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When we try to define probability distributions on formal objects, it
is seldom that we can find a natural one (e.g., due to some
inherent symmetry).
If there is no natural probability distribution, how can we expect to
study probabilistic properties in an objective way?
For example, wa may try to consider general properties, that hold
for all distributions of a certain class.
Or we may take into account supplementary information, like
purposes of players in a game-theoretic setting.
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My presentation presents very much a work in progress, mostly
on game-thereoretic approaches related to logics and formal
methods.
This explains mostly what are our motivations.
Joint work in progress with participation of: Evgeny Dantsin
(Chicago), Vladik Kreinovitch (El Paso), Eric Martin-Dorel and
Jan-Georg Smaus (Toulouse)...
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Games related to logics.
Traditional setting: game semantics (but non-traditional point of
view).
Boolean games.
Possible intersections with type theory.
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First we wanted to explore game semantics in unusual setting.
Below is the beginning of a game tree for with prefix ∀x∃y∀z:

··

~~   

∀

··

��   

... · ∃

· ... · ... ∀
Our question: what happens if computational power of players is
not the same?
What is to be understood as computational power?
There is an obvious answer, but...
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It may take too much time to compute the values.
Then it is natural to consider probabilistic distributions on x , y , z....
But then, what is a natural probabilistic distribution, say, on natural
numbers?
The problem of complexity may appear even in this case.
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I will consider in more detail a concrete case that we studied in
connection with so called Boolean games.

It led us to some interesting questions, like the value of
information with respect to winning.
To express it briefly: consider the game where A wins if the
strategy of B is known. But much less may be enough to win than
the full information about the strategy of B.
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So before I speak about Boolean games I will tell something about
algorithmic games we considered before.
Before we considered infinite games where many of the results of
the classical Game Theory do not hold.
For example, games in extended form where moves of A and B
are choices of natural numbers.
Even if we consider an one-step game of this kind (pure strategy
is just a natural number), it will lead to an infinite matrix, and
classical minimax theorems, theorems about equilibrium in mixed
strategies in general do not hold.
The difference between constructive and non-constructive also
becomes important (Rabin’s results of the 50s, Jones results of
the 80s).
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Here again the question: what is a “natural” probabilistic
distribution on natural numbers arises.
So we considered the games where the strategy of a player is a
recursive function of (discrete) time and (maybe) previous moves.
For simplicity, let us consider only prf .
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The game itself may be “matching game”:
the players A and B simultaneusly produce two numbers n,n′; if
n = n′ then A wins the round, else B wins; initially players may
have some capital, the loser pays 1 to another player.
If we put n > n′ instead of n = n′, we shall obtain a game that I
already discussed at this conference, but it does not change much
in case of algorithmic strategies.
The case which interests me is when the capital of A is infinite and
the capital of B finite,
and A can compute some universal function for prf while B cannot
change its strategy during the game.
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A can win as follows:
(explanation)
As it is well known, it is impossible to identify a prf using any finite
number of its values (neither in the sense of its number nor
extensionnally).
Somewhat, to find the strategy of B the infinite information is
needed, but finite information is sufficient to win.
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Back to Boolean games

Back to Boolean games.
A Boolean game of two players is usually defined as follows.
There is Boolean formula F of n variables.
The player A controls k variables and the player B the remaining
n − k .
Each has to choose the values of variables (simultaneously or not
is a separate question).
The result of the game is defined by the value of F .
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There is a lot of literature (since 2000).
By some reason in most of the publications only simultaneous
choice of values (without knowledge of the opponent choices) was
considered.
We wanted to do some analysis of Boolean games in their totality
based on probabilistic methods.
That is, we want to consider random-generated F (pay-functions)
and estimate the probability of various situations.
For example: A has winning strategy; B has winning strategy;
nobody has.
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More or les naturally, one may consider only DNF or CNF:
identify F with the set of clauses (Boolean vectors).
2n - set of Boolean vectors of the length n.
22n

- set of Boolean formulas.
Ω = 222n

- the space of elementary events.
We may denote |F | the set of boolean vectors corresponding to F .
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Is there any natural probability law?
There is at least a simple one: each vector belongs to |F | with a
fixed probabilityp.
But there may be other candidates.
With this simple law the probability of F represented by DNF with
m clauses will be pm(1− p)2n−m.
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Interesting (elementary) consequences.
The probability of existence of a winning strategy for A

= 1− (1− p2n−k
)2k

.

Similarly, for B
1− (1− q2k

)2n−k
.

When k and n − k are ∼ n, (n→∞), these probabilities tend to 0.
The probability that both do not have winning strategies,
respectively, tends to 1.
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How to interpret the case when there is no winning strategy
neither for A nor for B?
Order of moves matters!
Indeed, since A does no have winning strategy, for every strategy
of A there exists a strategy for B that B wins.
So, if A moves first and B knows the moves then B can win.
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Slightly less elementary consequences (with the same probability
law).
What is the value of information w.r.t. winning?
A knows s bits (choices) of B. How the probability that A has a
winning strategy increases?
It turns out that for small s (with respect to n, k and n − k ) the
probability grows as

∼ 2(k−1)2s
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At the moment we are looking, what of this interesting property
remains if we consider more general probability laws?
The question may be formulated like this.
What properties should have a probability law on F , in other
words, on the space

222n

to guarantee certain order of growth of the probability of existence
of winning strategy?
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Dependent types

Another example that will illustrate another point.
We may look for some probability law to satisfy some
non-probabilistic motivation.
And then our “subjective” interest may be justified.
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1 At “Types” conference I spoke about automorphisms of types in
various λ-calculi.

2 Isomorphisms of types are represented by terms that erase to a
finite hereditary permutation.

3 Automorphisms are a subclass: the types must be the same,
f : A→ A.

4 Interest: for example, cryptography (encoding without changing
the code).
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In case of types in system F or dependent products any finite
group may be represented as a group of automorphisms.
The isomorphisms of a type, and the types isomorphic to it form a
groupoid.
In case of system F all isomorphisms may be defined as
compositions of permutations (i) of quantified variables and (ii)
premises of implication.
Example.

∀X∀Y∀Z .((X → Y )→ (Y → Z )→ (Z → X )→ ∀U.U)

and

∀Y∀Z∀X .((Y → Z )→ (Z → X )→ (X → Y )→ ∀U.U)

Notice that the types are α-equal, so this is an automorphism.
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What is the proportion of automorphisms among isomorphisms?
We may use methods of Monte-Carlo.
It depends, of course, on the type.
The method of checking for an individual isomorphism (defined via
permutations) is simple. The type may be translated into de Bruijn
form. Then α-equal types are identical.
We should define a random sequence of permutations and verify
whether the result is an automorphism.
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Interest of random generation:
generate quickly and automorphism;
estimate the size of automorphism groups...
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Conclusion.
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