The Reachability Problem for Computation Models

Wojciech Czerwiński

CLA 2023

Plan

Plan

- basic notions

Plan

- basic notions
- guided tour through computation models

Plan

- basic notions
- guided tour through computation models
- hard examples for simple models

Plan

- basic notions
- guided tour through computation models
- hard examples for simple models
- open problems and message

Computation model

Computation model

Turing machine $=$ automaton with infinite tape

Computation model

Turing machine $=$ automaton with infinite tape
finite automaton

Computation model

Turing machine $=$ automaton with infinite tape
finite automaton
pushdown automaton

Computation model

Turing machine $=$ automaton with infinite tape
finite automaton
pushdown automaton
automaton with counters

Computation model

Turing machine $=$ automaton with infinite tape
finite automaton
pushdown automaton
automaton with counters
automaton with some structure

Reachability problem

Reachability problem

Given: a model, two its configurations s and t

Reachability problem

Given: a model, two its configurations s and t

Question: is there a run from s to t ?

Reachability problem

Given: a model, two its configurations s and t

Question: is there a run from s to t ?

Why this problem?

Reachability problem

Given: a model, two its configurations s and t

Question: is there a run from sto t ?

Why this problem?

Central one for a computation model

Halting problem for TM

Halting problem for TM

undecidable

Halting problem for TM

undecidable

the same as reachability problem

Halting problem for TM

undecidable

the same as reachability problem
what for other models?

Two-counter automaton

Two-counter automaton

Theorem

The reachability problem for two-counter automaton is undecidable.

Two-counter automaton

Theorem

Minsky machine
The reachability problem for two-counter automaton is undecidable.

Two-counter automaton

Theorem

The reachability problem for two-counter automaton is undecidable.

Two-counter automaton

Theorem

The reachability problem for two-counter automaton is undecidable.
configuration $=$ state + two nonnegative counters

Two-counter automaton

Theorem

The reachability problem for two-counter automaton is undecidable.
configuration $=$ state + two nonnegative counters
transition: increments / decrements counters

Two-counter automaton

Theorem

The reachability problem for two-counter automaton is undecidable.
configuration $=$ state + two nonnegative counters
transition: increments / decrements counters
zero-tests possible

Proof

Proof

infinite tape = two pushdowns

Proof

infinite tape = two pushdowns

Proof

infinite tape = two pushdowns

Proof

infinite tape = two pushdowns

Proof

Proof continuation

Proof continuation

pushdown can be simulated by two counters

Proof continuation

pushdown can be simulated by two counters

Proof continuation

pushdown can be simulated by two counters

2
2
1
2

$<2122>$ in ternary $=71$

Proof continuation

pushdown can be simulated by two counters

1
2
2
1
2

Proof continuation

pushdown can be simulated by two counters

2
2
1
2

$<2122>$ in ternary $=71$

1
2
2
1
2

$<2|22|>$ in ternary $=3 \cdot 7 I+I$

Proof continuation

pushdown can be simulated by two counters

2
2
1
2

$(71,0)$

1
2
2
1
2

$<2|22|>$ in ternary $=3 \cdot 7 I+1$

Proof continuation

pushdown can be simulated by two counters

2
2
1
2

$<2122>$ in ternary $=71$
$(71,0)$

$$
(-I,+\mid)
$$

1
2
2
1
2

$<2|22|>$ in ternary $=3 \cdot 7 I+I$

Proof continuation

pushdown can be simulated by two counters

2
2
1
2

$<2122>$ in ternary $=71$
$(71,0)$
$(-I,+\mid) \quad z e r o-t e s t(x)$

1
2
2
1
2

$<2|22|>$ in ternary $=3 \cdot 7 I+I$

Proof continuation

pushdown can be simulated by two counters

2
2
1
2

$(71,0)$
$(-I,+I) \quad z e r o-t e s t(x)$
$(0,7 I)$

1
2
2
1
2

$<2|22|>$ in ternary $=3 \cdot 7 I+1$

Proof continuation

pushdown can be simulated by two counters

2
2
1
2

$<2122>$ in ternary $=71$
$(71,0)$

$$
(-I,+I) \quad \text { zero-test }(x)
$$

$(0,7 I)$

$$
(+3,-\mid)
$$

1
2
2
1
2

$<2|22|>$ in ternary $=3 \cdot 7 I+I$

Proof continuation

pushdown can be simulated by two counters

$\left.$| |
| :--- |
| 2 |
| 2 |
| 1 |
| 2 |
| 2 |$<2 \right\rvert\, 22>$ in ternary $=71$

$(71,0)$
$(-I,+\mid) \quad z e r o-t e s t(x)$
$(0,7 \mathrm{I})$
$(+3,-I) \quad$ zero-test (y)
$<2|22|>$ in ternary $=3 \cdot 7 I+\mid$

Proof continuation

pushdown can be simulated by two counters

2
2
1
2
2

(71,0)
$(-I,+\mid) \quad z e r o-t e s t(x)$
$(0,7 \mathrm{I})$
(+3,-I) zero-test(y)

1
2
2
1
2

$<2|22|>$ in ternary $=3 \cdot 7 \mid+1 \quad(3 \cdot 71,0)$

Proof continuation

Proof continuation

the auxiliary counter can be the same

Proof continuation

the auxiliary counter can be the same

The reachability problem for automaton with three counters is undecidable

Proof continuation

the auxiliary counter can be the same

The reachability problem for automaton with three counters is undecidable

$$
(x, y, z)
$$

Proof continuation

the auxiliary counter can be the same

The reachability problem for automaton with three counters is undecidable
$(x, y, z) \quad$ encoded as

Proof continuation

the auxiliary counter can be the same

The reachability problem for automaton with three counters is undecidable

$$
(x, y, z) \quad \text { encoded as } \quad\left(2^{x} \cdot 3 y \cdot 5 z, 0\right)
$$

Proof continuation

the auxiliary counter can be the same

The reachability problem for automaton with three counters is undecidable

$$
(x, y, z) \quad \text { encoded as } \quad(2 x \cdot 3 y \cdot 5 z, 0)
$$

The reachability problem for automaton with two counters is undecidable

Hardness

Hardness

Theorem

Turing machine with space M can be simulated by: - three-counter automaton with counters up to $\exp (M)$

- two-counter automaton with counters up to $2-\exp (M)$

Hardness

Theorem

Turing machine with space M can be simulated by: - three-counter automaton with counters up to $\exp (M)$

- two-counter automaton with counters up to $2-\exp (M)$

Reachability for three-counter automaton with counters bounded by 2-exp with ExpSpace-complete

How to simplify?

How to simplify?

Counters without zero-tests

How to simplify?

Counters without zero-tests

Just one zero-tested counter

How to simplify?

Counters without zero-tests

Just one zero-tested counter

Just one pushdown

How to simplify?

Counters without zero-tests

Just one zero-tested counter

Just one pushdown

Other

Vector Addition Systems with States (VASS)

Vector Addition Systems with States (VASS)

Vector Addition Systems with States (VASS)

$p(2,0,7)$

Vector Addition Systems with States (VASS)

$$
p(2,0,7) \longrightarrow p(I, I, 7)
$$

Vector Addition Systems with States (VASS)

$$
p(2,0,7) \longrightarrow p(I, I, 7) \longrightarrow p(0,2,7)
$$

Vector Addition Systems with States (VASS)

$$
p(2,0,7) \longrightarrow p(I, I, 7) \longrightarrow p(0,2,7) \longrightarrow q(0,2,7)
$$

Vector Addition Systems with States (VASS)

$$
p(2,0,7) \longrightarrow p(I, I, 7) \longrightarrow p(0,2,7) \longrightarrow q(0,2,7) \longrightarrow q(2, I, 7)
$$

Vector Addition Systems with States (VASS)

$$
\begin{aligned}
p(2,0,7) & \longrightarrow p(I, I, 7) \longrightarrow p(0,2,7) \longrightarrow q(0,2,7) \longrightarrow q(2, I, 7) \\
& \longrightarrow q(4,0,7)
\end{aligned}
$$

Vector Addition Systems with States (VASS)

$$
\begin{aligned}
p(2,0,7) & \longrightarrow p(I, I, 7) \longrightarrow p(0,2,7) \longrightarrow q(0,2,7) \longrightarrow q(2, I, 7) \\
& \longrightarrow q(4,0,7) \longrightarrow p(4,0,6)
\end{aligned}
$$

Vector Addition Systems with States (VASS)

$$
\begin{aligned}
\mathrm{p}(2,0,7) & \longrightarrow \mathrm{p}(1, I, 7) \longrightarrow \mathrm{p}(0,2,7) \longrightarrow \mathrm{q}(0,2,7) \longrightarrow \mathrm{q}(2, I, 7) \\
& \longrightarrow \mathrm{q}(4,0,7) \longrightarrow \mathrm{p}(4,0,6) \quad \text { Petri nets }
\end{aligned}
$$

Short history of reachability

Short history of reachability

Lipton `76: ExpSpace-hardness

Short history of reachability

Lipton `76: ExpSpace-hardness Mayr `8I: decidability of reachability

Short history of reachability

Lipton `76: ExpSpace-hardness Mayr `8I: decidability of reachability
Leroux, Schmitz `I5: triple-Ackermann

Short history of reachability

Lipton `76: ExpSpace-hardness Mayr '8I: decidability of reachability Leroux, Schmitz `I5: triple-Ackermann
Leroux, Schmitz `19:Ackermann

Short history of reachability

Lipton `76: ExpSpace-hardness Mayr `8I: decidability of reachability
Leroux, Schmitz `I5: triple-Ackermann Leroux, Schmitz `19:Ackermann
Cz., Lasota, Lazic, Leroux, Mazowiecki `I9:
Tower-hardness

Short history of reachability

Lipton `76: ExpSpace-hardness Mayr `8I: decidability of reachability
Leroux, Schmitz `I5: triple-Ackermann Leroux, Schmitz `19:Ackermann
Cz., Lasota, Lazic, Leroux, Mazowiecki `I9: Tower-hardness

Leroux \& Cz., Orlikowski`2I:Ackermann-hardness

Functions F_{k}

Functions F_{k}

$F_{1}(n)=2 n$

Functions F_{k}

$$
F_{1}(n)=2 n
$$

$\mathrm{F}_{\mathrm{k}+\mathrm{I}}(\mathrm{n})=\mathrm{F}_{\mathrm{k} \circ \ldots \circ \mathrm{F}_{\mathrm{k}}(\mathrm{I})}$

Functions F_{k}

$$
F_{1}(n)=2 n
$$

$\mathrm{F}_{\mathrm{k}+\mathrm{I}}(\mathrm{n})=\mathrm{F}_{\mathrm{k} \circ \ldots \circ \mathrm{F}_{\mathrm{k}}(\mathrm{I}), ~(1)}$

composed n times

Functions F_{k}

$$
F_{1}(n)=2 n
$$

$\mathrm{F}_{\mathrm{k}+\mathrm{I}}(\mathrm{n})=\mathrm{F}_{\mathrm{k} \circ \ldots \circ \mathrm{F}_{\mathrm{k}}(\mathrm{I}), ~(1)}$
composed n times

$$
F_{2}(n)=2^{n}
$$

Functions F_{k}

$$
F_{1}(n)=2 n
$$

$\mathrm{F}_{\mathrm{k}+\mathrm{I}}(\mathrm{n})=\mathrm{F}_{\mathrm{k}} \circ \ldots \circ \mathrm{F}_{\mathrm{k}}(\mathrm{I})$

composed n times

$$
F_{2}(n)=2^{n} \quad F_{3}(n)=\operatorname{Tower}(n)
$$

Functions F_{k}

$$
\mathrm{F}_{\mathrm{l}}(\mathrm{n})=2 \mathrm{n} \quad \mathrm{~F}_{\mathrm{k}+\mathrm{I}}(\mathrm{n})=\mathrm{F}_{\mathrm{k}} \circ \ldots \circ \mathrm{~F}_{\mathrm{k}}(\mathrm{I})
$$

composed n times

$$
F_{2}(n)=2^{n} \quad F_{3}(n)=\operatorname{Tower}(n)
$$

$$
\operatorname{Ack}(n)=F_{n}(n)
$$

Special cases ofVASS

Special cases ofVASS

dimension 2: NL-complete

Special cases ofVASS

dimension 2: NL-complete
dim 3: NP-hard, in Tower

Special cases ofVASS

dimension 2: NL-complete
dim 3: NP-hard, in Tower
dim 6: ExpSpace-hard

Special cases ofVASS

dimension 2: NL-complete
dim 3: NP-hard, in Tower

dim 6: ExpSpace-hard

dim 8:Tower-hard

Special cases of VASS

dimension 2: NL-complete dim 3: NP-hard, in Tower
dim 6: ExpSpace-hard
dim 8:Tower-hard
many striking open problems!

One zero-test

One zero-test

one zero-tested counter: NL-complete

One zero-test

one zero-tested counter: NL-complete

VASS + one zero-tested counter: decidable

One zero-test

one zero-tested counter: NL-complete

VASS + one zero-tested counter: decidable

Klaus Reinhardt 2008

One zero-test

one zero-tested counter: NL-complete

VASS + one zero-tested counter: decidable

Klaus Reinhardt 2008
in fact nested zero-tests

One pushdown

One pushdown

pushdown automaton: in PTime

One pushdown

pushdown automaton: in PTime

CYK algorithm for context-free grammars

One pushdown

pushdown automaton: in PTime

CYK algorithm for context-free grammars

VASS with pushdown: open

One pushdown

pushdown automaton: in PTime

CYK algorithm for context-free grammars

VASS with pushdown: open
one counter with pushdown: open

Other

Other

automaton with \mathbb{Z}-counters: NP-complete

Other

automaton with \mathbb{Z}-counters: NP-complete
more exotic combinations

Other

automaton with \mathbb{Z}-counters: NP-complete
more exotic combinations
reachability for very simple models is hard

Other

automaton with \mathbb{Z}-counters: NP-complete
more exotic combinations
reachability for very simple models is hard
might be decidable for all simplifications

Hard examples

Hard examples

big reachability sets for VASS, I-PVASS

Hard examples

big reachability sets forVASS, I-PVASS

finite, up to Ackermann size

Hard examples

big reachability sets forVASS, I-PVASS

finite, up to Ackermann size
does not prove Ackermann-hardness

Hard examples

big reachability sets for VASS, I-PVASS
finite, up to Ackermann size
does not prove Ackermann-hardness
provide intuition for hardness

3-dim.VASS (3-VASS)

3-dim.VASS (3-VASS)

3-dim.VASS (3-VASS)

$p(k, 0, n)$

3-dim.VASS (3-VASS)

$p(k, 0, n) \longrightarrow p(0, k, n)$

3-dim.VASS (3-VASS)

$$
p(k, 0, n) \longrightarrow p(0, k, n) \longrightarrow q(0, k, n)
$$

3-dim.VASS (3-VASS)

$$
p(k, 0, n) \longrightarrow p(0, k, n) \longrightarrow q(0, k, n) \longrightarrow q(2 k, 0, n)
$$

3-dim.VASS (3-VASS)

$p(k, 0, n) \longrightarrow p(0, k, n) \longrightarrow q(0, k, n) \longrightarrow q(2 k, 0, n) \longrightarrow p(2 k, 0, n-I)$

3-dim.VASS (3-VASS)

$p(k, 0, n) \longrightarrow p(0, k, n) \longrightarrow q(0, k, n) \longrightarrow q(2 k, 0, n) \longrightarrow p(2 k, 0, n-I)$
$p(I, 0, n)$

3-dim.VASS (3-VASS)

$p(k, 0, n) \longrightarrow p(0, k, n) \longrightarrow q(0, k, n) \longrightarrow q(2 k, 0, n) \longrightarrow p(2 k, 0, n-I)$

$$
p(I, 0, n) \longrightarrow p(2,0, n-I)
$$

3-dim.VASS (3-VASS)

$p(k, 0, n) \longrightarrow p(0, k, n) \longrightarrow q(0, k, n) \longrightarrow q(2 k, 0, n) \longrightarrow p(2 k, 0, n-I)$

$$
p(I, 0, n) \longrightarrow p(2,0, n-I) \ldots
$$

3-dim.VASS (3-VASS)

$p(k, 0, n) \longrightarrow p(0, k, n) \longrightarrow q(0, k, n) \longrightarrow q(2 k, 0, n) \longrightarrow p(2 k, 0, n-I)$

$$
P(I, 0, n) \longrightarrow p(2,0, n-I) \ldots \quad \longrightarrow\left(2^{n}, 0,0\right)
$$

3-VASS

3-VASS

3-VASS

3-VASS

3-VASS

3-VASS

3-VASS

p(I,0,n)

3-VASS

$p(1,0, n) \longrightarrow q\left(2^{n}, 0,0\right)$

3-VASS

$p(1,0, n) \longrightarrow q\left(2^{n}, 0,0\right) \longrightarrow r\left(2^{n}, 0,0\right)$

3-VASS

$p(1,0, n) \longrightarrow q\left(2^{n}, 0,0\right) \longrightarrow r\left(2^{n}, 0,0\right) \longrightarrow r\left(0,0,2^{n}\right)$

3-VASS

${ }^{(-1,1,0)} C^{(0.0} \underbrace{(0,0,-1,0)}$
$p(1,0, n) \longrightarrow q\left(2^{n}, 0,0\right) \longrightarrow r\left(2^{n}, 0,0\right) \longrightarrow r\left(0,0,2^{n}\right)$

$$
\longrightarrow p^{\prime}\left(1,0,2^{n}\right)
$$

3-VASS

$p(1,0, n) \longrightarrow q\left(2^{n}, 0,0\right) \longrightarrow r\left(2^{n}, 0,0\right) \longrightarrow r\left(0,0,2^{n}\right)$

$$
\longrightarrow p^{\prime}\left(1,0,2^{n}\right) \longrightarrow p^{\prime}\left(2^{2^{n}}, 0,0\right)
$$

3-VASS

$$
\begin{aligned}
p(1,0, n) & \longrightarrow q\left(2^{n}, 0,0\right) \longrightarrow r\left(2^{n}, 0,0\right) \longrightarrow r\left(0,0,2^{n}\right) \\
& \longrightarrow p^{\prime}\left(1,0,2^{n}\right) \longrightarrow p^{\prime}\left(2^{2^{n}}, 0,0\right)
\end{aligned}
$$

finite doubly-exponential reachability set

VASS

VASS

VASS

(r) $(-1,0,1,0)$

VASS

VASS

VASS

p(I,0,I,n)

VASS

$p(I, 0, I, n) \longrightarrow p\left(I, 0,2^{\prime}, n-I\right)$

VASS

$p(I, 0, I, n) \longrightarrow p\left(I, 0,2^{\prime}, n-I\right) \ldots$

VASS

$p(I, 0, I, n) \longrightarrow p\left(I, 0,2^{\prime}, n-I\right) \ldots \longrightarrow p(I, 0, \operatorname{Tower}(n), 0)$

VASS

$p(I, 0, I, n) \longrightarrow p\left(I, 0,2^{\prime}, n-I\right) \ldots \longrightarrow p(1,0, \operatorname{Tower}(n), 0)$
finite tower-size reachability set

VASS

$$
p(I, 0, I, n) \longrightarrow p\left(I, 0,2^{\prime}, n-I\right) \ldots \longrightarrow p(I, 0, \operatorname{Tower}(n), 0)
$$

finite tower-size reachability set
finite F_{d}-size reachability set

I-dim Pushdown VASS

I-dim Pushdown VASS

$S \longrightarrow n X$

I-dim Pushdown VASS

$$
\begin{aligned}
& S \longrightarrow n \times \\
& X \longrightarrow-1 \times 2 \mid 0
\end{aligned}
$$

I-dim Pushdown VASS

$$
\begin{aligned}
& S \longrightarrow n \times \\
& X \longrightarrow-1 \times 2 \mid 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { I-dim Pushdown VASS } \\
& \mathrm{S} \longrightarrow \mathrm{n} \times \\
& \times \rightarrow-1 \times 2 \mid 0
\end{aligned}
$$

$$
\begin{array}{ll}
\text { I-dim Pushdown VASS } \\
\mathrm{s} \longrightarrow \mathrm{n} \times \\
\times \rightarrow-1 \times 2 \mid 0 & -1 \times 2 \\
& \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { I-dim Pushdown VASS } \\
& S \longrightarrow n X \\
& X \longrightarrow-I \times 2 \mid 0
\end{aligned}
$$

I-dim Pushdown VASS

$$
\begin{aligned}
& S \longrightarrow n \times \\
& X \longrightarrow-1 \times 2 \mid 0
\end{aligned}
$$

I-dim Pushdown VASS

$$
\begin{aligned}
& S \longrightarrow n \times \\
& X \longrightarrow-1 \times 2 \mid 0
\end{aligned}
$$

I-dim Pushdown VASS

$$
\begin{aligned}
& S \longrightarrow n \times \\
& X \longrightarrow-1 \times 2 \mid 0
\end{aligned}
$$

I-PVASS

I-PVASS

$$
S \longrightarrow n Y
$$

I-PVASS

$$
\begin{aligned}
& S \longrightarrow n Y \\
& Y \longrightarrow-I Y X \mid I
\end{aligned}
$$

I-PVASS

$S \longrightarrow \mathrm{n} Y$
$Y \longrightarrow-I Y X \mid I$
$X \longrightarrow-I \times 2 \mid 0$

I-PVASS

$$
\begin{aligned}
& S \longrightarrow n Y \\
& Y \longrightarrow-1 Y \times 11 \\
& X \longrightarrow-1 \times 2 \mid 0
\end{aligned}
$$

I-PVASS

$$
\begin{array}{ll}
S \longrightarrow n Y & \\
Y \longrightarrow-1 Y \times 11 \\
X \longrightarrow-1 \times 2 \mid 0 & -1 \quad Y \quad X
\end{array}
$$

I-PVASS

$$
\begin{aligned}
& S \longrightarrow n Y \\
& Y \longrightarrow-1 Y \times 11 \\
& X \longrightarrow-1 \times 2 \mid 0
\end{aligned}
$$

I-PVASS

$$
\begin{array}{lc}
S \longrightarrow n Y & \\
Y \longrightarrow-1 Y \times 11 & -1 / Y X \\
X \longrightarrow-1 \times 210 & -1 \quad Y \quad \times \\
& \vdots
\end{array}
$$

I-PVASS

$$
\begin{array}{lc}
S \longrightarrow n Y & \\
Y \longrightarrow-I Y \times 11 & -1 / Y X \\
X \longrightarrow-I \times 2 \mid 0 & -1 \quad Y \quad \times \\
& \vdots \\
& Y
\end{array}
$$

I-PVASS

$$
\begin{aligned}
& S \longrightarrow n Y \\
& Y \longrightarrow-I Y X \mid I \\
& X \longrightarrow-I \times 2 \mid 0
\end{aligned}
$$

I-PVASS

$$
\begin{aligned}
& S \longrightarrow n Y \\
& Y \longrightarrow-I Y X \mid I \\
& X \longrightarrow-I \times 2 \mid 0
\end{aligned}
$$

I-PVASS

$$
\begin{aligned}
& S \longrightarrow n Y \\
& Y \longrightarrow-I Y X \mid I \\
& X \longrightarrow-I \times 2 \mid 0 \\
& \mathrm{k} \xrightarrow{\mathrm{X}} 2 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { I }
\end{aligned}
$$

I-PVASS

$$
\begin{aligned}
& S \longrightarrow n Y \\
& Y \longrightarrow-I Y X \mid I \\
& X \longrightarrow-I \times 2 \mid 0 \\
& \mathrm{k} \xrightarrow{\mathrm{X}} 2 \mathrm{k} \\
& k \xrightarrow{Y} 2^{k} \\
& \text { I }
\end{aligned}
$$

I-dim Pushdown VASS

I-dim Pushdown VASS

$$
S \longrightarrow \mathrm{n} Z
$$

I-dim Pushdown VASS

$$
S \longrightarrow n Z
$$

$$
Z \longrightarrow-I Z Y \mid I
$$

I-dim Pushdown VASS

$$
\begin{array}{ll}
S \longrightarrow n Z & Z \longrightarrow-|Z Y| I \\
Y \longrightarrow-I Y X \mid I &
\end{array}
$$

I-dim Pushdown VASS

$$
\begin{array}{ll}
S \longrightarrow n Z & Z \longrightarrow-I Z Y \mid 1 \\
Y \longrightarrow-I Y \times \mid 1 & X \longrightarrow-1 \times 2 \mid 0
\end{array}
$$

I-dim Pushdown VASS

$$
\begin{array}{ll}
s \rightarrow n Z & Z \longrightarrow-|Z Y| 1 \\
Y \longrightarrow-I Y \times 11 & X \longrightarrow-I \times 210
\end{array}
$$

$$
k \xrightarrow{X} 2 k
$$

I-dim Pushdown VASS

$$
\begin{array}{ll}
s \rightarrow n Z & Z \longrightarrow-|Z Y| 1 \\
Y \longrightarrow-I Y \times 11 & X \longrightarrow-I \times 210
\end{array}
$$

$k \xrightarrow{Y} 2^{k}$

I-dim Pushdown VASS

$$
\begin{array}{ll}
s \rightarrow n Z & Z \longrightarrow-|Z Y| 1 \\
Y \longrightarrow-1 Y X \mid 1 & X \longrightarrow-1 \times 210
\end{array}
$$

$k \xrightarrow{Y} 2^{k}$
$\mathrm{k} \xrightarrow{\mathrm{Z}}$ Tower(k)

I-dim Pushdown VASS

$$
\begin{array}{cc}
S \longrightarrow n Z & Z \longrightarrow-I Z Y \mid I \\
Y \longrightarrow-I Y \times \| I & X \longrightarrow-I \times 2 \mid 0 \\
k \xrightarrow{X} 2 k \quad k \xrightarrow{Y} 2^{k} & k \xrightarrow{Z} \operatorname{Tower}(k)
\end{array}
$$

$\mathrm{d}+\mid$ nonterminals: reachability set of size $\mathrm{F}_{\mathrm{d}}(\mathrm{n})$

Message

Message

simple models are involved

Message

simple models are involved

fundamental but hard research

Message

simple models are involved

fundamental but hard research
still many open problems:

Message

simple models are involved

fundamental but hard research
still many open problems: 3-VASS

Message

simple models are involved

fundamental but hard research
still many open problems: 3-VASS I-PVASS

Message

simple models are involved

fundamental but hard research
still many open problems: 3-VASS I-PVASS

Thank you!

