard

might be decidable for all simplifications

automaton with ℤ-counters: NP-complete
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Hard examples

finite, up to Ackermann size

does not prove Ackermann-hardness

provide intuition for hardness

big reachability sets for VASS, 1-PVASS
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finite doubly-exponential reachability set
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(0,0,-1,0)
(-1,1,0,0) (2,-1,0,0)qp

(-1,0,1,0)r

p(1,0,1,n) p(1,0,21,n-1) 

finite tower-size reachability set

(1,0,0,-1)

… p(1,0,Tower(n),0) 

finite Fd-size reachability set
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1-dim Pushdown VASS

maximally
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d+1 nonterminals: reachability set of size Fd(n) 
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