Binomial lattice congruences and flat dihomotopy types

Computational Logic and Applications

Kraków

Cameron Calk \& Luigi Santocanale

Lis

$15^{\text {th }}$ of December 2023

Introduction

Overview and context

- Multinomial lattices were introduced by Bennett \& Birkhoff.
- Study of the rewriting system associated to commutativity from a lattice-theoretic perspective:

$$
a b b a a \rightarrow a b a b a \rightarrow a a b b a \rightarrow a a b a b \rightarrow a a a b b
$$

Overview and context

- Multinomial lattices were introduced by Bennett \& Birkhoff.
- Study of the rewriting system associated to commutativity from a lattice-theoretic perspective:

$$
a b b a a \rightarrow a b a b a \rightarrow a a b b a \rightarrow a a b a b \rightarrow a a a b b
$$

- These lattices and their congruences are strongly related to concurrency.
- The word abbaa represents interleaving actions of two agents.
- Multinomial lattice congruences give rise to certain Parikh equivalences central to scheduling problems in concurrency.
- A geometric interpretation closely relates these lattices to a semantics of concurrent systems, namely directed topology.

In this talk. . .

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.

In this talk. . .

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.

In this talk. . .

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.
- Directed algebraic topology.
- Recall the notion of directed space, and define cubical complexes.
- Introduce the binomial complex and describe the dihomotopy types of its subcomplexes.

In this talk...

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.
- Directed algebraic topology.
- Recall the notion of directed space, and define cubical complexes.
- Introduce the binomial complex and describe the dihomotopy types of its subcomplexes.
- Result: the correspondence.
- Congruences correspond to dihomotopy types of subcomplexes.
- The congruence lattice of a binomial lattice is isomorphic to the lattice of subcomplex dihomotopy types.

In this talk. . .

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.
- Directed algebraic topology.
- Recall the notion of directed space, and define cubical complexes.
- Introduce the binomial complex and describe the dihomotopy types of its subcomplexes.
- Result: the correspondence.
- Congruences correspond to dihomotopy types of subcomplexes.
- The congruence lattice of a binomial lattice is isomorphic to the lattice of subcomplex dihomotopy types.
- We will end by briefly describing ongoing work in this area.

Binomial lattices and their congruences

Multinomial lattices

- Given $v \in \mathbb{N}^{k}$, we denote by $\mathcal{L}(v)$ the set of words on the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ such that:
- w ccontains v_{i} occurrences of the letter a_{i}.

We equip this set with the partial order generated by

$$
w \leq w^{\prime} \quad \Longleftrightarrow \quad \exists u, v \quad\left\{\begin{array}{l}
w=u \cdot a_{i} a_{j} \cdot v \\
w^{\prime}=u \cdot a_{j} a_{i} \cdot v
\end{array} \quad \text { and } i<j\right.
$$

Multinomial lattices

- Given $v \in \mathbb{N}^{k}$, we denote by $\mathcal{L}(v)$ the set of words on the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ such that:
- w ccontains v_{i} occurrences of the letter a_{i}.

We equip this set with the partial order generated by

$$
w \leq w^{\prime} \quad \Longleftrightarrow \quad \exists u, v \quad\left\{\begin{array}{l}
w=u \cdot a_{i} a_{j} \cdot v \\
w^{\prime}=u \cdot a_{j} a_{i} \cdot v
\end{array} \quad \text { and } i<j\right.
$$

- The poset $(\mathcal{L}(v), \leq)$ has the structure of a lattice.
- These structures generalize permutations to permutations of multisets, called multipermutations.
- Indeed, for $v=(1, \ldots, 1)$, we have $\mathcal{L}(v)=S_{k}$.
- The order \leq generalizes the weak Bruhat order defining the permutohedron.

Binomial lattices

Today, we will focus on binomial lattices:

- Given $n, m \in \mathbb{N}$, we denote by $\mathcal{L}(n, m)$ the set of words on the alphabet $\Sigma=\{a, b\}$ such that:
- w contains n occurrences of the letter a,
- and m occurrences of the letter b.
which we equip with the partial order generated by

$$
w \leq w^{\prime} \quad \Longleftrightarrow \quad \exists u, v \quad\left\{\begin{array}{l}
w=u \cdot a b \cdot v \\
w^{\prime}=u \cdot b a \cdot v
\end{array}\right.
$$

- We will henceforth denote $\mathcal{L}(n, m)$ simply by \mathcal{L}.

Proposition (L. Santocanale '05)

\mathcal{L} is a distributive lattice.

As lattices of lattice paths

- The elements of \mathcal{L} are interpreted as paths in an n by m grid:

$$
w \in \mathcal{L} \quad \text { ぃ } \quad f_{w}:[n+m] \rightarrow[n] \times[m]
$$

- an occurrence of a is a step in the x-axis,
- an occurrence of b is a step in the y-axis.

As lattices of lattice paths

- The elements of \mathcal{L} are interpreted as paths in an n by m grid:

$$
w \in \mathcal{L} \quad \nVdash \quad f_{w}:[n+m] \rightarrow[n] \times[m]
$$

- an occurrence of a is a step in the x-axis,
- an occurrence of b is a step in the y-axis.

$a b b a a$

The ordering is recovered as a point-wise ordering on paths.

- The join and meet relations then become point-wise maxima and minima:

$u \vee v$

- Note that these paths are increasing in each coordinate.

Distributive lattice congruences

Let L be a distributive lattice.

- A congruence on L is an equivalence relation $\theta \subseteq L \times L$ which is compatible with the lattice operations.
- In distributive lattices, congruences are given by sets of join-prime elements.
- $j \in L$ is join-prime if

$$
j=u \vee v \quad \Rightarrow \quad j=u \text { or } j=v .
$$

- The set of join-prime elements of L is denoted by \mathcal{J}.

Distributive lattice congruences

Let L be a distributive lattice.

- A congruence on L is an equivalence relation $\theta \subseteq L \times L$ which is compatible with the lattice operations.
- In distributive lattices, congruences are given by sets of join-prime elements.
- $j \in L$ is join-prime if

$$
j=u \vee v \quad \Rightarrow \quad j=u \text { or } j=v .
$$

- The set of join-prime elements of L is denoted by \mathcal{J}.
- Given $S \subseteq \mathcal{J}$, the congruence \equiv_{S} is defined by:

$$
u \equiv_{S} v \quad \Longleftrightarrow \quad \forall j \in S, \quad j \leq u \text { iff } j \leq v
$$

Join-prime elements of $\mathcal{L}(n, m)$

- What are the join-prime elements of \mathcal{L} ?

$w=u v v$

Join-prime elements of $\mathcal{L}(n, m)$

- What are the join-prime elements of \mathcal{L} ?

$w=u v v$

- They are the paths that have exactly one north-east turn:

Join-prime elements of $\mathcal{L}(n, m)$

- What are the join-prime elements of \mathcal{L} ?

$w=u v v$

- They are the paths that have exactly one north-east turn:

- As words, these are of the form

$$
a^{k} b^{l} a^{n-k} b^{m-l}
$$

They are thus characterized by (k, l), with $\left\{\begin{array}{l}0 \leq k<n \\ 0<l \leq m\end{array}\right.$

Geometric interpretation of congruences

- Let us look at the particular case when $S=\{j\}$.
- Recall that

$$
w \equiv_{S} w^{\prime} \quad \Longleftrightarrow \quad j \leq w \text { iff } j \leq w^{\prime}
$$

- Let (k, l) be the coordinate of the NE turn of j.
- $j \leq u$ means f_{u} passes "above" (k, l),
- $j \not \leq v$ means f_{v} passes "below" (k, l).

Geometric interpretation of congruences

- Let us look at the particular case when $S=\{j\}$.
- Recall that

$$
w \equiv_{S} w^{\prime} \quad \Longleftrightarrow \quad j \leq w \text { iff } j \leq w^{\prime}
$$

- Let (k, l) be the coordinate of the NE turn of j.
- $j \leq u$ means f_{u} passes "above" (k, l),
- $j \not z v$ means f_{v} passes "below" (k, l).

- The same holds for arbitrary $S \subseteq \mathcal{J}$.
- So, lattice congruences of \mathcal{L} correspond to separating directed paths by points. This reminds us of directed homotopy...

Directed homotopy and binomial complexes

Directed topology

- Directed topology provides a geometric semantics for true concurrency.

Directed topology

- Directed topology provides a geometric semantics for true concurrency.
- A directed space \mathcal{X} consists of
- A topological space X,
- A set of directed paths $d X$.
- We interpret directed paths as executions.

Directed topology

- Directed topology provides a geometric semantics for true concurrency.
- A directed space \mathcal{X} consists of
- A topological space X,
- A set of directed paths $d X$.
- We interpret directed paths as executions.
- Today, we focus on a particular class of directed spaces, namely cubical complexes. In two dimensions, these consist of:
- vertices, which may be related by...
- edges, which may form the border of...
- squares.
- Such two-dimensional complexes model two-agent concurrent systems:

Bob takes/releases the apple whilst Alice says hello. Then Alice takes/neleases the apple.

Alice says hello, tahes/releases the apple and then Bob takes/releases the apple.

- Directed paths are those which increase in each coordinate.

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the binomial complex C :
- $C_{0}:=\left\{v_{(i, j)} \mid 0 \leq i \leq n\right.$ and $\left.0 \leq j \leq m\right\}$,
- $C_{1}:=\left\{e_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} \mid i_{2}=i_{1}+1\right.$ exor $\left.j_{2}=j_{1}+1\right\}$,
- $C_{2}:=\left\{F_{(k, l)} \mid 0 \leq k<n\right.$ and $\left.0<l \leq m\right\}$.

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the binomial complex C :
- $C_{0}:=\left\{v_{(i, j)} \mid 0 \leq i \leq n\right.$ and $\left.0 \leq j \leq m\right\}$,
- $C_{1}:=\left\{e_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} \mid i_{2}=i_{1}+1\right.$ exor $\left.j_{2}=j_{1}+1\right\}$,
- $C_{2}:=\left\{F_{(k, l)} \mid 0 \leq k<n\right.$ and $\left.0<l \leq m\right\}$.
- This cubical complex corresponds to the n by m grid, with all "holes" filled by squares.
- Note that we encode squares by their upper-left corner.

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the binomial complex C :
- $C_{0}:=\left\{v_{(i, j)} \mid 0 \leq i \leq n\right.$ and $\left.0 \leq j \leq m\right\}$,
- $C_{1}:=\left\{e_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} \mid i_{2}=i_{1}+1\right.$ exor $\left.j_{2}=j_{1}+1\right\}$,
- $C_{2}:=\left\{F_{(k, l)} \mid 0 \leq k<n\right.$ and $\left.0<l \leq m\right\}$.
- This cubical complex corresponds to the n by m grid, with all "holes" filled by squares.
- Note that we encode squares by their upper-left corner.

- Given $S \subseteq C_{2}$, we denote by C^{S} the cubical complex with the same set of vertices and edges, but in which $C_{2}^{S}:=C_{2} \backslash S$.

Cubical homotopy

- Given a concurrent system, which executions produce the same

All executions

 end with| 1 | 2 |
| :---: | :---: |
| x | y |

Cubical homotopy

- Given a concurrent system, which executions produce the same output?

All executions

end with

1	2
x	y

Ends with

2	
x	y
Ends with	
1	
x	y

- We say that paths are dihomotopic if we can "slide" one onto the other through a sequence of directed paths, and if they start and end at the same point.

Cubical homotopy

- Given a concurrent system, which executions produce the same output?

Ends with

2	
x	y
Endo with	
1	
x	y

- We say that paths are dihomotopic if we can "slide" one onto the other through a sequence of directed paths, and if they start and end at the same point.
- In a cubical complex Γ, it suffices to consider
- combinatorial dipaths,
i.e. those which are contained in the set of edges Γ_{1},
- combinatorial homotopy, i.e. dipaths are equivalent when the space between them is filled by squares in Γ_{2}.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\leftrightarrow}$, is an equivalence relation on combinatorial dipaths with the same beginning- and end-points.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\leftrightarrow}$, is an equivalence relation on combinatorial dipaths with the same beginning- and end-points.
- Given the binomial complex C, we denote by $\overrightarrow{m C \mathbb{P}}(C)$ the set of combinatorial dipaths from $(0,0)$ to (n, m).
- Note that for any $S \subseteq C_{2}$, we have $\overrightarrow{m C \mathbb{P}}(C)=\overrightarrow{m C \mathbb{P}}\left(C^{S}\right)$.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\rightarrow}$, is an equivalence relation on combinatorial dipaths with the same beginning- and end-points.
- Given the binomial complex C, we denote by $\overrightarrow{m C \mathbb{P}}(C)$ the set of combinatorial dipaths from $(0,0)$ to (n, m).
- Note that for any $S \subseteq C_{2}$, we have $\overrightarrow{m C \mathbb{P}}(C)=\overrightarrow{m C \mathbb{P}}\left(C^{S}\right)$.
- We are interested in the quotient by combinatorial dihomotopy:

$$
\overrightarrow{m C \mathbb{P}}\left(C^{S}\right) / \stackrel{*}{m} .
$$

- In the particular case in which $S=\left\{F_{(k, l)}\right\} \ldots$

Paths going above F are all identified.
Path going under F are all identified.

The correspondence

Correspondences

- Elements of \mathcal{L}.
- Elements of $\overrightarrow{m C P}\left(C^{S}\right)$.

Lattice paths

Correspondences

- Elements of \mathcal{L}.
- Elements of $\overrightarrow{m C P}\left(C^{S}\right)$.

Lattice paths

- Join prime elements of \mathcal{L}.
- Squares in C.

$$
\mathcal{J} \simeq\{(\mathbf{k}, \mathbf{l}) \mid \mathbf{0} \leq \mathbf{k}<\mathbf{n} \text { and } \mathbf{0}<\mathbf{l} \leq \mathbf{m}\} \simeq \mathbf{C}_{\mathbf{2}}
$$

Correspondences

- Elements of \mathcal{L}.
- Elements of $\overrightarrow{m C \mathbb{P}}\left(C^{S}\right)$.

Lattice paths

- Join prime elements of \mathcal{L}.
- Squares in C.

$$
\mathcal{J} \simeq\{(\mathbf{k}, \mathbf{l}) \mid \mathbf{0} \leq \mathbf{k}<\mathbf{n} \text { and } \mathbf{0}<\mathbf{l} \leq \mathbf{m}\} \simeq \mathbf{C}_{\mathbf{2}}
$$

- Congruences \equiv_{S} of bilnm
- Subcomplexes $C^{S}(n, m)$.

Results

- Since $\mathcal{L} \simeq \overrightarrow{m C P}\left(C^{S}\right)$ as sets, we can equip the latter with an isomorphic ordering.

Results

- Since $\mathcal{L} \simeq \overrightarrow{m C \mathbb{P}}\left(C^{S}\right)$ as sets, we can equip the latter with an isomorphic ordering.
- Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any $S \subseteq \mathcal{J} \simeq C_{2}$, we have the lattice isomorphism

$$
\mathcal{L}(n, m) / \equiv_{S} \cong \overrightarrow{m C \mathbb{P}}\left(C^{S}\right) / \stackrel{*}{m} .
$$

Results

- Since $\mathcal{L} \simeq \overrightarrow{m C P}\left(C^{S}\right)$ as sets, we can equip the latter with an isomorphic ordering.
- Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any $S \subseteq \mathcal{J} \simeq C_{2}$, we have the lattice isomorphism

$$
\mathcal{L}(n, m) / \equiv_{S} \cong \overrightarrow{m C \mathbb{P}}\left(C^{S}\right) /{ }_{\sim m}^{*} .
$$

- Moreover, the maps induced by inclusions $S^{\prime} \subseteq S$ on each side correspond, i.e. the following maps coincide:

$$
\begin{gathered}
q_{S^{\prime}, S}: \overrightarrow{m C \mathbb{P}}\left(C^{S^{\prime}}\right) / \stackrel{*}{\leftrightarrow} \longrightarrow \overrightarrow{m C \mathbb{P}}\left(C^{S}\right) / \stackrel{*}{m} \\
p_{S^{\prime}, S}: \mathcal{L}(n, m) / S^{\prime} \longrightarrow \mathcal{L}(n, m) / S .
\end{gathered}
$$

Ongoing work

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}\left(v_{1}, \ldots, v_{n}\right)$, for $n \geq 3 \ldots$
- $\mathcal{L}(v)$ is not distributive.
- Because of this, its congruences are not as simple.
- Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}\left(v_{1}, \ldots, v_{n}\right)$, for $n \geq 3 \ldots$
- $\mathcal{L}(v)$ is not distributive.
- Because of this, its congruences are not as simple.
- Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.
- On the geometric side...
- Join-dependency means that adding squares is no longer "free" in the sense that adding a square may necessitate adding parallel squares.
- We can also consider higher homotopy groups - what is their interpretation?

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}\left(v_{1}, \ldots, v_{n}\right)$, for $n \geq 3 \ldots$
- $\mathcal{L}(v)$ is not distributive.
- Because of this, its congruences are not as simple.
- Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.
- On the geometric side...
- Join-dependency means that adding squares is no longer "free" in the sense that adding a square may necessitate adding parallel squares.
- We can also consider higher homotopy groups - what is their interpretation?
- In this direction, we are studying the higher dimensional automata associated to the multinomial complexes.

The continuous case

- In what precedes, we have considered discrete paths.
- The continuous analog of the binomial lattice is the quantale $Q_{\vee}(I)$ of sup-continuous endomorphisms of the unit interval I.

The continuous case

- In what precedes, we have considered discrete paths.
- The continuous analog of the binomial lattice is the quantale $Q_{\vee}(I)$ of sup-continuous endomorphisms of the unit interval I.
- This is a mix \star-autonomous quantale,
- all permutohedra and binomial lattices are sublattices,
- elements have interpretation as directed continuous paths,
- congruences are more complicated...

The continuous case

- In what precedes, we have considered discrete paths.
- The continuous analog of the binomial lattice is the quantale $Q_{\vee}(I)$ of sup-continuous endomorphisms of the unit interval I.
- This is a mix \star-autonomous quantale,
- all permutohedra and binomial lattices are sublattices,
- elements have interpretation as directed continuous paths,
- congruences are more complicated...
- We have related the ordering to directed homotopy, but (it seems) that congruences cannot be captured thereby.
- We are currently exploring other topological techniques, i.e. Priestley duality, frame duality,... in order to characterize its congruences.
- There are also higher dimensional analogues of this lattice...

Thank you

