
Parallel standard translation between

Lambda Calculus and Combinatory Logic

Agnieszka Lupinska
agnieszka.lupinska [at] uj.edu.pl
Theoretical Computer Science

Jagiellonian University



Simulation λ-abstraction by K and S

De�nition

We de�ne λ∗x .P by induction on the structure P as follows:

λ∗x .x ≡ I

λ∗x .P ≡ KP if x /∈ FV(P)
λ∗x .PQ ≡ S(λ∗x .P)(λ∗x .Q)

Notation

Let x⃗ ≡ x1, . . . xn.
Then λ∗x1x2 . . . xn.T ≡ λ∗x⃗ .T ≡ λ∗x1.

(
λ∗x2.

(
. . .

(
λ∗xn.T

)
. . .

))
How it works

λ∗xy .yx ≡ λ∗x .(λ∗y .yx) ≡ λ∗x .S(λ∗y .y)(λ∗y .x) ≡ λ∗x .SI(Kx) ≡
S(K(SI))(S(KK)I)



Standard translation

De�nition

Standard translation from Combinatory Logic to Lambda Calculus:

[x ]λ ≡ x

[K]λ ≡ λxy .x
[S]λ ≡ λxyz .xz(yz)
[PQ]λ ≡ [P]λ[Q]λ

Standard translation from Lambda Calculus to Combinatory Logic:

[x ]CL ≡ x

[MN]CL ≡ [M]CL[N]CL
[λx .M]CL ≡ λ∗x .[M]CL



Example for λx .xx

[λx .xx ]CL ≡ λ∗x .[xx ]CL ≡ λ∗x .xx = S(λ∗x .x)(λ∗x .x) = SII

λx

@

x x

S λ∗x

x

λ∗x

x

λ∗x

x x

S I

I



Example for λxy .x(yλz .z)

λx

λy

@

x @

y λz

z

λ∗x

λ∗y

x

y I

Figure: From de�nition of translation to CL, removing

λ∗ abstraction z

[λxy .x(yλz .z)]CL = λ∗xy .[x(yλz .z)]CL =
λ∗xy .[x ]CL[yλz .z]CL = λ∗xy .x([y ]CL[λz .z]CL) =
λ∗xy .x(yλ∗z .z) = λ∗xy .x(yI )



λ∗x

λ∗y

x

y I

λ∗x

S λ∗y

x

λ∗y

y I

Figure: Start removing of λ∗y

λ∗xy .x(yI ) = λ∗x .λ∗y .x(yI ) = λ∗x .S(λ∗y .x)(λ∗y .yI )



λ∗x

S λ∗y

x

λ∗y

y I

λ∗x

S

K x S λ∗y

y

λ∗y

I

Figure: λ∗x .S(λ∗y .x)(λ∗y .yI ) =
λ∗x .S(Kx)(S(λ∗y .y)(λ∗y .I ))



λ∗x

S

K x S λ∗y

y

λ∗y

I

λ∗x

S

K x S I K I

Figure: After removing the second λ∗

abstraction y

λ∗x .S(Kx)(S(λ∗y .y)(λ∗y .I )) =
λ∗x .S(Kx)(SI (KI ))



S

S

K S S

K K

I

K

S I K I

After removin λ∗x we have got
λxy .x(yλz .z) = S(S(KS)(S(KK )I ))(K (SI (KI )))



1. For each λ∗x-abstraction a tree is rebuild only in nodes which lie on
the paths leading from leaves x to the root.
2. Each λ∗-abstraction is removing separately of others.

λ∗x

3

2

S 1

K x S I K I

3

S 2

S

K S

1

S

K K

I

K

S I K I

Figure: After removing λ∗x



Active node

De�nition

Let x be a variable in a combinator C and let λ∗x be an abstraction

removing from C during the ST algorithm. A node is an active if it is on

a path leading from a leaf x to the root.

We show that for each λ∗-abstraction, all operations performed on active
nodes are independently to each other. Let a be an active node in a tree

of some combinator. We show that for each active node we have to add
at most 4 new nodes and the places of the new nodes in a tree are
determined. We are given the following cases.



The active node a is a leaf.

a I

Since we allow the abbreviation: I = SKK then the node a is changed to
combinator I . There are no new nodes.



Only the left child of a is active.

a

M N

a

S M K N

There are 4 new nodes in the tree: S ,K and two internal nodes. Notice
the node a does not change its pointer to the father in the tree. The
node a changes the pointer to the father of the active node M.



Only the right child of a is active.

a

M N

a

S

K M

N

There are 4 new nodes in the tree: S ,K and two internal nodes. Notice
the node a does not change its pointer to the father in the tree. The
node a changes the pointer to the father of the active node N.



The left and the right child of n are active.

a

M N

a

S M

N

There are 2 new nodes in the tree: S and one internal node. Notice the
node a does not change its pointer to the father in the tree. The node a
changes the pointer to the father of the active node M.



Since there are no more cases, we see that for each λ∗-abstraction and
for each active node the algorithm adds at most 4 new nodes to the
combinator tree and the places of the new nodes are determined and
independent from new nodes added by other active nodes.

Moreover, in each case an active node do not change its pointer to the
father. This pointer can be changed only by its father. Therefore the ST
algorithm can be performe in parallel.

In our approach all λ∗-abstractions are performed in order, from the
deepest towards the root. For each λ∗-abstraction the active nodes are
computed in parallel. Then for all active nodes the tree is rebuilded in
parallel.



Parallel ST Algorithm

Algorithm 1 The parallel standard translation algorithm

1: function STranslation(x)
2: if x is leaf then
3: Do nothing
4: else

5: if x is internal then
6: STranslation(left(x))
7: STranslation(right(x))
8: else

9: // x is λ∗ abstraction
10: STranslation(left(x))
11: Mark in parallel all active nodes
12: For all active nodes rebuild tree in parallel
13: end if

14: end if

15: end function



Active nodes

We use N threads assigned to N nodes in a tree. Let λ∗x be an
abstraction reduced during the algorithm. The computition of active
nodes can be perfomed in two di�erent ways to execute time.

The time of the �rst method is linear due to the size of a tree. We
choose the threads assigned to the leaves. If the leaf is a variable x then
a thread goes towards the λ∗-abstraction and marks all nodes on the
path as active.

In the second method the execution time is constant but algorithm needs
the additional memory of quadratic size due to the size of a tree. Let x
be a node in a tree. The active array is computed at the begining of the
algorithm. Then the array is updated during adding new nodes.



Algorithm 2 The active array computation

1: function MarkActive(x)
2: if left(x) = null and right(x) = null then
3: // x is leaf
4: active[x ] ← {x}
5: else

6: if left(x) ̸= null and right(x) ̸= null then
7: // x is internal
8: MarkActive(left(x))
9: MarkActive(right(x))

10: active[x ] ← active[left(x)] ∪ active[right(x)]
11: else

12: // x is λ∗ abstraction
13: MarkActive(left(x))
14: active[x ] ← active[left(x)] - {x}
15: end if

16: end if

17: end function



Algorithm 3 Rebuild tree

1: function RebuildTree(x)
2: if x is active then
3: if left(x) = null and right(x) = null then
4: x ← I

5: else

6: if left(x) is active and right(x) is active then
7: Add 2 new nodes and set up active nodes
8: else

9: if left(x) is active then
10: Add 4 new nodes and set up active nodes
11: else

12: Add 4 new nodes and set up active nodes
13: end if

14: end if

15: end if

16: end if

17: end function



Hendrik Pieter Barendregt, 1984. The Lambda Calculus, Its Syntax

and Semantics Studies in Logic and the Foundations of
Mathematics, Volume 103, North-Holland. ISBN 0-444-87508-5


