Cayley Monoids

Introduction

- In 1937 Church formulated lambda calculus as a semigroup;
- more precisely, with eta conversion, as a monoid. Conversely,
- it is natural to ask when a monoid can support an application
- operation. Indeed, in 1975 Dana Scott said that we should view
- combinatory logic as "combinatory algebra";so, let us try this.
- In this note we propose a possible modus operandi; namely, the
- notion of a Cayley monoid.
- Everyone is familiar with Cayley's regular representation
- of groups in the symmetric group. It is clear that it applies in
- a limited way to monoids. The notion of a Cayley monoid is just
- an internalization of this type of representation.

Cayley meets Church

Definition: A Cayley monoid K is a structure ($\mathrm{M},{ }^{*}, \mathrm{i}, \mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$)
where
(1) $(M, *, i)$ is a monoid
(2) $a, b: M$
(3) $A: M->M$ and $B: M->M$ such that for all $x, y, z: M$
(i) $A(a * B(x)) \quad=A(x)$
(ii) $A(b * B(x)) \quad=B(x)$
(iii) $A\left(i^{*} B(x)\right)=x$
(iv) $A(x * y * B(z)) \quad=A(x * B(A(y * B(z)))$

Notation: Let K be a Cayley monoid. For each $x: M$ we can define
$X: M \rightarrow M$ by $X(u)=A(x * B(u))$.

Example 1: For any monoid M there is always the trivial Cayley $\operatorname{monoid} A(x)=B(x)=x, a=b=i$. Here $X(u)=x^{*} u$.

Example 2: If g belongs to the group of a monoid M with inverse
g^{\wedge} then we can set $b:=g$, $a:=g^{\wedge} A(x)=a^{\wedge}{ }^{*} x$ and $B(x)=a^{*} x$. Just as in example 1 we get a Cayley monoid K. A concrete example is given the "almost" isometries .If u, v are vectors in the plane $R \times R$ let $E(u, v)$ be the Euclidian distance of v from u. $f: R \times R-P \times R$
is said to be an almost isometry if there exists e in R such that (1) $|E(f(u), f(v))-E(u, v)|<e$, and
(2) For each v there exists u s.t. $E(f(u), v)<e$.

The almost isometries form a monoid under composition of maps. Now
set $b(u)=2 u, a(u)=1 / 2 u, B(f)=2 f$ and $A(f)=1 / 2 f$ so we have a Cayley monoid K.

Let O be a subset of M
Definition: The Cayley monoid K is said to have an autonomous commutator relative to O if there exists c : M
such that whenever x and y are distinct members of O we have
(v)_\{0\} $A(A(c * B(x)) * B(y))=A(y * B(x))$.

Example 1 continued: Let M be the group of quaternions
$\{p, q, r,-p,-q,-r, i,-i\}$
We have used the letters 'p',' q ','r' for the usual 'i','j',' 'k'.
Let $O=\{p, q, r\}$.We have the autonomous commutator property for $\mathrm{c}=-\mathrm{i}$

Example 3: Let M be the monoid of all functions from the set of all non negative reals into itself. As in example 2, let $g(x):=k+x$ for k a positive integer
and let
f_\{n\}(x):=n-e^\{-x\}.
We set $O=\left\{f_{-}\{n\} \mid n\right.$ a positive integer $\}$. Now c is defined as
follows:
Input x
solve $x=n-e^{\wedge}\{-y\}-k$
solve $y=\left(m-e^{\wedge\{-z\})}+k\right.$
Output
$\mathrm{n}-\mathrm{e}^{\wedge}\left\{\mathrm{m}-\mathrm{e}^{\wedge}\{-\mathrm{z}\}+\mathrm{k}\right\}=\mathrm{k}$
Example 4: For any pre-complete Ershov numbering of N, where ~ is complete for 0 ', the monoid of morphisms supports a Cayley monoid, where there is an autonomous commutator (general case?)

Definition : In a Cayley monoid K we say that B is an endo if For all x, y :K we have $B\left(x^{*} y\right)=B(x)^{*} B(y)$.
and $B(i)=i$.

Example 5:
The Freyd-Heller monoid has been rediscovered many times It is the positive part of Thompson's group F, and can be presented with the infinite set of generators b_\{n\} for natural numbers n and the relations
$b _\{n+1\} * b _\{k\}=b _\{k\} * b$ \qquad
for $k<n$. This is also a presentation of a monoid. Here we wish to add left inverses a_\{n\} satisfying a_\{n\}*b_\{n\} = i and
$\mathrm{a}_{-}\{\mathrm{k}\} *{ }^{*} \mathrm{~b} _\{\mathrm{n}+1\}=\mathrm{b} _\{\mathrm{n}\} *{ }^{*} \mathrm{a} _\{\mathrm{k}\}$
$a_{-}\{k\}^{*} a_{-}\{n+1\}=a_{-}\{n\} * a_{-}\{k\}$
for $k<n+1$. This is not yet the group F but another monoid M.

Now define

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~b} _\{\mathrm{n}\}\right)=\mathrm{b} _\{\mathrm{n}+1\} \\
& \mathrm{B}\left(\mathrm{a} _\{\mathrm{n}\}\right)=\mathrm{a} _\{\mathrm{n}+1\}
\end{aligned}
$$

then B extends to an endomorphism

$$
B\left(x^{*} y\right)=B(x) * B(y) .
$$

So, given these relations each element can be written in the unique normal form

$$
B(d))^{*} b^{\wedge}\{k\}^{*} a^{\wedge}\{1\} .
$$

This requires proof ; more about this later.
Now M has a Cayley monoid structure where B is as above and A is defined by

$$
\left.A(B(d))^{*} b^{\wedge}\{k\}^{*} a^{\wedge}\{l\}\right)=d .
$$

Fact: In this Cayley monoid

$$
x^{*} y=A(A(b * B(x)) * B(y))
$$

Proof: $A(A(b * B(x)) * B(y))=A(B(x) * B(y))$

$$
=A(B(x * y))
$$

$$
=x * y .
$$

The relations of M are
realized by the linear lambda calculus under beta-eta conversion,
here denoted ' \sim ', with
b = \xyz. x (yz) (the combinator ' B ')
a $=\langle x . x| \quad$ (the combinator 'CII')
$x^{*} y=b x y \quad$ (the combinatory semigroup).
Below we shall refer to this Cayley monoid as
R(ichard)A(lex)P(eter)
In RAP we have
$(1) B(B(d)) * b \quad=b * B(d)$ for all $d: M$
(2) a * $\mathrm{b} \quad=\mathrm{i}$

Our representation of RAP in linear lambda calculus gives
(3) $C(x) * B(y) \quad=y * C(x)$
(4) $C(x) * C \quad=x \quad$ (Church)
(5) $\mathrm{C}\left(\mathrm{A}(\mathrm{x} * \mathrm{~B}(\mathrm{y})) \quad=\mathrm{C}(\mathrm{y}){ }^{*} \mathrm{C}(\mathrm{x}){ }^{*} \mathrm{~b}\right.$ (Church)
(6) $A(c)$
$=\mathrm{a}$

Theorem: If K is a Cayley monoid with the endo property, an autonomous commutator, and (2)-(6) then K contains a copy of the linear lambda calculus with $B=b$ and $J=c$ Proof: the proof is like an axiomatized version of chapter 7 of Barendregt's book. It gives us a homomorphism of the linear lambda calculus into K. For faithfulness, we need a version of Bohm's theorem for linear lambda calculus (known?)

Theorem: Every monoid can be embedded into a Cayley
Monoid with the endo property, an autonomous commutator, and (2)-(6).
Proof: We embed M into the lambda calculus using the Hindley-Rosen Theorem.

Problem:

Can we define a Cayley monoid with an autonomous commutator on the set of all functions $R->R$?

References

[1]Barendregt, H.P. The Lambda Calculus; Its Syntax and Semantics. Studies in logic and foundations of mathematics Vol. 103
North-Holland Publishing Company 1981
[2]Birget, J.C. The groups of Richard Thompson and complexity International J. of Algebra and Computation Vol. 14, No. 05n06, (2004) pps. 569-626
[3]Cannon,J.W. Floyd,W.J. and Parry, W.R.
Introductory notes on Richard Thompson's groups cfp.pdf
math.binghampton.edu
[4] Freyd,P. \& Heller,A. Splitting homotopy idempotents II, Journal of Pure and Applied Algebra, Volume 89, Issues 1-2,1993
pps. 93-106
[5] Nagy, A. Special Classes of Semigroups
Advances in Mathematics
Springer-Science
eISBN 978-1-4757-3316-7, 2001
[6] Petrich,M. Introduction to Semigroups
Bell \& Howell C0. 1972
ISBN 0-675-09062-8
[7] Scott,D.Some philosophical issues concerning theories of combinators
In: Böhm, C. (eds) λ-Calculus and Computer Science Theory Lecture Notes in Computer Science, vol 37, 1975
Springer, Berlin

