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An Overview of our Playground

generators for several classes of lambda terms, including closed, simply
typed, linear, affine as well as terms with bounded unary height and
terms in the binary lambda calculus encoding

transformers to/from a compressed de Bruijn form

an algorithm combining term generation and type inference

a normal order reduction algorithm for lambda terms relying on their de
Bruijn representation

generators and evaluation algorithms for SK and (Rosser’s) X-combinator
expressions

type inference algorithms for SK and X-combinator expressions

a discussion of what happens when expressions and types sharing the
same binary tree representation
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– continued –

size-proportionate bijective encodings of lambda terms and combinators

mappings from lambda terms to Catalan families of combinatorial objects,
with focus on binary trees representing their inferred types and their
applicative skeletons

these mappings lead size-proportionate ranking and unranking algorithms
for lambda terms and their inferred types

an interpretation of X-combinator trees as natural numbers on which it
defines arithmetic operations

a bijection from lambda terms to binary trees implementing tree-based
arithmetic operations that leads to a different mechanism for
size-proportionate ranking and unranking algorithms for lambda terms

Paul Tarau (University of North Texas) Lambda Terms, Types and Tree-Arithmetic CLA’2016 4 / 56



– continued –

some uses of our combined term generation and type inference algorithm
to discover frequently occurring type patterns

a type-directed algorithm for the generation of closed typable lambda
terms

the well-typed frontier of an untypable SK-expression

its application a (partial) normalization-based simplification algorithm that
terminates on all SK-expressions

this talk:

a few samples of the playground at work – after a short
introduction to Prolog
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Horn Clause Prolog in three slides
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Prolog: Unification, backtracking, clause selection

?- X=a,Y=X. % variables uppercase, constants lower
X = Y, Y = a.

?- X=a,X=b.
false.

?- f(X,b)=f(a,Y). % compound terms unify recursively
X = a, Y = b.

% clauses
a(1). a(2). a(3). % facts for a/1
b(2). b(3). b(4). % facts for b/1

c(0).
c(X):-a(X),b(X). % a/1 and b/1 must agree on X

?-c(R). % the goal at the Prolog REPL
R=0; R=2; R=3. % the stream of answers
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Prolog: Definite Clause Grammars

Prolog’s DCG preprocessor transforms a clause defined with “-->” like

a0 --> a1,a2,...,an.

into a clause where predicates have two extra arguments expressing a chain
of state changes as in

a0(S0,Sn):-a1(S0,S1),a2(S1,S2),...,an(Sn-1,Sn).

work like “non-directional” attribute grammars/rewriting systems

they can used to compose relations (functions in particular)

with compound terms (e.g. lists) as arguments they form a
Turing-complete embedded language

f -- > g,h.
f(In,Out):-f(In,Temp),g(Temp,Out).
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Prolog: the two-clause metaInterpreter

The meta-interpreter metaint/1 uses a (difference)-list view of prolog clauses.

metaint([]). % no more goals left, succeed
metaint([G|Gs]):- % unify the first goal with the head of a clause

cls([G|Bs],Gs), % build a new list of goals from the body of the
% clause extended with the remaining goals as tail

metaint(Bs). % interpret the extended body

clauses are represented as facts of the form cls/2

the first argument representing the head of the clause + a list of body goals

clauses are terminated with a variable, also the second argument of cls/2.

cls([ add(0,X,X) |Tail],Tail).
cls([ add(s(X),Y,s(Z)), add(X,Y,Z) |Tail],Tail).
cls([ goal(R), add(s(s(0)),s(s(0)),R) |Tail],Tail).

?- metaint([goal(R)]).
R = s(s(s(s(0)))) .
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Lambda terms in Prolog:
canonical, de Bruijn, compressed
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Lambda Terms in Prolog

logic variables can be used in Prolog for connecting a lambda binder and
its related variable occurrences

this representation can be made canonical by ensuring that each lambda
binder is marked with a distinct logic variable

the term λa.((λb.(a(b b)))(λc.(a(c c)))) is represented as

l(A,a(l(B, a(A,a(B,B))), l(C, a(A,a(C,C)))))

“canonical” names - each lambda binder is mapped to a distinct logic
variable

scoping of logic variables is “global” to a clause - they are all universally
quantified
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De Bruijn Indices

de Bruijn Indices provide a name-free representation of lambda terms
terms that can be transformed by a renaming of variables (α-conversion)
will share a unique representation

variables following lambda abstractions are omitted
their occurrences are marked with positive integers counting the number
of lambdas until the one binding them on the way up to the root of the term

term with canonical names: l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C)))))⇒
de Bruijn term: l(a(l(a(v(1),a(v(0),v(0)))),l(a(v(1),a(v(0),v(0))))))

note: we start counting up from 0

closed terms: every variable occurrence belongs to a binder

open terms: otherwise
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Should we compress λ -terms in de Bruijn notation?

Figure: Random λ -terms can have long necks: l(l(l(l(l(... . . .a(. . .

Figure: Iterated “l”s are unary arithmetic! So they can be compressed!

λ -term⇒ compressed λ -term
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Compressed de Bruijn terms

iterated λs (represented as a block of constructors l/1 in the de Bruijn
notation) can be seen as a successor arithmetic representation of a
number that counts them

⇒ it makes sense to represent that number more efficiently in the usual
binary notation!

in de Bruijn notation, blocks of λs can wrap either applications or variable
occurrences represented as indices
⇒ we need only two constructors:

v/2 indicating in a term v(K,N) that we have K λs wrapped around the
de Bruijn index v(N)
a/3 indicating in a term a(K,X,Y) that K λs are wrapped around the
application a(X,Y)

we call the terms built this way with the constructors v/2 and a/3
compressed de Bruijn terms – they can be seen as labeled binary trees
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Generating binary trees

genTreeByDepth(_,x).
genTreeByDepth(D1,(X>Y)):-down(D1,D2),
genTreeByDepth(D2,X),
genTreeByDepth(D2,Y).

down(From,To):-From>0,To is From-1.

?- genTreeByDepth(2,T).
T = x ; T = (x>x) ; T = (x> (x>x)) ;
T = ((x>x)>x) ;
T = ((x>x)> (x>x)).

generating trees with given number of internal nodes

genTree(N,T):-genTree(T,N,0).

genTree(x)-->[].
genTree((X>Y))-->down,genTree(X),genTree(Y).
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Generating lambda terms
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Generating Motzkin trees

Motzkin-trees (also called binary-unary trees) have internal nodes of
arities 1 or 2

⇒ like lambda term trees, for which we ignore the de Bruijn indices that
label their leaves

motzkinTree(L,T):-motzkinTree(T,L,0).

motzkinTree(u)-->down.
motzkinTree(l(A))-->down,
motzkinTree(A).

motzkinTree(a(A,B))-->down,
motzkinTree(A),
motzkinTree(B).
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Generating closed de Bruijn terms

we can derive a generator for closed lambda terms in de Bruijn form by
extending the Motzkin-tree generator to keep track of the lambda binders

when reaching a leaf v/1, one of the available binders (expressed as a
de Bruijn index) will be assigned to it nondeterministically

genDBterm(v(X),V)--> {down(V,V0),between(0,V0,X)}.
genDBterm(l(A),V)--> down, {up(V,NewV)},
genDBterm(A,NewV).

genDBterm(a(A,B),V)--> down,
genDBterm(A,V),
genDBterm(B,V).
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Generating closed de Bruijn terms – continued

genDB(L,T):-genDB(T,0,L,0). % terms of size L
genDBs(L,T):-genDB(T,0,L,_). % terms of size up to L

Generation of terms with up to 2 internal nodes.

?- genDBterms(2,T).
T = l(v(0)) ;
T = l(l(v(0))) ;
T = l(l(v(1))) ;
T = l(a(v(0), v(0))).
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Generation of linear lambda terms

linear lambda terms restrict binders to exactly one occurrence

linLamb/4 uses logic variables both as leaves and as lambda binders
and generates terms in standard form

binders accumulated on the way down from the root, must be split
between the two branches of an application node

subset_and_complement_of/3 achieves this by generating all
such possible splits of the set of binders

linLamb(X,[X])-->[].
linLamb(l(X,A),Vs)-->down,linLamb(A,[X|Vs]).
linLamb(a(A,B),Vs)-->down,
{subset_and_complement_of(Vs,As,Bs)},
linLamb(A,As),linLamb(B,Bs).

at each step of subset_and_complement_of/3,
place_element/5 is called to distribute each element of a set to
exactly one of two disjoint subsets
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Generating lambda terms of bounded unary height

a bound on the number of lambda binders from a de Bruijn index to the
root of the term

boundedUnary(v(X),V,_D)-->{down(V,V0),between(0,V0,X)}.
boundedUnary(l(A),V,D1)-->down,
{down(D1,D2),up(V,NewV)},
boundedUnary(A,NewV,D2).

boundedUnary(a(A,B),V,D)-->down,
boundedUnary(A,V,D),
boundedUnary(B,V,D).

the predicate boundedUnary/5 generates lambda terms of size L in
compressed de Bruijn form with unary hight D

boundedUnary(D,L,T):-boundedUnary(B,0,D,L,0),b2c(B,T).
boundedUnarys(D,L,T):-boundedUnary(B,0,D,L,_),b2c(B,T).
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Combining term generation and
type inference
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Type Inference

extractType(X,TX):-var(X),!,TX=X. % this matches all variables
extractType(l(TX,A),(TX>TA)):-extractType(A,TA).
extractType(a(A,B),TY):-extractType(A,(TX>TY)),extractType(B,TX).

polyTypeOf(LTerm,Type):-extractType(LTerm,Type),acyclic_term(LTerm).

slightly more complex for de Bruijn terms

?- copy_term(l(X,a(X,l(Y,Y))),LT),polyTypeOf(LT,T).
LT = l((A>A)>B, a((A>A)>B, l(A, A))), T = (((A>A)>B)>B).

as we are only interested in simple types, we will bind uniformly the leaves of
our type tree to the constant “x” representing our only primitive type

?- hasType(a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),T).
T = ((x> (x>x))> ((x>x)> (x>x))) .

?- hasType(
a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),T).
false.

Paul Tarau (University of North Texas) Lambda Terms, Types and Tree-Arithmetic CLA’2016 23 / 56



Generating well typed de Bruijn terms of a given size

we can interleave generation and type inference in one program
DCG grammars control size of the terms with predicate down/2
in terms of the Curry-Howard correspondence, the size of the generated
term corresponds to the size of the (Hilbert-style) proof of the intuitionistic
formula defining its type

genTypedTerm(v(I),V,Vs)--> {
nth0(I,Vs,V0), % pick binder and ensure types match
unify_with_occurs_check(V,V0)

}.
genTypedTerm(a(A,B),Y,Vs)-->down, % application node
genTypedTerm(A,(X->Y),Vs),
genTypedTerm(B,X,Vs).

genTypedTerm(l(A),(X->Y),Vs)-->down, % lambda node
genTypedTerm(A,Y,[X|Vs]).

?- genTypedTerm(3,Term,Type).
Term = a(l(v(0)), l(v(0))), Type = (x>x) ;
Term = l(a(v(0), l(v(0)))), Type = (((x>x)>x)>x) ; ...
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Some algorithms for SK and X
combinator trees
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Generating SK-combinator trees

the most well known basis for combinator calculus consists of
K = λx0. λx1.x0 and S = λx0. λx1. λx2.((x0 x2) (x1 x2))

the predicate genSK generates SK-combinator trees with a limited
number of internal nodes. Note that we use “*” for application. It is left
associative.

genSK(k)-->[].
genSK(s)-->[].
genSK(X∗Y)-->down,genSK(X),genSK(Y).

genSK(N,X):-genSK(X,N,0). % with exactly N internal nodes

genSKs(N,X):-genSK(X,N,_). % with up to N internal nodes
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Inferring types for SK-combinator trees

skTypeOf(k,(A>(_>A))). % K is well typed
skTypeOf(s,(((A>B>C)> (A>B)>A>C))). % S is well-typed
skTypeOf(A∗B,Y):- % recursion on application trees
skTypeOf(A,T),
skTypeOf(B,X),
unify_with_occurs_check(T,(X->Y)). % types must unify !!!

Intuition: e.g., if defined in Haskell: s (+) succ 5 = 11, k 10 20 = 10
type inferred for some SK-combinator expressions

?- skTypeOf(k∗k∗k∗k∗k,T).
T = (A>B>A).

?- skTypeOf(k∗s∗k,T).
T = ((A>B>C)> (A>B)>A>C).

failure to infer a type for SSI = SS(SKK ).

?- skTypeOf(s∗s∗(s∗k∗k),T).
false.
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Rosser’s X-combinator

defined as X = λ f .fKSK , the X-combinator has the nice property of
expressing both K and S in a symmetric way

K = (XX)X (1)

S = X(XX) (2)

another useful property is

KK = XX = λx0. λx1. λx2.x1 (3)

if we denote application with “>” and the X-combinator with “x”, this gives,
in Prolog:

sT(x>(x>x)). % tree for the S combinator
kT((x>x)>x). % tree for the K combinator
xxT(x>x). % tree for (X X) = (K K)
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De Bruijn equivalents of X-combinator expressions

kB and sB define the K and S combinators in de Bruijn form

kB(l(l(v(1)))).

sB(l(l(l(a(a(v(2),v(0)),a(v(1),v(0))))))).

the X-combinator’s definition in terms of S and K, in de Bruijn form, is
derived from X f = f K S K and then λ f .f K S K

xB(X):-F=v(0),kB(K),sB(S),X=l(a(a(a(F,K),S),K)).

t2b transforms an X-combinator tree in its lambda expression form, in de
Bruijn notation

t2b(x,X):-xB(X).
t2b((X>Y),a(A,B)):-t2b(X,A),t2b(Y,B).
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Inferring types of X-combinator trees directly

in the paper: inferring via translation to λ -terms

the predicate xt, that can be seen as a “partially evaluated” version of
xtype, infers the type of the combinators directly

xt(X,T):-poly_xt(X,T),bindType(T).

xT(T):-t2b(x,B),btype(B,T,[]).

poly_xt(x,T):-xT(T). % borrowing the type of the X combinator
poly_xt(A>B,Y):-
poly_xt(A,T),
poly_xt(B,X),
unify_with_occurs_check(T,(X>Y)).

we proceed by first borrowing the type of x from its de Bruijn equivalent

then, after calling poly_xt to infer polymorphic types, we bind them to
our simple-type representation by calling bindType
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An (injective) size proportional encoding of X-combinator
expressions as λ -terms

Proposition

The size of the lambda term equivalent to an X-combinator tree with N internal
nodes is 15N+14.

Proof.
Note that the an X-combinator tree with N internal nodes has N+1 leaves. The
de Bruijn tree built by the predicate t2b has also N application nodes, and is
obtained by having leaves replaced in the X-combinator term, with terms
bringing 14 internal nodes each, corresponding to x. Therefore it has a total of
N +14(N +1) = 15N +14 internal nodes.
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Binary tree arithmetic
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Blocks of digits in the binary representation of natural
numbers

The (big-endian) binary representation of a natural number can be written as a
concatenation of binary digits of the form

n = bk0
0 bk1

1 . . .bki
i . . .bkm

m (4)

with bi ∈ {0,1}, bi 6= bi+1 and the highest digit bm = 1.

Proposition

An even number of the form 0i j corresponds to the operation 2i j and an odd
number of the form 1i j corresponds to the operation 2i(j +1)−1.

Proposition

A number n is even if and only if it contains an even number of blocks of the
form bki

i in equation (4). A number n is odd if and only if it contains an odd
number of blocks of the form bki

i in equation (4).
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The constructor c: prepending a new block of digits

c(i, j) =

{
2i+1j if j is odd,

2i+1(j +1)−1 if j is even.
(5)

the exponents are i +1 instead of i as we start counting at 0

c(i, j) will be even when j is odd and odd when j is even

Proposition

The equation (5) defines a bijection c : N×N→ N+ = N−{0}.
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The DAG representation of 2014,2015 and 2016

a more compact representation is obtained by folding together shared
nodes in one or more trees
integers labeling the edges are used to indicate their order
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1
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1
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0

1

2015

0

1

2016

0

1

Figure: DAG representing 2014, 2015 and 2016
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Binary tree arithmetic

parity (inferred from from assumption that largest bloc is made of 1s)

as blocks alternate, parity is the same as that of the number of blocks

several arithmetic operations, with Haskell type classes at
http://arxiv.org/pdf/1406.1796.pdf

complete code at: http:
//www.cse.unt.edu/~tarau/research/2014/Cats.hs

Proposition
Assuming parity information is kept explicitly, the operations s and p work on a
binary tree of size N in time constant on average and and O(log∗(N)) in the
worst case
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Successor (s) and predecessor (p)

s(x,x>x).
s(X>x,X>(x>x)):-!.
s(X>Xs,Z):-parity(X>Xs,P),s1(P,X,Xs,Z).

s1(0,x,X>Xs,SX>Xs):-s(X,SX).
s1(0,X>Ys,Xs,x>(PX>Xs)):-p(X>Ys,PX).
s1(1,X,x>(Y>Xs),X>(SY>Xs)):-s(Y,SY).
s1(1,X,Y>Xs,X>(x>(PY>Xs))):-p(Y,PY).

p(x>x,x).
p(X>(x>x),X>x):-!.
p(X>Xs,Z):-parity(X>Xs,P),p1(P,X,Xs,Z).

p1(0,X,x>(Y>Xs),X>(SY>Xs)):-s(Y,SY).
p1(0,X,(Y>Ys)>Xs,X>(x>(PY>Xs))):-p(Y>Ys,PY).
p1(1,x,X>Xs,SX>Xs):-s(X,SX).
p1(1,X>Ys,Xs, x>(PX>Xs)):-p(X>Ys,PX).
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Size-proportionate
ranking/unranking for lambda

terms
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A size-proportionate Gödel numbering bijection for λ -terms

injective encodings are easy: encode each symbol as a small integer and
use a separator

in the presence of a bijection between two infinite sets of data objects, it
is possible that representation sizes on one side are exponentially larger
than on the other side

e.g., Ackerman’s bijection from hereditarily finite sets to natural numbers
f ({}) = 0, f (x) = ∑a∈x 2f (a)

however, if natural numbers are represented as binary trees,
size-proportionate bijections from them to “tree-like” data types (including
λ -terms) is (un)surprisingly easy!

some terminology: “bijective Gödel numbering” (for logicians), same
as “ranking/unranking” (for combinatorialists)
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Ranking and unranking de Bruijn terms to binary-tree
represented natural numbers

variables v/1: as trees with x as their left branch

lambdas l/1: as trees with x as their right branch

to avoid ambiguity, the rank for application nodes will be incremented by
one, using the successor predicate s/2

rank(v(0),x).
rank(l(A),x>T):-rank(A,T).
rank(v(K),T>x):-K>0,t(K,T).
rank(a(A,B),X1>Y1):-rank(A,X),s(X,X1),rank(B,Y),s(Y,Y1).

unrank simply reverses the operations – note the use of predecessor p/2

unrank(x,v(0)).
unrank(x>T,l(A)):-!,unrank(T,A).
unrank(T>x,v(N)):-!,n(T,N).
unrank(X>Y,a(A,B)):-p(X,X1),unrank(X1,A),p(Y,Y1),unrank(Y1,B).
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What can we do with this bijection?

a size proportional bijection between de Bruijn terms and binary trees
with empty leaves

Rémy’s algorithm directly applicable to lambda terms

a different but possibly interesting distribution

“plain” natural number codes

?- t(666,T),unrank(T,LT),rank(LT,T1),n(T1,N).
T = T1, T1 = (x> (x> (x> ((x>x)> ((x>x)> (x> (x> (x>x)))))))),
LT = l(l(l(a(v(0), a(v(0), v(1)))))),
N = 666 .
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The well-typed frontier
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What is the well-typed frontier?

Definition
We call well-typed frontier of a combinator tree the set of its maximal
well-typed subtrees.

contrary to general lambda terms, SK-terms are hereditarily closed i.e.,
every subterm of a SK-expression is closed

the concept is well-defined for combinator expressions as all their
subtrees are closed terms

Definition
We call typeless trunk of a combinator tree the subtree starting from the root,
from which the members of its well-typed frontier have been removed and
replaced with logic variables.
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Computing the well-typed frontier

we separate the trunk from the frontier and mark with fresh logic variables
the replaced subtrees

these variables are added as left sides of equations with the frontiers as
their right sides

wellTypedFrontier(Term,Trunk,FrontierEqs):-
wtf(Term, Trunk,FrontierEqs,[]).

wtf(Term,X)-->{typable(Term)},!,[X=Term].
wtf(A∗B,X∗Y)-->wtf(A,X),wtf(B,Y).
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Example

Well-typed frontier and typeless trunk of the untypable term SSI(SSI) (with I
represented as SKK ):

?- wellTypedFrontier(s∗s∗(s∗k∗k)∗(s∗s∗(s∗k∗k)),
Trunk,FrontierEqs).

Trunk = A∗B∗ (C∗D),
FrontierEqs = [A=s∗s, B=s∗k∗k, C=s∗s, D=s∗k∗k].
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Full reversibility: grafting back the frontier

the list-of-equations representation of the frontier allows to easily reverse
their separation from the trunk by a unification based “grafting” operation

the predicate fuseFrontier implements this reversing process

the predicate extractFrontier extracts from the frontier-equations
the components of the frontier without the corresponding variables
marking their location in the trunk

fuseFrontier(FrontierEqs):-maplist(call,FrontierEqs).

extractFrontier(FrontierEqs,Frontier):-
maplist(arg(2),FrontierEqs,Frontier).
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Example: extracting and grafting back the well-typed frontier
to the typeless trunk

?- wellTypedFrontier(s∗s∗(s∗k∗k)∗(s∗s∗(s∗k∗k)),Trunk,FrontierEqs),
extractFrontier(FrontierEqs,Frontier),
fuseFrontier(FrontierEqs).

Trunk = s∗s∗ (s∗k∗k)∗ (s∗s∗ (s∗k∗k)), % now the same as the term

FrontierEqs = [s∗s=s∗s, s∗k∗k=s∗k∗k,
s∗s=s∗s, s∗k∗k=s∗k∗k],

Frontier = [s∗s, s∗k∗k, s∗s, s∗k∗k] .

after grafting back the frontier, the trunk becomes equal to the term that
we have started with
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Simplification as normalization of the well-typed frontier

well-typed terms are strongly normalizing

→ we can simplify an untypable term by normalizing the members of its
frontier, for which we are sure that eval terminates

once evaluated, we can graft back the results to the typeless trunk

?- Term= s∗s∗s∗ (s∗s)∗s∗ (k∗s∗k),simplifySK(Term,Trunk).

Term = s∗s∗s∗ (s∗s)∗s∗ (k∗s∗k),
Trunk = s∗s∗s∗ (s∗s)∗s∗s.

?- Term= k∗ (s∗s∗s∗ (s∗s)∗s∗ (k∗s∗k)),simplifySK(Term,Trunk).

Term = k∗ (s∗s∗s∗ (s∗s)∗s∗ (k∗s∗k)),
Trunk = k∗ (s∗s∗s∗ (s∗s)∗s∗s).
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Comparison of sizes of the typeless trunk and the well-typed
frontier of SK-terms, by size

Term size Avg. Trunk-size Avg. Frontier-size % Trunk % Frontier
1 0 1 0 100
2 0.13 1.88 6.25 93.75
3 0.26 2.74 8.75 91.25
4 0.47 3.53 11.77 88.23
5 0.71 4.29 14.11 85.89
6 0.97 5.03 16.24 83.76
7 1.27 5.73 18.11 81.89
8 1.58 6.42 19.76 80.24

while the size of the frontier dominates for small terms, it decreases
progressively

open problem: does the average ratio of the frontier and the trunk
converge to a limit as the size of the terms increases?
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Playing with the playground
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Querying a generator for specific types (efficiently!)

Size Slow x>x Slow x>(x>x) Fast x>x Fast x>(x>x) Fast x
1 39 39 38 27 15
2 126 126 60 109 36
3 552 552 240 200 88
4 3,108 3,108 634 1,063 290
5 21,840 21,840 3,213 3,001 1,039
6 181,566 181,566 12,721 19,598 4,762
7 1,724,131 1,724,131 76,473 81,290 23,142
8 18,307,585 18,307,585 407,639 584,226 133,554
9 213,940,146 213,940,146 2,809,853 3,254,363 812,730

Figure: logical inferences when querying with type patterns given in advance

?- queryTypedTerms(12,(x>x)>x,T).
false.

no closed terms of type (x>x)>x exist up to size 12

we expect that, also as the corresponding logic formula is not a tautology in
minimal logic!
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Some “popular” type patterns

Count Type
23095 x>(x>x)
22811 (x>x)>(x>x)
22514 x>x>(x>x)
21686 x>x
18271 x> ((x>x)>x)
14159 (x>x)>(x>(x>x))
13254 ((x>x)>x)> ((x>x)>x)
12921 x> (x>x)>(x>x)
11541 (x>x)> ((x>x)>x)>x
10919 (x>(x>x))>(x>(x>x))

Figure: Most frequent types, out of a total of 33972 distinct types, of 1016508
closed well-typed terms up to size 9.

like in some human-written programs, functions representing binary operations
of type x>(x>x) are the most popular

ternary operations x>(x>(x>x)) come third and unary operations x>x come
fourth

a higher order function type (x>x)>(x>x) applying a function to an argument
to return a result comes second and multi-argument variants of it are also among
the top 10
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Estimating the proportion of well-typed SK-combinator trees

Term size Well-typed Total Ratio
0 2 2 1
1 4 4 1
2 14 16 0.875
3 67 80 0.8375
4 337 448 0.752
5 1867 2688 0.694
6 10699 16896 0.633
7 63567 109824 0.578
8 387080 732160 0.528
9 2401657 4978688 0.482

Figure: Proportion of well-typed SK-combinator terms
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Estimating the proportion of well-typed X-combinator trees

Term size Well-typed Total Ratio
0 1 1 1
1 1 1 1
2 2 2 1
3 5 5 1
4 12 14 0.8571
5 38 42 0.9047
6 113 132 0.8560
7 357 429 0.8321
8 1148 1430 0.8027
9 3794 4862 0.7803

10 12706 16796 0.7564
11 43074 58786 0.7327
12 147697 208012 0.7100

Figure: Proportion of well-typed X-combinator terms

Somewhat surprisingly, a large proportion of well-typed X-combinator terms is
present among the binary trees of a given size.
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More details in a series of papers:

PADL’15: generation of various families of lambda terms

PPDP’15: a uniform representation of combinators, arithmetic, lambda
terms, ranking/unranking to tree-based numbering systems

CIKM/Calculemus’15: size-proportionate ranking using a generalization
of Cantor’s pairing functions to k-tuples

ICLP’15: type-directed generation of lambda terms

SYNASC’15: SK-combinators, well-typed frontiers

PADL’16: the underlying tree arithmetic in terms of Catalan families of
combinatorial objects (Haskell type-class) + tree arithmetic for random
term generation

all Prolog-based work (70 pages paper+code ) is now merged together at:
https://github.com/ptarau/play
and also at
http://arxiv.org/abs/1507.06944
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Conclusions

Prolog (and other logic and constraint programming languages) are an
ideal tool for term and type generation and as well as type-inference
algorithms for lambda terms and combinator expressions
a few new concepts: well-typed frontiers of combinator expressions,
compressed deBruijn terms
possible applications: compilation and test generation for
lambda-calculus based languages and proof assistants
merged generation and type inference in an algorithm showed a
mechanism to build “customized closed terms of a given type”
this “relational view” of terms and their types enables the discovery of
interesting patterns about the type expressions occurring in well-typed
programs
SK and X-combinator expressions: terms and their types can share the
same representation
ranking/unranking to natural numbers represented as binary trees is
naturally size-proportionate

Paul Tarau (University of North Texas) Lambda Terms, Types and Tree-Arithmetic CLA’2016 56 / 56


	An Overview of our playground
	Horn Clause Prolog in three slides
	Lambda terms in Prolog: canonical, de Bruijn, compressed
	Generating lambda terms
	Combining term generation and type inference
	Some algorithms for SK and X combinator trees
	Binary tree arithmetic
	Size-proportionate ranking/unranking for lambda terms
	The well-typed frontier
	Playing with the playground
	Conclusions

