Binomial lattice congruences

and flat dihomotopy types

Computational Logic and Applications
Krakow

Cameron Calk
& Luigi Santocanale

L I g prINFORMATIQUE 15" of December 2023

Cameron Calk (LIS) Jongruences & Dihom 15/12/2023



Introduction




@ Multinomial lattices were introduced by Bennett & Birkhoff.

e Study of the rewriting system associated to commutativity from a
lattice-theoretic perspective:

abbaa — ababa — aabba — aabab — aaabb

Cameron Calk (LIS) Congruences & Dihomotopy



ew and context

@ Multinomial lattices were introduced by Bennett & Birkhoff.

e Study of the rewriting system associated to commutativity from a
lattice-theoretic perspective:

abbaa — ababa — aabba — aabab — aaabb

@ These lattices and their congruences are strongly related to
concurrency.

e The word abbaa represents interleaving actions of two agents.

e Multinomial lattice congruences give rise to certain Parikh
equivalences central to scheduling problems in concurrency.

e A geometric interpretation closely relates these lattices to a
semantics of concurrent systems, namely directed topology.
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In this talk. ..

o Goal: instantiate the link between dihomotopy and binomial
lattice congruences.
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In this talk. ..

o Goal: instantiate the link between dihomotopy and binomial
lattice congruences.

o Binomial lattices.
e Define binomial lattices and describe their congruences.
o Recall their interpretation as lattices of lattice paths.
e Describe the geometric intuition of their congruences.
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In this talk. ..

o Goal: instantiate the link between dihomotopy and binomial
lattice congruences.

o Binomial lattices.
e Define binomial lattices and describe their congruences.
o Recall their interpretation as lattices of lattice paths.
e Describe the geometric intuition of their congruences.

o Directed algebraic topology.
e Recall the notion of directed space, and define cubical complexes.
e Introduce the binomial complex and describe the dihomotopy
types of its subcomplexes.
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In this talk. ..

o Goal: instantiate the link between dihomotopy and binomial
lattice congruences.

o Binomial lattices.
e Define binomial lattices and describe their congruences.
o Recall their interpretation as lattices of lattice paths.
e Describe the geometric intuition of their congruences.

o Directed algebraic topology.
e Recall the notion of directed space, and define cubical complexes.
e Introduce the binomial complex and describe the dihomotopy
types of its subcomplexes.

@ Result: the correspondence.
e Congruences correspond to dihomotopy types of subcomplexes.
e The congruence lattice of a binomial lattice is isomorphic to the
lattice of subcomplex dihomotopy types.
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In this talk. ..

o Goal: instantiate the link between dihomotopy and binomial
lattice congruences.

o Binomial lattices.
e Define binomial lattices and describe their congruences.
o Recall their interpretation as lattices of lattice paths.
e Describe the geometric intuition of their congruences.

o Directed algebraic topology.
e Recall the notion of directed space, and define cubical complexes.
e Introduce the binomial complex and describe the dihomotopy
types of its subcomplexes.

@ Result: the correspondence.
e Congruences correspond to dihomotopy types of subcomplexes.
e The congruence lattice of a binomial lattice is isomorphic to the
lattice of subcomplex dihomotopy types.

o We will end by briefly describing ongoing work in this area.
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Binomial lattices and their congruences
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Multinomial latti

e Given v € N¥, we denote by £(v) the set of words on the alphabet
¥ ={ai,...,ax} such that:

e w ccontains v; occurrences of the letter a;.

We equip this set with the partial order generated by

W =Uu-a;a;-v S
w<w = Ju, v { I and ¢ < j.

!
w =u-aja;-v
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Multinomial latti

e Given v € N¥, we denote by £(v) the set of words on the alphabet
¥ ={ai,...,ax} such that:

e w ccontains v; occurrences of the letter a;.

We equip this set with the partial order generated by

w=1u-a;a;- v

w<w = Ju, v { and ¢ < j.

!
w =u-aja;-v

e The poset (L£(v), <) has the structure of a lattice.

@ These structures generalize permutations to permutations of
multisets, called multipermutations.
o Indeed, for v = (1,...,1), we have L(v) = Sj.
o The order < generalizes the weak Bruhat order defining the
permutohedron.
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Binomial lattices

Today, we will focus on binomial lattices:

e Given n,m € N, we denote by £(n,m) the set of words on the
alphabet ¥ = {a, b} such that:

e w contains n occurrences of the letter a,
e and m occurrences of the letter b.

which we equip with the partial order generated by

w=1u-ab-v,

w =u-ba-wv.

e We will henceforth denote £(n,m) simply by L.

Proposition (L. Santocanale ‘05)

L is a distributive lattice.
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As lattices of lattice paths

@ The elements of £ are interpreted as paths in an n by m grid:

weL s fw i [n+m] = [n] x [m]
e an occurrence of a is a step in the z-axis,
e an occurrence of b is a step in the y-axis.
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As lattices of lattice paths

@ The elements of £ are interpreted as paths in an n by m grid:

weL s fw i [n+m] = [n] x [m]
e an occurrence of a is a step in the z-axis,
e an occurrence of b is a step in the y-axis.

Lbbaa -

b

a
The ordering is recovered as a point-wise ordering on paths.

@ The join and meet relations then become point-wise maxima and

minima: — u v Vi
W

V

o Note that these paths are increasing in each coordinate.

Cameron Calk (LIS) Congruences & Dihomotopy



ributive lattice congruences

Let L be a distributive lattice.

@ A congruence on L is an equivalence relation 8 C L x L which is
compatible with the lattice operations.

e In distributive lattices, congruences are given by sets of join-prime
elements.

e j € L is join-prime if
j=uVuv = j=uor j=nu.

o The set of join-prime elements of L is denoted by J.
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ributive lattice congruences

Let L be a distributive lattice.

@ A congruence on L is an equivalence relation 8 C L x L which is
compatible with the lattice operations.

e In distributive lattices, congruences are given by sets of join-prime
elements.

e j € L is join-prime if
j=uVuv = j=uor j=nu.
o The set of join-prime elements of L is denoted by J.
e Given S C 7, the congruence =g is defined by:

U=g v — ViesS, j<uiff j<w.
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Join-prime elements of £(7, M)

@ What are the join-prime elements of L7

Cameron Calk (LIS) Congruences & Dihomotopy



Join-prime elements of L(n, m)

@ What are the join-prime elements of L7

[
4

W=Wuv

@ They are the paths that have exactly one north-east turn:
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Join-prime elements of L(n,m)

@ What are the join-prime elements of L7

@ They are the paths that have exactly one north-east turn:

“n ) €.
\ W1

o As words, these are of the form
akblan—kbm—l
0<k<n

They are thus characterized by (k,1), with
0<i<m
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Geometric interpretation of congruences

e Let us look at the particular case when S = {j}.
@ Recall that
w=gw — j<w iff j <.

e Let (k,1) be the coordinate of the NE turn of j.

o j < wu means f, passes “above”’ (k,l),
o j £ v means f, passes “below” (k,1).
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Geometric interpretation of congruences

e Let us look at the particular case when S = {j}.
@ Recall that
w=gw — j<w iff j <.

e Let (k,1) be the coordinate of the NE turn of j.

o j < wu means f, passes “above”’ (k,l),
o j £ v means f, passes “below” (k,[).

W

(i)

d |

@ The same holds for arbitrary S C J.

@ So, lattice congruences of L correspond to separating directed
paths by points. This reminds us of directed homotopy. ..

C=d o
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Directed homotopy and binomial complexes
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Directed topology

e Directed topology provides a geometric semantics for true
concurrency.

Dihomotopy



Directed topology

e Directed topology provides a geometric semantics for true

concurrency.
o A directed space X consists of
e A topological space X,
e A set of directed paths dX.

o We interpret directed paths as executions.
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Directed topology

e Directed topology provides a geometric semantics for true
concurrency.
o A directed space X consists of
e A topological space X,
e A set of directed paths dX.

o We interpret directed paths as executions.
e Today, we focus on a particular class of directed spaces, namely
cubical complexes. In two dimensions, these consist of:
e vertices, which may be related by...
e edges, which may form the border of...
@ squares.
@ Such two-dimensional complexes model two-agent concurrent
systems: Bob Aukes/nddemer e apple witab Nlice Aouja
rabaaue | helle. T Alice talaa/mtama e gpple.

Yahe /
s
e tale apde nleane apple
@ Directed paths are those which increase in each coordinate.
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Binomial comyj

o In particular, for n,m € N, we consider the binomial complex C"
o Co:={vi,; |0<i<mand0<j<m},
°o (= {e(il,jl)v(imh) | i =iy + 1 exor jo = j1 + 1}’
o Co:={Fu|0<k<nand0<Il<m}
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Binomial compl

o In particular, for n,m € N, we consider the binomial complex C"
o Co:={vi,; |0<i<mand0<j<m},
) Cl = {e(il,j1)7(¢27j2) | ig = ’il + 1 exor j2 = j1 + 1},
o Co:={Fu|0<k<nand0<Il<m}

@ This cubical complex corresponds to the n by m grid, with all

“holes” filled by squares. 20! ()0
o Note that we encode squares )
by their upper-left corner. (60D ), -0
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Binomial complexes

o In particular, for n,m € N, we consider the binomial complex C"
o Co:={vi,; |0<i<nmand0<j<m},
) Cl = {e(il,j1)7(¢27j2) | ig = ’il + 1 exor j2 = j1 + 1},
o Co:={Fy|0<k<nand0<l<m}

@ This cubical complex corresponds to the n by m grid, with all

“holes” filled by squares. (L0 Gert )
e Note that we encode squares Fn
by their upper-left corner.

(6,00 (-4, 0-D

e Given S C Cy, we denote by C'° the cubical complex with the
same set of vertices and edges, but in which C5 := Oy \ S.

(0,2) g

s =¢(02),(2,4%

c(3,2) @

¢’ (3,0
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Cubical homoto

e Given a concurrent system, which executions produce the same

output?
AU, exeadions
Y= r wd Wik =2
(x|
Emm ,
A A zi=1
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Cubical homotopy

e Given a concurrent system, which executions produce the same

output? N . Ewda wike
AL ereactions [z ]

\ﬁ:: s wd wik~ =2 =

| L 51

=1 (> [ 4 |

x.=1
o We say that paths are dihomotopic if we can “slide” one onto the

other through a sequence of directed paths, and if they start and

end at the same point.

15/12/2023
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Cubical homotopy

e Given a concurrent system, which executions produce the same

output? . Ewda wile
AL excaciiom = ]

y- wd wik s > 4|
| L mro

=t T

o We say that paths are dihomotopic if we can “slide” one onto the
other through a sequence of directed paths, and if they start and
end at the same point. a

@ In a cubical complex I, it suffices to consider |

e combinatorial dipaths,
i.e. those which are contained
in the set of edges I'y, L

e combinatorial homotopy, Lid
1.e. dipaths are equivalent
when the space between them
is filled by squares in T's. | ‘
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Dihomotopy quot

o The combinatorial dihomotopy relation, denoted by «~s, is an
equivalence relation on combinatorial dipaths with the same
beginning- and end-points.
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Dihomotopy quotients

o The combinatorial dihomotopy relation, denoted by «~s, is an
equivalence relation on combinatorial dipaths with the same
beginning- and end-points.

e Given the binomial complex C, we denote by mC' @(C) the set of
combinatorial dipaths from (0,0) to (n,m).

o Note that for any S C Cy, we have mCP(C) = mCP(C?).
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Dihomotopy quotients

o The combinatorial dihomotopy relation, denoted by «~s, is an
equivalence relation on combinatorial dipaths with the same
beginning- and end-points.

e Given the binomial complex C, we denote by mC' @(C) the set of
combinatorial dipaths from (0,0) to (n,m).

o Note that for any S C Cy, we have mCP(C) = mCP(C?).

@ We are interested in the quotient by combinatorial dihomotopy:

mCB(CS) /.1

Laaadd

o In the particular case in which S = {F(;}...

N N L N N PA.HM ao\\pa adoove F
T\ wh are L&.w»\/\"‘s‘b&-
% N
N 1 ]
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The correspondence
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COl’I‘GSpOHdeHCGS

o Elements of L. o Elements of mC @(Cs).

Lattice paths
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COl’I‘GSpOHdeHCGS

o Elements of L. o Elements of mC @(Cs).

Lattice paths
e Join prime elements of L. @ Squares in C.

J~{(k])|[0<k<nand 0<I<m } ~C,

Cameron Calk (LIS) Jongruences & Dihomotopy



Correspondences

o Elements of L. o Elements of mC @(Cs).

Lattice paths
e Join prime elements of L. e Squares in C.
J~{(k])|0<k<nand 0<l<m }~Cy

e Congruences =g of bilnm e Subcomplexes C*(n,m).
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Results

e Since L ~mC ?(Cs) as sets, we can equip the latter with an
isomorphic ordering.
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e Since L ~mC @(Cs) as sets, we can equip the latter with an
isomorphic ordering.
e Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any S C J ~ Cs, we have the lattice isomorphism

L(n,m)/ES %”ﬁ(cs)/«fw~
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e Since L ~mC @(Cs) as sets, we can equip the latter with an
isomorphic ordering.
e Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any S C J ~ Cs, we have the lattice isomorphism

L(n,m)/ES %”ﬁ(cs)/«fw~

e Moreover, the maps induced by inclusions S’ C S on each side
correspond, i.e. the following maps coincide:

455 : MCE(CY) /=, —y mCB(CY) / 2,
psr,s : Llnm) jgr — L(n,m) /g
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Ongoing work




Multinomial lattice quotients

o We have established a concrete link between directed algebraic
topology and binomial lattices.

Cameron Calk (LIS) Jongruences & Dihomotopy



Multinomial lattice quotients

o We have established a concrete link between directed algebraic
topology and binomial lattices.
e In the case of multinomial lattices L(v1,...,vy), for n > 3...

o L(v) is not distributive.

e Because of this, its congruences are not as simple.

e Indeed, here congruences correspond to subsets S C 7 which are
closed under the join-dependency relation.
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Multinomial lattice quotients

o We have established a concrete link between directed algebraic
topology and binomial lattices.
e In the case of multinomial lattices L(v1,...,vy), for n > 3...
o L(v) is not distributive.
e Because of this, its congruences are not as simple.
e Indeed, here congruences correspond to subsets S C 7 which are
closed under the join-dependency relation.

@ On the geometric side. ..

e Join-dependency means that adding squares is no longer “free” in
the sense that adding a square may necessitate adding parallel
squares.

e We can also consider higher homotopy groups - what is their
interpretation?
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Multinomial lattice quotients

o We have established a concrete link between directed algebraic
topology and binomial lattices.
e In the case of multinomial lattices L(v1,...,vy), for n > 3...

o L(v) is not distributive.

e Because of this, its congruences are not as simple.

e Indeed, here congruences correspond to subsets S C 7 which are
closed under the join-dependency relation.

@ On the geometric side. ..

e Join-dependency means that adding squares is no longer “free” in
the sense that adding a square may necessitate adding parallel
squares.

e We can also consider higher homotopy groups - what is their
interpretation?

@ In this direction, we are studying the higher dimensional
automata associated to the multinomial complexes.
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tinuous case

o In what precedes, we have considered discrete paths.

@ The continuous analog of the binomial lattice is the quantale
Qv (I) of sup-continuous endomorphisms of the unit interval I.
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tinuous case

o In what precedes, we have considered discrete paths.

@ The continuous analog of the binomial lattice is the quantale
Qv (I) of sup-continuous endomorphisms of the unit interval I.

This is a mix x-autonomous quantale,

all permutohedra and binomial lattices are sublattices,

elements have interpretation as directed continuous paths,

congruences are more complicated. . .
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tinuous case

In what precedes, we have considered discrete paths.

The continuous analog of the binomial lattice is the quantale
Qv (I) of sup-continuous endomorphisms of the unit interval I.

e This is a mix x-autonomous quantale,
e all permutohedra and binomial lattices are sublattices,
e elements have interpretation as directed continuous paths,
e congruences are more complicated. ..
e We have related the ordering to directed homotopy, but (it seems)
that congruences cannot be captured thereby.

o We are currently exploring other topological techniques,

i.e. Priestley duality, frame duality,. . .in order to characterize its
congruences.

There are also higher dimensional analogues of this lattice. ..
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Thank you




