
Simply typed β-convertibility is TOWER-complete
even for safe λ-terms

NGUYỄN Lê Thành Dũng (a.k.a. Tito) — nltd@nguyentito.eu
École normale supérieure de Lyon
16th workshop on Computational Logic and Applications, January 13th, 2023

1/16

Dynamics of the untyped λ-calculus

t, u ::= x︸︷︷︸
variables: x,y,z...

| t u | λx. t (λx. t)u −→β t{x := u}

(λx. x x) (λx. x x) −→β (x x){x := (λx. x x)} = (λx. x x) (λx. x x) −→β . . .

• Non-termination possible – actually, the untyped λ-calculus is Turing-complete
• Convertibility t =β u (reflexive transitive closure of →β) is undecidable

This talk:

• Recall/clarify the complexity of t =β u for simply typed λ-terms
• Then extend the result to safe λ-terms

2/16

Dynamics of the untyped λ-calculus

t, u ::= x︸︷︷︸
variables: x,y,z...

| t u | λx. t (λx. t)u −→β t{x := u}

(λx. x x) (λx. x x) −→β (x x){x := (λx. x x)} = (λx. x x) (λx. x x) −→β . . .

• Non-termination possible – actually, the untyped λ-calculus is Turing-complete
• Convertibility t =β u (reflexive transitive closure of →β) is undecidable

This talk:

• Recall/clarify the complexity of t =β u for simply typed λ-terms
• Then extend the result to safe λ-terms

2/16

Dynamics of the untyped λ-calculus

t, u ::= x︸︷︷︸
variables: x,y,z...

| t u | λx. t (λx. t)u −→β t{x := u}

(λx. x x) (λx. x x) −→β (x x){x := (λx. x x)} = (λx. x x) (λx. x x) −→β . . .

• Non-termination possible – actually, the untyped λ-calculus is Turing-complete
• Convertibility t =β u (reflexive transitive closure of →β) is undecidable

This talk:

• Recall/clarify the complexity of t =β u for simply typed λ-terms
• Then extend the result to safe λ-terms

2/16

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

t : A → B ≈ “t is a function from A to B”

Simple types: built using “→” from a base type o

f : o → o
f : o → o x : o

f x : o
f (f x) : o

λf. λx. f (f x)︸ ︷︷ ︸
encodes the number 2

:

“type of natural numbers”︷ ︸︸ ︷
(o → o) → o → o

Theorem
→β is strongly normalizing (terminating) and confluent on simply typed λ-terms.

Corollary
=β is decidable on simply typed λ-terms.

Just compute the normal forms and compare them!

3/16

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

t : A → B ≈ “t is a function from A to B”

Simple types: built using “→” from a base type o

f : o → o
f : o → o x : o

f x : o
f (f x) : o

λf. λx. f (f x)︸ ︷︷ ︸
encodes the number 2

:

“type of natural numbers”︷ ︸︸ ︷
(o → o) → o → o

Theorem
→β is strongly normalizing (terminating) and confluent on simply typed λ-terms.

Corollary
=β is decidable on simply typed λ-terms.

Just compute the normal forms and compare them!

3/16

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

t : A → B ≈ “t is a function from A to B”

Simple types: built using “→” from a base type o

f : o → o
f : o → o x : o

f x : o
f (f x) : o

λf. λx. f (f x)︸ ︷︷ ︸
encodes the number 2

:

“type of natural numbers”︷ ︸︸ ︷
(o → o) → o → o

Theorem
→β is strongly normalizing (terminating) and confluent on simply typed λ-terms.

Corollary
=β is decidable on simply typed λ-terms.

Just compute the normal forms and compare them!

3/16

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

t : A → B ≈ “t is a function from A to B”

Simple types: built using “→” from a base type o

f : o → o
f : o → o x : o

f x : o
f (f x) : o

λf. λx. f (f x)︸ ︷︷ ︸
encodes the number 2

:

“type of natural numbers”︷ ︸︸ ︷
(o → o) → o → o

Theorem
→β is strongly normalizing (terminating) and confluent on simply typed λ-terms.

Corollary
=β is decidable on simply typed λ-terms.

Just compute the normal forms and compare them!
3/16

Two related questions

Theorem
→β is strongly normalizing (terminating) and confluent on simply typed λ-terms.

Corollary
=β is decidable on simply typed λ-terms (compute & compare normal forms).

• Combinatorics: what’s the length of →β sequences?
(for linear λ-terms: see Alexandros Singh’s PhD thesis)

• Computational complexity: how hard is it to decide =β?

4/16

What’s the length of →β sequences?

• Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
• Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

Let the order of a type be the maximum nesting of → to the left:

ord(o) = 0 ord(A → B) = max(ord(A) + 1, ord(B))

Theorem
Let t be a simply typed λ-term. If all subterms of t have types of order ≤ k, then the maximum
reduction length for t is at most 2n(O(size(t))) where 20(x) = x and 2k+1(x) = 22k(x).

⇝ tower of exponentials of height k

(λf. λx. f (f x)) . . .

type (o→o)→(o→o) of order 2︷ ︸︸ ︷
(λf. λx. f (f x))︸ ︷︷ ︸

n times

(λx. g x x) y −→∗
β something of size Ω

(
22n

)
• Asada, Kobayashi, Sin’ya & Tsukada, (presented at CLA 2019!)

Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence, 2017

5/16

What’s the length of →β sequences?

• Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
• Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

Let the order of a type be the maximum nesting of → to the left:

ord(o) = 0 ord(A → B) = max(ord(A) + 1, ord(B))

Theorem
Let t be a simply typed λ-term. If all subterms of t have types of order ≤ k, then the maximum
reduction length for t is at most 2n(O(size(t))) where 20(x) = x and 2k+1(x) = 22k(x).

⇝ tower of exponentials of height k

(λf. λx. f (f x)) . . .

type (o→o)→(o→o) of order 2︷ ︸︸ ︷
(λf. λx. f (f x))︸ ︷︷ ︸

n times

(λx. g x x) y −→∗
β something of size Ω

(
22n

)
• Asada, Kobayashi, Sin’ya & Tsukada, (presented at CLA 2019!)

Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence, 2017

5/16

What’s the length of →β sequences?

• Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
• Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

Let the order of a type be the maximum nesting of → to the left:

ord(o) = 0 ord(A → B) = max(ord(A) + 1, ord(B))

Theorem
Let t be a simply typed λ-term. If all subterms of t have types of order ≤ k, then the maximum
reduction length for t is at most 2n(O(size(t))) where 20(x) = x and 2k+1(x) = 22k(x).

⇝ tower of exponentials of height k

(λf. λx. f (f x)) . . .

type (o→o)→(o→o) of order 2︷ ︸︸ ︷
(λf. λx. f (f x))︸ ︷︷ ︸

n times

(λx. g x x) y −→∗
β something of size Ω

(
22n

)

• Asada, Kobayashi, Sin’ya & Tsukada, (presented at CLA 2019!)
Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence, 2017

5/16

What’s the length of →β sequences?

• Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
• Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

Let the order of a type be the maximum nesting of → to the left:

ord(o) = 0 ord(A → B) = max(ord(A) + 1, ord(B))

Theorem
Let t be a simply typed λ-term. If all subterms of t have types of order ≤ k, then the maximum
reduction length for t is at most 2n(O(size(t))) where 20(x) = x and 2k+1(x) = 22k(x).

⇝ tower of exponentials of height k

(λf. λx. f (f x)) . . .

type (o→o)→(o→o) of order 2︷ ︸︸ ︷
(λf. λx. f (f x))︸ ︷︷ ︸

n times

(λx. g x x) y −→∗
β something of size Ω

(
22n

)
• Asada, Kobayashi, Sin’ya & Tsukada, (presented at CLA 2019!)

Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence, 2017
5/16

Reduction length vs complexity of convertibility

ord(o) = 0 and ord(A → B) = max(ord(A) + 1, ord(B))
Theorem
Let t be a simply typed λ-term. If all subterms of t have types of order ≤ k, then the maximum
reduction length for t is at most 2n(O(size(t))) where 20(x) = x and 2k+1(x) = 22k(x).

Compute normal forms and compare⇝ check =β in time 2k(poly(n)) i.e. k-EXPTIME

But one can do better! Let Bool = o → o → o, true = λx. λy. x and false = λx. λy. y
Theorem (Terui 2012)
Fix k ∈ N. Given a simply typed λ-term t : Bool whose subterms have types of order ≤ 2k+ 2
(resp. ≤ 2k+ 3), checking whether t =β true is complete for k-EXPTIME (resp. k-EXPSPACE).

Corollary (of the hardness part; originally from Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. /∈
⋃
k∈N

k-EXPTIME.

6/16

Reduction length vs complexity of convertibility

ord(o) = 0 and ord(A → B) = max(ord(A) + 1, ord(B))
Theorem
Let t be a simply typed λ-term. If all subterms of t have types of order ≤ k, then the maximum
reduction length for t is at most 2n(O(size(t))) where 20(x) = x and 2k+1(x) = 22k(x).

Compute normal forms and compare⇝ check =β in time 2k(poly(n)) i.e. k-EXPTIME

But one can do better! Let Bool = o → o → o, true = λx. λy. x and false = λx. λy. y
Theorem (Terui 2012)
Fix k ∈ N. Given a simply typed λ-term t : Bool whose subterms have types of order ≤ 2k+ 2
(resp. ≤ 2k+ 3), checking whether t =β true is complete for k-EXPTIME (resp. k-EXPSPACE).

Corollary (of the hardness part; originally from Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. /∈
⋃
k∈N

k-EXPTIME.

6/16

Reduction length vs complexity of convertibility

ord(o) = 0 and ord(A → B) = max(ord(A) + 1, ord(B))
Theorem
Let t be a simply typed λ-term. If all subterms of t have types of order ≤ k, then the maximum
reduction length for t is at most 2n(O(size(t))) where 20(x) = x and 2k+1(x) = 22k(x).

Compute normal forms and compare⇝ check =β in time 2k(poly(n)) i.e. k-EXPTIME

But one can do better! Let Bool = o → o → o, true = λx. λy. x and false = λx. λy. y
Theorem (Terui 2012)
Fix k ∈ N. Given a simply typed λ-term t : Bool whose subterms have types of order ≤ 2k+ 2
(resp. ≤ 2k+ 3), checking whether t =β true is complete for k-EXPTIME (resp. k-EXPSPACE).

Corollary (of the hardness part; originally from Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. /∈
⋃
k∈N

k-EXPTIME.

6/16

How hard is it to decide β-convertibility?

Theorem (Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. /∈
⋃
k∈N

k-EXPTIME.

At the same time, we can check it naively in 2order(poly(size)):
tower of exponentials of “reasonably” increasing height, “just beyond” elementary

So can we be more precise?

Definition (Schmitz 2016 – motivated by several problems in logic and verification)

TOWER =
⋃

f elementary
DTIME(2f(n)(1)) i.e. tower of exp of elementary height

TOWER-completeness is defined w.r.t. elementary reductions.
Theorem
β-convertibility of arbitrary simply typed λ-terms is TOWER-complete.

7/16

How hard is it to decide β-convertibility?

Theorem (Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. /∈
⋃
k∈N

k-EXPTIME.

At the same time, we can check it naively in 2order(poly(size)):
tower of exponentials of “reasonably” increasing height, “just beyond” elementary

So can we be more precise?
Definition (Schmitz 2016 – motivated by several problems in logic and verification)

TOWER =
⋃

f elementary
DTIME(2f(n)(1)) i.e. tower of exp of elementary height

TOWER-completeness is defined w.r.t. elementary reductions.
Theorem
β-convertibility of arbitrary simply typed λ-terms is TOWER-complete.

7/16

Simply typed β-convertibility is TOWER-complete

Definition (Schmitz 2016)

TOWER =
⋃

f elementary
DTIME(2f(n)(1)) i.e. tower of exponentials of elementary height

Theorem (folklore, refining Statman 198X)
β-convertibility of arbitrary simply typed λ-terms is TOWER-complete.

• Membership in TOWER: naive algorithm (compare normal forms) is OK
• TOWER-hard: reduction from “higher-order quantified boolean formulas” (Statman)

e.g. ∀f : Bool → Bool. (∃x : Bool. f(x)) ⇒ (∃y : Bool. f(not(y))) is true

• First supposed to appear in a never-existing paper [Fisher & Meyer 1975]
• [Mairson 1992] gave a proof that it’s non-elementary by simulating a Turing machine
• Explicit TOWER-hardness: Chistikov, Haase, Hadizadeh & Mansutti,

Higher-Order Quantified Boolean Satisfiability, 2022
https://cstheory.stackexchange.com/questions/34883/
reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas

8/16

https://cstheory.stackexchange.com/questions/34883/reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas
https://cstheory.stackexchange.com/questions/34883/reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas

Simply typed β-convertibility is TOWER-complete

Definition (Schmitz 2016)

TOWER =
⋃

f elementary
DTIME(2f(n)(1)) i.e. tower of exponentials of elementary height

Theorem (folklore, refining Statman 198X)
β-convertibility of arbitrary simply typed λ-terms is TOWER-complete.

• Membership in TOWER: naive algorithm (compare normal forms) is OK
• TOWER-hard: reduction from “higher-order quantified boolean formulas” (Statman)

e.g. ∀f : Bool → Bool. (∃x : Bool. f(x)) ⇒ (∃y : Bool. f(not(y))) is true
• First supposed to appear in a never-existing paper [Fisher & Meyer 1975]
• [Mairson 1992] gave a proof that it’s non-elementary by simulating a Turing machine
• Explicit TOWER-hardness: Chistikov, Haase, Hadizadeh & Mansutti,

Higher-Order Quantified Boolean Satisfiability, 2022

https://cstheory.stackexchange.com/questions/34883/
reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas

8/16

https://cstheory.stackexchange.com/questions/34883/reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas
https://cstheory.stackexchange.com/questions/34883/reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas

Simply typed β-convertibility is TOWER-complete

Definition (Schmitz 2016)

TOWER =
⋃

f elementary
DTIME(2f(n)(1)) i.e. tower of exponentials of elementary height

Theorem (folklore, refining Statman 198X)
β-convertibility of arbitrary simply typed λ-terms is TOWER-complete.

• Membership in TOWER: naive algorithm (compare normal forms) is OK
• TOWER-hard: reduction from “higher-order quantified boolean formulas” (Statman)

e.g. ∀f : Bool → Bool. (∃x : Bool. f(x)) ⇒ (∃y : Bool. f(not(y))) is true
• First supposed to appear in a never-existing paper [Fisher & Meyer 1975]
• [Mairson 1992] gave a proof that it’s non-elementary by simulating a Turing machine
• Explicit TOWER-hardness: Chistikov, Haase, Hadizadeh & Mansutti,

Higher-Order Quantified Boolean Satisfiability, 2022
https://cstheory.stackexchange.com/questions/34883/
reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas

8/16

https://cstheory.stackexchange.com/questions/34883/reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas
https://cstheory.stackexchange.com/questions/34883/reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas

Motivating the safety condition

The safety restriction on simply typed λ-terms comes from the theory of higher-order
recursion schemes which generate infinite trees

(also the motivation of Asada et al.’s work on average-case reduction length)

simply typed λ-terms+ let rec ≡ collapsible pushdown automata (late 2000s tech)
safe λ-terms+ let rec ≡ higher-order pushdown automata (from 1980s)

[Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12]

Example on next slide, but it’s not important for the rest of the talk, just for motivation

9/16

Generating infinite trees: automata vs λ-calculus

(q0, [])

10/16

Generating infinite trees: automata vs λ-calculus

a

(q1, []) (q0, [∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

(q1, []) a

(q1, [∗]) (q0, [∗∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

(q1, []) a

(q1, [∗]) a

(q1, [∗∗]) (q0, [∗ ∗ ∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

(q1, [∗]) a

(q1, [∗∗]) (q0, [∗ ∗ ∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

b

(q1, [])

a

(q1, [∗∗]) (q0, [∗ ∗ ∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

b

c

a

(q1, [∗∗]) (q0, [∗ ∗ ∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

b

c

a

b

(q1, [∗])

(q0, [∗ ∗ ∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

b

c

a

b

b

(q1, [])

(q0, [∗ ∗ ∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

b

c

a

b

b

c

(q0, [∗ ∗ ∗])

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

b

c

a

b

b

c

· · ·

10/16

Generating infinite trees: automata vs λ-calculus

a

c a

b

c

a

b

b

c

· · ·

Church encoding:
a︷ ︸︸ ︷

(o → o → o) →
b︷ ︸︸ ︷

(o → o) →
c
↓
o → o

λa. λb. λc. let rec f = λx. a x (f (b x)) in f c

10/16

The safe λ-calculus (without let rec)

Definition (Blum & Ong 2009)
A simply typed λ-term t is unsafe if it contains a subterm t′ such that

• t′ contains some x as a free variable with ord(x) < ord(t′)
• t′ is not applied to another subterm: t = C[λx. t′] or t = C[u t′]

λf(o→o)→o. f (λxo. f (λyo. y)) is safe λf(o→o)→o. f (λxo. f (λyo.
type o ⇝ order 0

↓
x︸ ︷︷ ︸

type (o→o) ⇝ order 1

)) is unsafe!

Theorem (Blum & Ong 2009)
β-convertibility is PSPACE-hard on safe λ-terms.

By reduction from Quantified Boolean Formulas…
but they don’t manage to encode higher-order QBF without violating safety!

11/16

The safe λ-calculus (without let rec)

Definition (Blum & Ong 2009)
A simply typed λ-term t is unsafe if it contains a subterm t′ such that

• t′ contains some x as a free variable with ord(x) < ord(t′)
• t′ is not applied to another subterm: t = C[λx. t′] or t = C[u t′]

λf(o→o)→o. f (λxo. f (λyo. y)) is safe λf(o→o)→o. f (λxo. f (λyo.
type o ⇝ order 0

↓
x︸ ︷︷ ︸

type (o→o) ⇝ order 1

)) is unsafe!

Theorem (Blum & Ong 2009)
β-convertibility is PSPACE-hard on safe λ-terms.

By reduction from Quantified Boolean Formulas…
but they don’t manage to encode higher-order QBF without violating safety!

11/16

Complexity of β-convertibility in the safe fragment

Theorem (Blum & Ong 2009)
β-convertibility is PSPACE-hard on safe λ-terms.

They also remark:
Because the safety condition restricts expressivity in a non-trivial way, one can reasonably
expect the beta-eta equivalence problem to have a lower complexity in the safe case than in
the normal case; this intuition is strengthened by our failed attempt to encode [higher-order
QBF] in the safe lambda calculus. No upper bounds is known at present. On the other hand
our PSPACE-hardness result is probably a coarse lower bound; it would be interesting to
know whether we also have EXPTIME-hardness.

Theorem (new!)
β-convertibility is TOWER-complete on safe λ-terms.

So it’s not any easier in the safe case than in the normal case! (at this level of precision)

12/16

Complexity of β-convertibility in the safe fragment

Theorem (Blum & Ong 2009)
β-convertibility is PSPACE-hard on safe λ-terms.

They also remark:
Because the safety condition restricts expressivity in a non-trivial way, one can reasonably
expect the beta-eta equivalence problem to have a lower complexity in the safe case than in
the normal case; this intuition is strengthened by our failed attempt to encode [higher-order
QBF] in the safe lambda calculus. No upper bounds is known at present. On the other hand
our PSPACE-hardness result is probably a coarse lower bound; it would be interesting to
know whether we also have EXPTIME-hardness.

Theorem (new!)
β-convertibility is TOWER-complete on safe λ-terms.

So it’s not any easier in the safe case than in the normal case! (at this level of precision)

12/16

Our new TOWER-hardness proof

Theorem (new!)
β-convertibility is TOWER-complete on safe λ-terms.

Blum and Ong didn’t manage to reduce from higher-order QBF
⇝we take another approach: a reduction from star-free expression emptiness

E,E′ ::= ∅ |
empty string︷︸︸︷

ε | a︸︷︷︸
letter in a finite alphabet Σ

| E ∪ E′ |
concatenation︷ ︸︸ ︷

E · E′ | ¬E︸︷︷︸
complement

⇝ JEK ⊆ Σ∗

(Remark: star-free languages = a subclass of regular languages also characterized by
aperiodic monoids, first-order logic over finite models, linear temporal logic, …)

Theorem (Stockmeyer & Meyer 1973, revisited by Schmitz 2016)
Given a star-free expression E, it is TOWER-complete to decide whether JEK = ∅.

source of complexity: alternation · vs ¬ (cf. dot-depth / Straubing–Thérien hierarchy)

13/16

Our new TOWER-hardness proof

Theorem (new!)
β-convertibility is TOWER-complete on safe λ-terms.

Blum and Ong didn’t manage to reduce from higher-order QBF
⇝we take another approach: a reduction from star-free expression emptiness

E,E′ ::= ∅ |
empty string︷︸︸︷

ε | a︸︷︷︸
letter in a finite alphabet Σ

| E ∪ E′ |
concatenation︷ ︸︸ ︷

E · E′ | ¬E︸︷︷︸
complement

⇝ JEK ⊆ Σ∗

(Remark: star-free languages = a subclass of regular languages also characterized by
aperiodic monoids, first-order logic over finite models, linear temporal logic, …)

Theorem (Stockmeyer & Meyer 1973, revisited by Schmitz 2016)
Given a star-free expression E, it is TOWER-complete to decide whether JEK = ∅.

source of complexity: alternation · vs ¬ (cf. dot-depth / Straubing–Thérien hierarchy)

13/16

Turning star-free expressions into safe λ-terms

E,E′ ::= ∅ | ε | a | E ∪ E′ | E · E′ | ¬E ⇝ JEK ⊆ Σ∗

Lemma
Any expression E can be turned in PTIME into an equivalent safe term tE : StrΣ[A] → Bool.

StrΣ[A] =
|Σ| times︷ ︸︸ ︷

(A → A) → · · · → (A → A) → A → A
abb ∈ Σ∗ = {a, b}∗ ⇝ abb = λfa. λfb. λx. fa (fb (fb x)) : StrΣ[A] for any A

Theorem (Hillebrand & Kanellakis 1996 – main inspiration for the above)
A language L ⊆ Σ∗ can be defined by some simply typed λ-term t : StrΣ[A] → Bool
(where A may be chosen depending on L) if and only if it is regular.

Example: t = λs. s id not true : Str{a,b}[Bool] → Bool (even number of bs)

t abb −→β abb id not true −→β id (not (not true)) −→β true

14/16

Turning star-free expressions into safe λ-terms

E,E′ ::= ∅ | ε | a | E ∪ E′ | E · E′ | ¬E ⇝ JEK ⊆ Σ∗

Lemma
Any expression E can be turned in PTIME into an equivalent safe term tE : StrΣ[A] → Bool.

StrΣ[A] =
|Σ| times︷ ︸︸ ︷

(A → A) → · · · → (A → A) → A → A
abb ∈ Σ∗ = {a, b}∗ ⇝ abb = λfa. λfb. λx. fa (fb (fb x)) : StrΣ[A] for any A

Theorem (Hillebrand & Kanellakis 1996 – main inspiration for the above)
A language L ⊆ Σ∗ can be defined by some simply typed λ-term t : StrΣ[A] → Bool
(where A may be chosen depending on L) if and only if it is regular.

Example: t = λs. s id not true : Str{a,b}[Bool] → Bool (even number of bs)

t abb −→β abb id not true −→β id (not (not true)) −→β true

14/16

Turning star-free expressions into safe λ-terms

Lemma
Any expression E can be turned in PTIME into an equivalent safe term tE : StrΣ[A] → Bool.

The proof is inspired by my research with Pradic on “Implicit automata in typed λ-calculi”

• Especially our results on transducers (automata computing string-to-string functions)
• e.g. the inductive case for translating E · E′ uses a safe λ-term computing

123 7→ □123#1□23#12□3#123□

a typical polyregular function (cf. Bojańczyk’s LICS’22 invited paper)

Then we need a bit more work to apply tE to all “short enough” words and take the
disjunction. Finally we get a term of type Bool which is true when JEK 6= ∅, hence:
Theorem
Given a safe λ-term t : Bool, it is TOWER-complete to decide whether t =β true.

15/16

Conclusion

Theorem
Given a safe λ-term t : Bool, it is TOWER-complete to decide whether t =β true.

• The same holds for the simply typed λ-calculus (of which the safe λ-calculus is a
fragment), “traditionally” proved via higher-order quantified boolean formulas

• This does not work in the safe case; instead we leverage connections between
automata theory and λ-calculus

Final remark: Pradic and I have characterized star-free languages using planar λ-terms
(ICALP 2020). For this result, translating star-free expressions didn’t work (instead we
used the Krohn–Rhodes decomposition theorem).

16/16

Conclusion

Theorem
Given a safe λ-term t : Bool, it is TOWER-complete to decide whether t =β true.

• The same holds for the simply typed λ-calculus (of which the safe λ-calculus is a
fragment), “traditionally” proved via higher-order quantified boolean formulas

• This does not work in the safe case; instead we leverage connections between
automata theory and λ-calculus

Final remark: Pradic and I have characterized star-free languages using planar λ-terms
(ICALP 2020). For this result, translating star-free expressions didn’t work (instead we
used the Krohn–Rhodes decomposition theorem).

16/16

