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Abstract. We introduce a new poset structure on Dyck paths where the covering relation
is a particular case of the relation inducing the Tamari lattice. We prove that the transitive
closure of this relation endows Dyck paths with a lattice structure. We provide a trivariate
generating function counting the number of Dyck paths with respect to the semilength, the
numbers of outgoing and incoming edges in the Hasse diagram. We deduce the numbers of
coverings, meet and join irreducible elements. We give a generating function for the number
of intervals, and we compare this number with the number of intervals in the Tamari lattice.
Finally, we present a sequent calculus capturing this new Lattice.

In this paper, we introduce a new poset structure on Dyck paths where the covering relation
is a particular case of the covering relation that generates the Tamari lattice [3, 5]. A Dyck
path is a lattice path in N2 starting at the origin, ending on the x-axis and consisting of up
steps U = (1, 1) and down steps D = (1,−1). Let Dn be the set of Dyck paths of semilength
n (i.e., with 2n steps), and D = ∪n≥0Dn. The cardinality of Dn is the n-th Catalan number
cn = (2n)!/(n!(n+ 1)!) (see A000108 1).
A peak in a Dyck path is an occurrence of the subpath UD. A pyramid is a maximal

occurrence of UkDℓ, k, ℓ ≥ 1, in the sense that this occurrence cannot be extended in a
occurrence of Uk+1Dℓ or in a occurrence of UkDℓ+1. We say that a pyramid UkDℓ is symmetric
whenever k = ℓ, and asymmetric otherwise. The weight of a symmetric pyramid UkDk is k.
For instance, the Dyck path in the south west of Figure 1b contains two symmetric pyramids
and two asymmetric pyramids.
In 1962 [5], the Tamari lattice Tn of order n is defined by endowing the set Dn with the

transitive closure ⪯ of the covering relation P
T−→ P ′ that transforms an occurrence of

DUQD in P into an occurrence UQDD in P ′, where Q is a Dyck path (possibly empty).
The top part of Figure 1b shows an example of such a covering, and Figure 1a illustrates the
Hasse diagram of Tn for n = 4 (the red edge must be considered).
Now, we introduce a new partial order on Dn for n ≥ 0. We endow it with the ordered

relation ≤ defined by the transitive closure of the following covering relation P −→ P ′ that
transforms an occurrence of DUkDk in P into an occurrence UkDkD in P ′, where k ≥ 1. For
short, we will often use the notation DUkDk −→ UkDkD, k ≥ 1 whenever we need to show
where the transformation is applied.

Notice that the covering −→ is a particular case of the Tamari covering
T−→ whenever

we take Q = Uk−1Dk−1 in the transformation DUQD
T−→ UQDD . Let Sn be the poset

(Dn,≤). The bottom part of Figure 1b shows an example of such a covering, and Figure 1a
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(a) The Hasse diagram of S4 = (D4,≤). The
Tamari lattice T4 = (D4,⪯) can be viewed by
considering the dotted edge (in red).

(i)
T−→

(ii) −→
(b) (i) corresponds to a covering relation for
the Tamari Lattice, while (ii) corresponds to
the covering relation for the new lattice of
this study.

illustrates the Hasse diagram of Sn for n = 4 (without the red edges which belongs to the
Tamari lattice but not to this new poset).

Theorem 1. The poset (Dn,≤) is a lattice.

Theorem 2. We have

A(x, y, z) =
R(x, y, z)−

√
4x (xzy − xy − xz + 1) (xy + xz − x− 1) +R(x, y, z)2

2x (xzy − xy − xz + 1)
,

where R(x, y, z) = x2zy − x2y − x2z + x2 − xy − xz + x+ 1.

Corollary 1. The generating function E(x) where the coefficient of xn is the total number
of possible coverings over all Dyck paths of semilength n (or equivalently the number of edges
in the Hasse diagram) is

E(x) =
−1 + 4x+ (1− 2x)

√
1− 4x

2 (1− 4x) (1− x)
.

The coefficient of xn is given by
∑n−2

k=0

(
2k+2
k

)
. The ratio between the numbers of coverings in

Tn and Sn tends towards 3/2.

Let K(x) be the generating function where the coefficient of xn is the number of meet
irreducible elements (Dyck paths with only one outgoing edge). Using the symmetry y ←→ z
in A(x, y, z), K(x) also is the generating function where the coefficient of xn is the number
of join irreducible elements (Dyck paths with only one incoming edge).

Corollary 2. We have K(x) = x2

(x−1)(2x−1)
, and the coefficient of xn is 2n−1 − 1 for n ≥ 1.

Denote by L the set of paths with only one outgoing edge and only one incoming edge.
Let L(x) be the generating function where the coefficient of xn is the number of such paths.
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Corollary 3. We have L(x) = 3x3 + (x+2)x4

1−x−x2 , and the coefficient of xn is 0 whenever n ≤ 2,
is 3 whenever n = 3, and is the Fibonacci number Fn−1 otherwise, where Fn is defined by
Fn = Fn−1 + Fn−2 with F1 = F2 = 1.

Now, we provide the generating function and a close form for the number of intervals in
the lattice Sn. The method is inspired by the work of Bousquet-Mélou and Chapoton [1]. We
introduce the bivariate generating function I(x, y) =

∑
n,k≥1 an,kx

nyk, where an,k corresponds
to the number of intervals in Sn such that the upper path ends with k down-steps exactly.
We also define J(x, y) =

∑
n,k≥1 bn,kx

nyk, where bn,k corresponds to the number of intervals

in Sn such that the upper path is prime and ends with k down-steps exactly (recall that a
Dyck path is prime whenever it only touches the x-axis at its beginning and its end).

Theorem 3. The generating function J(x, y) for the number of intervals (P,Q) where Q is
prime, with respect to the semilength and the size of the last run of down steps is

J(x, y) =
xy (−1 + J (x , 1 )) (J (x , 1 )C (xy) y − y + 1)

J (x , 1 )C (xy)xy2 − C (xy)xy2 − xy2 − J (x , 1 ) y + xy + J (x , 1 ) + y − 1

with J(x, 1) = 1−
√
1−8x
4

, and C(x) is the g.f. for Catalan numbers, i.e. C(x) = 1 + xC(x)2.

The sequence of coefficients corresponds to the sequence A052701 that counts outerplanar
maps with a given number of edges [2]. The n-th coefficient is given by the close form
2n−1cn−1, where cn = (2n)!/(n!(n+ 1)!) is the n-th Catalan number A000108.

Theorem 4. The generating function I(x, y) for the number of intervals (P,Q) with respect

to the semilength and the size of the last run of down steps is I(x, y) = J(x, y) · 3−
√
1−8x

2(x+1)
,

and the generating function I(x, 1) for the number of intervals (P,Q) with respect to the
semilength is

I(x, 1) =
1− 2x−

√
1− 8x

2(x+ 1)
.

where the sequence of coefficients corresponds to the sequence A064062 that counts simple
outerplanar maps with a given number of vertices [2]. The n-th coefficient is given by the

close form 1
n

n−1∑
m=0

(n−m)
(
n+m−1

m

)
2m.

From a more logical point of view we will see how to find a sequent calculus inspired from
Lambek’s product rule and adapted to the Tamari Lattice in [6] that captures the structure
of this lattice and present our current results on it.
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