
Cayley Monoids



Introduction

• In 1937 Church formulated lambda calculus as a semigroup;

• more precisely, with eta conversion, as a monoid. Conversely,

• it is natural to ask when a monoid can support an application

• operation. Indeed, in 1975 Dana Scott said that we should view 

• combinatory logic as "combinatory algebra";so, let us try this. 

• In this note we propose a possible modus operandi; namely, the

• notion of a Cayley monoid.

• Everyone is familiar with Cayley's regular representation

• of groups in the symmetric group. It is clear that it applies in

• a limited way to monoids. The notion of a Cayley monoid is just

• an internalization of this type of representation.



Cayley meets Church



Definition: A Cayley monoid K is a structure (M,*,i,a,b,A,B)
where

(1) (M,*,i) is a monoid
(2) a,b : M
(3) A : M -> M and B : M -> M such that for all x,y,z:M
(i)   A(a * B(x))            = A(x) 
(ii)  A(b * B(x))            = B(x)
(iii) A(i * B(x))            = x     
(iv)  A(x * y * B(z))        = A(x * B(A(y * B(z)))



Notation: Let K be a Cayley monoid. For each x:M we can 
define 
X : M -> M by X(u) = A(x * B(u)). 

Example 1: For any monoid M there is always the trivial Cayley
monoid A(x) = B(x) = x, a = b = i. Here X(u) = x*u.



Example 2: If g belongs to the group of a monoid M with 
inverse 
g^ then we can set b := g, a := g^ A(x) = a^ * x and B(x) = a * x.
Just as in example 1 we get a Cayley monoid K . A concrete 
example is given the "almost" isometries .If u,v are vectors in 
the plane R x R let E(u,v) be the Euclidian distance of v from u. 
f : R x R -> R x R 
is said to be an almost isometry if there exists e in R such that
(1) | E(f(u),f(v)) - E(u,v) | < e, and
(2) For each v there exists u s.t. E(f(u),v) < e.
The almost isometries form a monoid under composition of 
maps. Now
set b(u) = 2u, a(u)= 1/2 u, B(f) = 2f and A(f) = 1/2 f so we have a
Cayley monoid K.



Let O be a subset of M
Definition: The Cayley monoid K is said to have an autonomous
commutator relative to O if there exists c : M
such that whenever x and y are distinct members of O
we have
(v)_{O} A(A( c * B(x)) * B(y)) = A(y * B(x)).

Example 1 continued: Let M be the group of quaternions 
{p,q,r,-p,-q,-r,i,-i}

We have used the letters 'p','q','r' for the usual 'i','j','k’.
Let O = {p,q,r}.We have the autonomous commutator property 
for c = -i



Example 3: Let M be the monoid of all functions from the
set of all non negative reals into itself. As in example 2, let
g(x) := k + x for k a positive integer
and let
f_{n}(x) := n - e^{-x}.
We set O = { f_{n} | n a positive integer }. Now c is defined as
follows:
Input x
solve x = n - e^{-y} - k
solve y = (m - e^{-z}) + k
Output
n - e^{ m - e^{-z} + k } = k

Example 4: For any pre-complete Ershov numbering of N, 
where  ~  is complete for 0’, the monoid  of morphisms 
supports a Cayley monoid, where there is an autonomous 
commutator (general case?)



Definition : In a Cayley monoid K we say that B is an endo if
For all x,y:K we have  B(x*y) = B(x)*B(y).

and B(i) = i. 

Example 5:
The Freyd-Heller monoid has been rediscovered many times
It is the positive part of Thompson's group F,
and can be presented with the infinite set of generators b_{n}
for natural numbers n and the relations

b_{n+1} * b_{k} = b__{k} * b__{n}
for k < n. This is also a presentation of a monoid. Here we
wish to add left inverses a_{n} satisfying a_{n}*b_{n} = i
and

a_{k} * b_{n+1} = b_{n} * a_{k} 
a_{k} * a_{n+1} = a_{n} * a_{k}

for k < n+1. This is not yet the group F but another monoid M.



Now define 
B(b_{n}) = b_{n+1}
B(a_{n}) = a_{n+1}

then B extends to an endomorphism 
B(x*y) = B(x)*B(y). 

So, given these relations each element  can be written
in the unique  normal form 

B(d) * b^{k} * a^{l}.
This requires proof ; more about this later.
Now M has a Cayley monoid structure where B is as above
and A is defined by 

A( B(d) * b^{k} * a^{l} ) = d.

Fact :  In  this Cayley monoid
x * y = A( A(b * B(x)) * B(y))

Proof: A( A(b * B(x)) * B(y)) = A( B(x) * B(y) )
= A( B ( x * y ) )
= x * y.



The relations of M are 
realized by the linear lambda calculus under beta-eta 
conversion,
here denoted '~',  with 
b   = \xyz. x(yz) (the combinator 'B')
a   = \x. xI (the combinator 'CII')
x*y =  bxy (the combinatory semigroup). 
Below we shall refer to this Cayley monoid as 

R(ichard)A(lex)P(eter)
In RAP we have

(1)B(B(d)) * b            = b * B(d)   for all d:M 

(2)a * b                  = i

Our representation of RAP in linear lambda calculus gives

(3)  C(x) * B(y)            = y * C(x)            

(4)  C(x) * c               = x                 (Church)                   

(5)  C(A(x * B(y))           = C(y) * C(x) * b  (Church)  

(6)  A(c)                    = a 



Theorem: If K is a Cayley monoid with the endo property,
an autonomous commutator, and  (2)-(6) then K 
contains a copy of the linear 
lambda calculus with B = b and J = c 

Proof: the proof is like an axiomatized version of chapter 7
of Barendregt’s book. It gives us a homomorphism of
the linear lambda calculus into K. For faithfulness, we need
a version of Bohm’s theorem for linear lambda calculus
(known?)

Theorem: Every monoid can be embedded into a Cayley
Monoid with the endo property, an autonomous
commutator, and (2)-(6).

Proof: We embed M into the lambda calculus using the
Hindley-Rosen Theorem.

Problem:
Can we define a  Cayley monoid with an autonomous 
commutator on the set of all functions R -> R?
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