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As described for example in [2, 5], the set of discrete paths in a given grid form a distributive lattice, a
binomial lattice, whose underlying ordering is also known as the dominance ordering.

The congruences of this lattice present analogies with notions of homotopy coming from directed topology.
In this talk, we formalise this connection by introducing cubical complexes [4], combinatorial directed spaces,
whose subspaces’ dihomtopy types correspond exactly to lattice quotients. This establishes interesting links
between finite lattice theory, combinatorics, and concurrency theory.

This strong connection in the discrete case has led us to extend our investigation to lattices of continuous
paths [6]. In this setting, the dominance order is no longer canonically characterised as a point-wise path or-
dering. We show that such a characterisation can be achieved, similarly as in the discrete case, by constructing
simultaneous parametrisations and exhibiting directed homotopies that witness the ordering.

Finally, we shall end this talk by sketching ongoing work relating congruences to (directed) topological
properties of the unit square.

1. The discrete case. First, we describe the explicit link between the lattice congruences of the bi-
nomial lattice L(n,m) and the dihomotopy types of subspaces of a certain two-dimensional cubical complex
C(n,m). Fix non-zero natural numbers n,m ∈ N \ {0}.

1.1. Binomial lattice quotients. The binomial lattice, denoted by L(n,m) or simply L when the context
is clear, admits several equivalent descriptions. Firstly, it is the set of words on the alphabet {E,N} having
exactly n (resp. m) occurrences of E (resp. N), equipped with the order generated by the relation below on
the first line. Secondly, writing [k] := (0 < · · · < k), L may be described as the set of monotone (discrete)
paths f : [n+m]→ [n]× [m] on the n by m grid sending 0 to (0, 0) and n+m to (n,m), equipped with the
point-wise order defined below on the second line,

w →w′ ⇐⇒ ∃w1, w2 s.t. w = w1ENw2 and w′ = w1NEw2

f ≤ g ⇐⇒ f(k) ≤2 g(k) for all k ∈ [n+m]

where ≤2 is the product order [n]op × [m]. These equivalent orderings are known as the dominance order. It
is well known, see e.g. [2] that L is distributive, and so, being finite, its congruences are given (exactly) by

subsets of join-prime elements. Here, these are words of the form EkN lEkN l, where (k, l) = (n,m) − (k, l)
and 0 ≤ x < n and 0 < y ≤ m. As paths, these are those having exactly one “north-east” turn, see the figure
below.
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The join-prime elements of L, the set of which is denoted by J , are there-

fore characterised by a “point” (k, l) in [n]× [m] describing the upper-left
hand corner of a square in the n by m grid. The congruence ≡S associated
to a subset S ⊆ J(L(n,m)) identifies f, g ∈ L when j ≤ f ⇐⇒ j ≤ g for
all j ∈ S. This means that ≡S identifies all paths which are not separated
by the squares associated to the elements of S. This geometric intuition
led us to introduce a cubical complex whose subcomplexes’ dihomotopical
properties correspond to these congruences.

1.2. Binomial cubical complexes. Consider the two-dimensional cubical complex C(n,m) whose set C0

of vertices is given by elements of [n]× [m], its set of edges C1 connect pairs of adjacent vertices, and the set
of squares C2 is given by filling each of the holes in the grid. The latter is thus in bijection with J , since each
join-prime uniquely corresponds to a square in the grid. We call C(n,m) the full (n,m)-binomial complex.
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Its geometric realization ||C(n,m)|| is isomorphic to [0, n] × [0,m] ⊂ R2. In what follows, we will denote
this complex simply by C. Given a subset S ⊆ C2, we denote by CS the cubical complex (C0, C1, C2 \ S).
Geometrically, ||CS || corresponds to removing the squares in S from the space ||C||.

The maximal combinatorial directed traces of CS , see [3], i.e. images of continuous maps γ : I→ ||CS || such
that γ(0) = (0, 0) and γ(1) = (n,m), increasing in each coordinate and which are contained in the 1-skeleton
of CS (the n by m grid), correspond exactly to the elements of L for any S ⊆ C2. The set of these paths,

denoted by
−→
T (CS), is equipped with the elementary dihomotopy relation [3], denoted γ1  S γ2, which holds

when there exist combinatorial dipaths µ and η and a square F ∈ C2 \ S such that

γ1 = µ ? d11(F ) ? d02(F ) ? η and γ2 = µ ? d01(F ) ? d12(F ) ? η,

i.e. γ1 and γ2 coincide up to going above or below F . We denote the symmetric, reflexive, transitive closure
of  S by

∗
!S . Note that the transitive, reflexive closure of  ∅ corresponds exactly to the ordering ≤ on L,

thereby naturally equipping
−→
T (C) with an isomorphic ordering �.

Finally, we remark that removing the squares in S from C does not remove any combinatorial dipaths,

so we have
−→
T (CS) =

−→
T (C) for all S. We can thus (artificially) equip these sets with the ordering � so

that (
−→
T (CS),�) ∼= (L(n,m),≤). The quotients by the dihomotopy relations

∗
!S are compatible with this

ordering, so we obtain lattices

(−→
T (CS)

/ ∗
!S

,�S

)
for every S.

1.3. Dihomotopy quotients and congruences. Let j ∈ J be a join-prime element of L and denote by
Fj the corresponding square in C. We establish a technical lemma stating that, given f ∈ L, we have j ≤ f
if, and only if, there exists tf such that the combinatorial trace γf : I → ||CS || corresponding to f satisfies
γ(tf ) ≥2 (x, y) for all (x, y) ∈ Fj . Extending this result to a set of join-primes S ⊆ J , we see that f ≡S g is

equivalent to γf and γg passing above or below the same set of removed squares in ||CS ||, i.e. having γf
∗
! γg.

This leads to our first main result:

Proposition 1. For any S ⊆ J , we have L(n,m)
/
≡S
∼=
−→
T (CS)

/ ∗
!S

.

We can also include the maps induced by inclusions S ⊆ S′. Indeed, in this case, CS′
is a subcomplex

of CS and we have the inclusion of congruences ≡S⊆≡S′ . By functoriality, we respectively obtain qS,S′ :
−→
T (CS′

)
/ ∗
!S′ →

−→
T (CS)

/ ∗
!S and pS,S′ : L(n,m) /S′ → L(n,m) /S . Denoting the associated diagrams by

−→
Π(C(n,m)) and Cong(L(n,m)), we have the following:

Theorem 1.
−→
Π(C(n,m)) ∼= Cong(L(n,m)).

This means that the congruence lattice Cong(L(n,m)) of the binomial lattice is exactly the diagram of
dihomotopy types of subspaces of the binomial complex. Moreover, each of these is isomorphic to the order
dual of the power-set P(J).

2. Ordering continuous paths. A third description of the binomial lattice L is as join-preserving
lattice morphisms f : [n] → [m]. A natural continuous extension of these lattices is thus given by studying
the lattice of suprema-preserving lattice morphisms of the unit interval f : I → I. These may also be seen as
traces, i.e. images of continuous maps I→ I2 which are increasing in each coordinate sending 0 to (0, 0) and 1
to (1, 1). A more complete description of this lattice may be found in [6]. In the discrete case, the ordering on
elements of L are given by the point-wise order induced by ≤2, the product order [n]op× [m]. In the continuous
case, the natural ordering on suprema-preserving functions is given by the point-wise order induced by that
of I, that is, for such f, g : I→ I, we set

f ≤ g ⇐⇒ f(t) ≤ g(t) for all t ∈ I.

Here we briefly describe how this ordering, again called the dominance order, is captured the point-wise
order over increasing paths I→ I2 induced by that of Iop × I.
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2.1. Sup-continuous endomorphisms, traces, and paths. We consider the quantale of sup-continuous
endomorphisms of I, denoted by Q∨(I), i.e. the set of suprema-preserving increasing maps f : I→ I equipped
with the dominance ordering ≤ and a multiplication operation given by composition of functions.

Each function f ∈ Q∨(I) corresponds uniquely to a trace, that is a maximal chain Cf ⊆ I2. These, in turn,
correspond to images of increasing paths p : I → I2 such that p(0) = (0, 0) and p(1) = (1, 1). However, in
contrast to the discrete case, in which we essentially parametrize paths by arc-length, many paths correspond
to each trace.

For example, the identity endomorphism on I, which corresponds to the diagonal trace ∆, may be
parametrized both by p1 : t 7→ (t, t) and p2 : t 7→ (t2, t2). Denoting the product order Iop× I by ≤2, clearly we
have p1 6≤2 p2 and p2 6≤ p1. Parametrization is thus a major obstruction to describing the dominance order
via ≤2.

2.2. Simultaneous parametrization. The previous example illustrates that, for f, g ∈ Q∨(I), we cannot
expect f ≤ g to imply pf ≤2 pg for any chosen parametrizations pf and pg of f and g, respectively. However,
note that if f and g are topologically continuous, suitable parametrisations are given by t 7→ (t, f(t)) , (t, g(t)).
In the general case, denoting by D the set of discontinuity of points of f and g, we set

L =
⋃
x∈I

Lx where Lx =

{
{x} when x ∈ I \D,
I when x ∈ D,

This set is equipped with and ordering known as the order sum [1] of the family {Lx}. We show that L is
isomorphic to the unit interval I, thereby constructing, for any pair (f, g) of elements of Q∨(I), parametrizations
πf and πg satisfying πf ≤2 πg ⇐⇒ f ≤ g. We call these simultaneous parametrizations because their x-
coordinates coincide throughout the progression of each path.

Simultaneous parametrisation also relates the ordering onQ∨(I) to the notion of directed homotopy. Indeed,
consider f, g ∈ Q∨(I) such that f ≤ g. Then the map ψf,g : I → [I, I2] defined by ψf,g(s, t) = (π1

f (t), (1 −
s)π2

f (t) + sπ2
g(t)) is an increasing homotopy from πf to πg, in the sense that ψ(s, t) ≤2 ψ(s′, t) for all s ≤ s′.

Moreover, any two parametrizations pf and p′f of the same element f are related by a homotopy ϕp,p′ with
constant image, called a reparametrization homotopy. Summing this up, we have

Theorem 2. Let f, g ∈ Q∨(I) be such that f ≤ g. Then there exist parametrisations πf , πg : I −−→ I2 and a
directed homotopy ψf,g : πf −−→ πg. Moreover, given any parametrisations qf and qg of f and g, there exist
reparametrising homotopies φf , φg so that φf ? ψf,g ? φg is a homotopy from qf to qg.

3. Ongoing work. To end this talk, we discuss partial results and ongoing work relating congruences of

the lattice Q∨(I) to topological properties of I2 and its increasing paths. These include studying the topology
of the Priestley dual space X of Q∨(I) and the subspace XJ correpsonding to its join-primes, as well as its
relation to a topology on I2. We have also observed certain obstructions to generalising Theorem 1 to the
continuous case which we will briefly discuss.
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