Simply typed β-convertibility is Tower-complete even for safe λ-terms

Nguyễn Lê Thành Dũng (a.k.a. Tito) — nltd@nguyentito. eu
École normale supérieure de Lyon
16th workshop on Computational Logic and Applications, January 13th, 2023

Dynamics of the untyped λ-calculus

$$
t, u::=\underbrace{x}|t u| \lambda x . t \quad(\lambda x . t) u \longrightarrow_{\beta} t\{x:=u\}
$$

variables: $x, y, z \ldots$

$$
(\lambda x . x x)(\lambda x . x x) \longrightarrow_{\beta}(x x)\{x:=(\lambda x . x x)\}=(\lambda x . x x)(\lambda x . x x) \longrightarrow_{\beta} \ldots
$$

Dynamics of the untyped λ-calculus

$$
\begin{gathered}
t, u::=\underbrace{x}_{\text {variables: } x, y, z \ldots}|t u| \lambda x . t \quad(\lambda x . t) u \longrightarrow_{\beta} t\{x:=u\} \\
(\lambda x . x x)(\lambda x . x x) \longrightarrow_{\beta}(x x)\{x:=(\lambda x . x x)\}=(\lambda x . x x)(\lambda x . x x) \longrightarrow_{\beta} \ldots
\end{gathered}
$$

- Non-termination possible - actually, the untyped λ-calculus is Turing-complete
- Convertibility $t={ }_{\beta} u$ (reflexive transitive closure of \rightarrow_{β}) is undecidable

Dynamics of the untyped λ-calculus

$$
\begin{gathered}
t, u::=\underbrace{}_{\substack{x \\
\text { variables: } x, y, z \ldots}}|t u| \lambda x . t \quad(\lambda x . t) u \longrightarrow_{\beta} t\{x:=u\} \\
(\lambda x . x x)(\lambda x . x x) \longrightarrow_{\beta}(x x)\{x:=(\lambda x . x x)\}=(\lambda x . x x)(\lambda x . x x) \longrightarrow_{\beta} \ldots
\end{gathered}
$$

- Non-termination possible - actually, the untyped λ-calculus is Turing-complete
- Convertibility $t={ }_{\beta} u$ (reflexive transitive closure of \rightarrow_{β}) is undecidable

This talk:

- Recall/clarify the complexity of $t={ }_{\beta} u$ for simply typed λ-terms
- Then extend the result to safe λ-terms

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

$$
t: A \rightarrow B \approx \text { " } t \text { is a function from } A \text { to } B "
$$

Simple types: built using " \rightarrow " from a base type o

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

$$
t: A \rightarrow B \quad \approx \quad \text { " } t \text { is a function from } A \text { to } B "
$$

Simple types: built using " \rightarrow " from a base type o

$$
\frac{f: o \rightarrow o \quad \frac{f: o \rightarrow o \quad x: o}{f x: o}}{f(f x): o}
$$

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

$$
t: A \rightarrow B \quad \approx \quad " t \text { is a function from } A \text { to } B "
$$

Simple types: built using " \rightarrow " from a base type o

$$
\frac{f: o \rightarrow o \quad \frac{f: o \rightarrow o \quad x: o}{f x: 0}}{f(f x): 0} \quad \underbrace{\lambda f . \lambda x . f(f x)}_{\text {encodes the number 2 }}: \overbrace{(o \rightarrow o) \rightarrow o \rightarrow 0}^{\text {"type of natural numbers" }}
$$

The simply typed λ-calculus

We now consider a type system: labeling λ-terms with specifications

$$
t: A \rightarrow B \quad \approx \quad " t \text { is a function from } A \text { to } B "
$$

Simple types: built using " \rightarrow " from a base type o

$$
\frac{f: o \rightarrow o \quad \frac{f: o \rightarrow o \quad x: o}{f x: o}}{f(f x): o} \quad \underbrace{\lambda f . \lambda x \cdot f(f x)}_{\text {encodes the number } 2}: \overbrace{(o \rightarrow o) \rightarrow o \rightarrow 0}^{\text {"type of natural numbers" }}
$$

Theorem

\rightarrow_{β} is strongly normalizing (terminating) and confluent on simply typed λ-terms.

Corollary

$={ }_{\beta}$ is decidable on simply typed λ-terms.
Just compute the normal forms and compare them!

Two related questions

Theorem

\rightarrow_{β} is strongly normalizing (terminating) and confluent on simply typed λ-terms.

Corollary

$={ }_{\beta}$ is decidable on simply typed λ-terms (compute \mathcal{E} compare normal forms).

- Combinatorics: what's the length of \rightarrow_{β} sequences?
(for linear λ-terms: see Alexandros Singh's PhD thesis)
- Computational complexity: how hard is it to decide $={ }_{\beta}$?

What's the length of \rightarrow_{β} sequences?

- Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
- Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

What's the length of \rightarrow_{β} sequences?

- Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
- Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

Let the order of a type be the maximum nesting of \rightarrow to the left:

$$
\operatorname{ord}(o)=0 \quad \operatorname{ord}(A \rightarrow B)=\max (\operatorname{ord}(A)+1, \operatorname{ord}(B))
$$

Theorem

Let t be a simply typed λ-term. If all subterms of t have types of order $\leq k$, then the maximum reduction length for t is at most $2_{n}(O(\operatorname{size}(t)))$ where $2_{0}(x)=x$ and $2_{k+1}(x)=2^{2_{k}(x)}$.
\rightsquigarrow tower of exponentials of height k

What's the length of \rightarrow_{β} sequences?

- Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
- Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

Let the order of a type be the maximum nesting of \rightarrow to the left:

$$
\operatorname{ord}(o)=0 \quad \operatorname{ord}(A \rightarrow B)=\max (\operatorname{ord}(A)+1, \operatorname{ord}(B))
$$

Theorem

Let t be a simply typed λ-term. If all subterms of t have types of order $\leq k$, then the maximum reduction length for t is at most $2_{n}(O(\operatorname{size}(t)))$ where $2_{0}(x)=x$ and $2_{k+1}(x)=2^{2_{k}(x)}$. \rightsquigarrow tower of exponentials of height k
type $(o \rightarrow 0) \rightarrow(o \rightarrow 0)$ of order 2
$\underbrace{(\lambda f . \lambda x . f(f x)) \ldots \overbrace{(\lambda f . \lambda x . f(f x))}}_{n \text { times }}(\lambda x . g x x) y \quad \longrightarrow_{\beta}^{*} \quad$ something of size $\Omega\left(2^{2^{n}}\right)$

What's the length of \rightarrow_{β} sequences?

- Schwichtenberg, Complexity of Normalization in the Pure Typed Lambda-Calculus, 1982
- Beckmann, Exact bounds for lengths of reductions in typed λ-calculus, 2001

Let the order of a type be the maximum nesting of \rightarrow to the left:

$$
\operatorname{ord}(o)=0 \quad \operatorname{ord}(A \rightarrow B)=\max (\operatorname{ord}(A)+1, \operatorname{ord}(B))
$$

Theorem

Let t be a simply typed λ-term. If all subterms of t have types of order $\leq k$, then the maximum reduction length for t is at most $2_{n}(O(\operatorname{size}(t)))$ where $2_{0}(x)=x$ and $2_{k+1}(x)=2^{2_{k}(x)}$. \rightsquigarrow tower of exponentials of height k
type $(o \rightarrow 0) \rightarrow(o \rightarrow 0)$ of order 2

$$
\underbrace{(\lambda f . \lambda x . f(f x)) \ldots \overbrace{(\lambda f . \lambda x . f(f x))}}_{n \text { times }}(\lambda x . g x x) y \quad \longrightarrow_{\beta}^{*} \quad \text { something of size } \Omega\left(2^{2^{n}}\right)
$$

- Asada, Kobayashi, Sin'ya \& Tsukada,

Reduction length vs complexity of convertibility

$\operatorname{ord}(o)=0$ and $\operatorname{ord}(A \rightarrow B)=\max (\operatorname{ord}(A)+1, \operatorname{ord}(B))$

Theorem

Let t be a simply typed λ-term. If all subterms of t have types of order $\leq k$, then the maximum reduction length for t is at most $2_{n}(O(\operatorname{size}(t)))$ where $2_{0}(x)=x$ and $2_{k+1}(x)=2^{2_{k}(x)}$.

Compute normal forms and compare \rightsquigarrow check $={ }_{\beta}$ in time $2_{k}(\operatorname{poly}(n))$ i.e. k-ExpTime

Reduction length vs complexity of convertibility

$\operatorname{ord}(o)=0$ and $\operatorname{ord}(A \rightarrow B)=\max (\operatorname{ord}(A)+1, \operatorname{ord}(B))$

Theorem

Let t be a simply typed λ-term. If all subterms of t have types of order $\leq k$, then the maximum reduction length for t is at most $2_{n}(O(\operatorname{size}(t)))$ where $2_{0}(x)=x$ and $2_{k+1}(x)=2^{2_{k}(x)}$.

Compute normal forms and compare \rightsquigarrow check $={ }_{\beta}$ in time $2_{k}(\operatorname{poly}(n))$ i.e. k-ExpTime
But one can do better! Let Bool $=o \rightarrow o \rightarrow o$, true $=\lambda x$. $\lambda y . x$ and false $=\lambda x . \lambda y . y$

Theorem (Terui 2012)

Fix $k \in \mathbb{N}$. Given a simply typed λ-term t : Bool whose subterms have types of order $\leq 2 k+2$ (resp. $\leq 2 k+3$), checking whether $t={ }_{\beta}$ true is complete for k-ExPTIME (resp. k-ExPSPACE).

Reduction length vs complexity of convertibility

$\operatorname{ord}(o)=0$ and $\operatorname{ord}(A \rightarrow B)=\max (\operatorname{ord}(A)+1, \operatorname{ord}(B))$

Theorem

Let t be a simply typed λ-term. If all subterms of t have types of order $\leq k$, then the maximum reduction length for t is at most $2_{n}(O(\operatorname{size}(t)))$ where $2_{0}(x)=x$ and $2_{k+1}(x)=2^{2_{k}(x)}$.

Compute normal forms and compare \rightsquigarrow check $={ }_{\beta}$ in time $2_{k}(\operatorname{poly}(n))$ i.e. k-ExpTime
But one can do better! Let Bool $=0 \rightarrow o \rightarrow 0$, true $=\lambda x$. λy. x and false $=\lambda x . \lambda y . y$

Theorem (Terui 2012)

Fix $k \in \mathbb{N}$. Given a simply typed λ-term t : Bool whose subterms have types of order $\leq 2 k+2$ (resp. $\leq 2 k+3$), checking whether $t={ }_{\beta}$ true is complete for k-ExPTIME (resp. k-ExPSPACE).

Corollary (of the hardness part; originally from Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. $\notin \bigcup_{k \in \mathbf{N}} k$-ExpTIME.

How hard is it to decide β-convertibility?

Theorem (Statman 198X)
β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. $\notin \bigcup_{k \in \mathbf{N}} k$-ExPTIME.
At the same time, we can check it naively in $2_{\text {order }}$ (poly(size)):
tower of exponentials of "reasonably" increasing height, "just beyond" elementary
So can we be more precise?

How hard is it to decide β-convertibility?

Theorem (Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is non-elementary, i.e. $\notin \bigcup_{k \in \mathbf{N}} k$-ExPTIME.
At the same time, we can check it naively in $2_{\text {order }}($ poly (size)):
tower of exponentials of "reasonably" increasing height, "just beyond" elementary
So can we be more precise?
Definition (Schmitz 2016 - motivated by several problems in logic and verification)
$\operatorname{TowER}=\bigcup \operatorname{DTME}\left(2_{f(n)}(1)\right)$ i.e. tower of exp of elementary height
f elementary
Tower-completeness is defined w.r.t. elementary reductions.

Theorem

β-convertibility of arbitrary simply typed λ-terms is TowER-complete.

Simply typed β-convertibility is Tower-complete

Definition (Schmitz 2016)

Tower $=\bigcup \operatorname{DTime}\left(2_{f(n)}(1)\right)$ i.e. tower of exponentials of elementary height
f elementary

Theorem (folklore, refining Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is Tower-complete.

- Membership in Tower: naive algorithm (compare normal forms) is OK
- Tower-hard: reduction from "higher-order quantified boolean formulas" (Statman)

$$
\text { e.g. } \forall f: \text { Bool } \rightarrow \text { Bool. }(\exists x \text { : Bool. } f(x)) \Rightarrow(\exists y: \text { Bool. } f(\operatorname{not}(y))) \text { is true }
$$

Simply typed β-convertibility is TowER-complete

Definition (Schmitz 2016)

Tower $=\bigcup \operatorname{DTime}\left(2_{f(n)}(1)\right)$ i.e. tower of exponentials of elementary height
f elementary

Theorem (folklore, refining Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is Tower-complete.

- Membership in Tower: naive algorithm (compare normal forms) is OK
- Tower-hard: reduction from "higher-order quantified boolean formulas" (Statman)

$$
\text { e.g. } \forall f: \operatorname{Bool} \rightarrow \operatorname{Bool} .(\exists x: \operatorname{Bool} . f(x)) \Rightarrow(\exists y: \operatorname{Bool} . f(\operatorname{not}(y))) \text { is true }
$$

- First supposed to appear in a never-existing paper [Fisher \& Meyer 1975]
- [Mairson 1992] gave a proof that it's non-elementary by simulating a Turing machine
- Explicit Tower-hardness: Chistikov, Haase, Hadizadeh \& Mansutti,

Higher-Order Quantified Boolean Satisfiability, 2022

Simply typed β-convertibility is TowER-complete

Definition (Schmitz 2016)

$\operatorname{TowER}=\bigcup \operatorname{DTime}\left(2_{f(n)}(1)\right)$ i.e. tower of exponentials of elementary height
f elementary

Theorem (folklore, refining Statman 198X)

β-convertibility of arbitrary simply typed λ-terms is Tower-complete.

- Membership in Tower: naive algorithm (compare normal forms) is OK
- Tower-hard: reduction from "higher-order quantified boolean formulas" (Statman) e.g. $\forall f: \operatorname{Bool} \rightarrow$ Bool. $(\exists x$: Bool. $f(x)) \Rightarrow(\exists y$: Bool. $f(\operatorname{not}(y)))$ is true
- First supposed to appear in a never-existing paper [Fisher \& Meyer 1975]
- [Mairson 1992] gave a proof that it's non-elementary by simulating a Turing machine
- Explicit Tower-hardness: Chistikov, Haase, Hadizadeh \& Mansutti,

Higher-Order Quantified Boolean Satisfiability, 2022
https://cstheory.stackexchange.com/questions/34883/
reference-request-deciding-validity-of-higher-order-quantified-boolean-formulas

Motivating the safety condition

The safety restriction on simply typed λ-terms comes from the theory of higher-order recursion schemes which generate infinite trees
(also the motivation of Asada et al.'s work on average-case reduction length)
simply typed λ-terms + let rec \equiv collapsible pushdown automata (late 2000s tech) safe λ-terms + let rec \equiv higher-order pushdown automata (from 1980s)
[Damm '82; Knapkik, Niwiński \& Urzyczyn '02; Salvati \& Walukiewicz '12]
Example on next slide, but it's not important for the rest of the talk, just for motivation

Generating infinite trees: automata vs λ-calculus

$\left(q_{0},[]\right)$

Generating infinite trees: automata vs λ-calculus

The safe λ-calculus (without let rec)

Definition (Blum \& Ong 2009)

A simply typed λ-term t is unsafe if it contains a subterm t^{\prime} such that

- t^{\prime} contains some x as a free variable with $\operatorname{ord}(x)<\operatorname{ord}\left(t^{\prime}\right)$
- t^{\prime} is not applied to another subterm: $t=C\left[\lambda x . t^{\prime}\right]$ or $t=C\left[u t^{\prime}\right]$

$$
\lambda f^{(o \rightarrow o) \rightarrow o} \cdot f\left(\lambda x^{o} \cdot f\left(\lambda y^{o} \cdot y\right)\right) \text { is safe } \quad \lambda f^{(o \rightarrow o) \rightarrow o} \cdot f(\lambda x^{o} \cdot f(\underbrace{\lambda y^{o} \cdot \stackrel{\downarrow}{x}}_{\text {type }(o \rightarrow o)})) \text { is unsafe! order 1 }
$$

The safe λ-calculus (without let rec)

Definition (Blum \& Ong 2009)

A simply typed λ-term t is unsafe if it contains a subterm t^{\prime} such that

- t^{\prime} contains some x as a free variable with $\operatorname{ord}(x)<\operatorname{ord}\left(t^{\prime}\right)$
- t^{\prime} is not applied to another subterm: $t=C\left[\lambda x . t^{\prime}\right]$ or $t=C\left[u t^{\prime}\right]$

$$
\lambda f^{(o \rightarrow o) \rightarrow 0} \cdot f\left(\lambda x^{o} \cdot f\left(\lambda y^{o} \cdot y\right)\right) \text { is safe } \quad \lambda f^{(o \rightarrow o) \rightarrow 0} \cdot f(\lambda x^{o} \cdot f(\underbrace{\lambda y^{o} \cdot \stackrel{\downarrow}{x}}_{\text {type }(o \rightarrow o)})) \text { is unsafe! order } 1
$$

Theorem (Blum \& Ong 2009)

β-convertibility is PSPACE-hard on safe λ-terms.
By reduction from Quantified Boolean Formulas...
but they don't manage to encode higher-order QBF without violating safety!

Complexity of β-convertibility in the safe fragment

Theorem (Blum \& Ong 2009)

β-convertibility is PSPACE-hard on safe λ-terms.
They also remark:
Because the safety condition restricts expressivity in a non-trivial way, one can reasonably expect the beta-eta equivalence problem to have a lower complexity in the safe case than in the normal case; this intuition is strengthened by our failed attempt to encode [higher-order QBF] in the safe lambda calculus. No upper bounds is known at present. On the other hand our PSPACE-hardness result is probably a coarse lower bound; it would be interesting to know whether we also have EXPTIME-hardness.

Complexity of β-convertibility in the safe fragment

Theorem (Blum \& Ong 2009)

β-convertibility is PSPACE-hard on safe λ-terms.
They also remark:
Because the safety condition restricts expressivity in a non-trivial way, one can reasonably expect the beta-eta equivalence problem to have a lower complexity in the safe case than in the normal case; this intuition is strengthened by our failed attempt to encode [higher-order QBF] in the safe lambda calculus. No upper bounds is known at present. On the other hand our PSPACE-hardness result is probably a coarse lower bound; it would be interesting to know whether we also have EXPTIME-hardness.

Theorem (new!)

β-convertibility is Tower-complete on safe λ-terms.
So it's not any easier in the safe case than in the normal case! (at this level of precision)

Our new Tower-hardness proof

Theorem (new!)

β-convertibility is Tower-complete on safe λ-terms.
Blum and Ong didn't manage to reduce from higher-order QBF
\rightsquigarrow we take another approach: a reduction from star-free expression emptiness

(Remark: star-free languages $=$ a subclass of regular languages also characterized by aperiodic monoids, first-order logic over finite models, linear temporal logic, ...)

Our new Tower-hardness proof

Theorem (new!)

β-convertibility is Tower-complete on safe λ-terms.

Blum and Ong didn't manage to reduce from higher-order QBF
\rightsquigarrow we take another approach: a reduction from star-free expression emptiness

(Remark: star-free languages $=$ a subclass of regular languages also characterized by aperiodic monoids, first-order logic over finite models, linear temporal logic, ...)

Theorem (Stockmeyer \& Meyer 1973, revisited by Schmitz 2016)

Given a star-free expression E, it is TowER-complete to decide whether $\llbracket E \rrbracket=\varnothing$.
source of complexity: alternation \cdot vs $\neg \quad$ (cf. dot-depth / Straubing-Thérien hierarchy)

Turning star-free expressions into safe λ-terms

$E, E^{\prime}::=\varnothing|\varepsilon| a\left|E \cup E^{\prime}\right| E \cdot E^{\prime} \mid \neg E \quad \rightsquigarrow \quad \llbracket E \rrbracket \subseteq \Sigma^{*}$

Lemma

Any expression E can be turned in PTIME into an equivalent safe term $t_{E}: \operatorname{Str}_{\Sigma}[A] \rightarrow$ Bool.

$$
\begin{gathered}
\operatorname{Str}_{\Sigma}[A]=\overbrace{(A \rightarrow A) \rightarrow \cdots \rightarrow(A \rightarrow A)}^{|\Sigma| \text { times }} \rightarrow A \rightarrow A \\
a b b \in \Sigma^{*}=\{a, b\}^{*} \rightsquigarrow \overline{a b b}=\lambda f_{a} \cdot \lambda f_{b} \cdot \lambda x \cdot f_{a}\left(f_{b}\left(f_{b} x\right)\right): \operatorname{Str}_{\Sigma}[A] \quad \text { for any } A
\end{gathered}
$$

Turning star-free expressions into safe λ-terms

$E, E^{\prime}::=\varnothing|\varepsilon| a\left|E \cup E^{\prime}\right| E \cdot E^{\prime} \mid \neg E \quad \rightsquigarrow \quad \llbracket E \rrbracket \subseteq \Sigma^{*}$

Lemma

Any expression E can be turned in PTIME into an equivalent safe term $t_{E}: \operatorname{Str}_{\Sigma}[A] \rightarrow$ Bool.

$$
\begin{gathered}
\operatorname{Str}_{\Sigma}[A]=\overbrace{(A \rightarrow A) \rightarrow \cdots \rightarrow(A \rightarrow A)}^{|\Sigma| \text { times }} \rightarrow A \rightarrow A \\
a b b \in \Sigma^{*}=\{a, b\}^{*} \rightsquigarrow \overline{a b b}=\lambda f_{a} \cdot \lambda f_{b} \cdot \lambda x \cdot f_{a}\left(f_{b}\left(f_{b} x\right)\right): \operatorname{Str}_{\Sigma}[A] \quad \text { for any } A
\end{gathered}
$$

Theorem (Hillebrand \& Kanellakis 1996 - main inspiration for the above)

A language $L \subseteq \Sigma^{*}$ can be defined by some simply typed λ-term $t: \operatorname{Str}_{\Sigma}[A] \rightarrow$ Bool (where A may be chosen depending on L) if and only if it is regular.

Example: $t=\lambda s . s$ id not true : $\operatorname{Str}_{\{a, b\}}[\mathrm{Bool}] \rightarrow$ Bool (even number of $b s$) $t \overline{a b b} \longrightarrow_{\beta} \overline{a b b}$ id not true \longrightarrow_{β} id (not (not true)) \longrightarrow_{β} true

Turning star-free expressions into safe λ-terms

Lemma

Any expression E can be turned in PTime into an equivalent safe term $t_{E}: \operatorname{Str}_{\Sigma}[A] \rightarrow$ Bool.
The proof is inspired by my research with Pradic on "Implicit automata in typed λ-calculi"

- Especially our results on transducers (automata computing string-to-string functions)
- e.g. the inductive case for translating $E \cdot E^{\prime}$ uses a safe λ-term computing

$$
123 \mapsto \square 123 \# 1 \square 23 \# 12 \square 3 \# 123 \square
$$

a typical polyregular function (cf. Bojańczyk's LICS'22 invited paper)
Then we need a bit more work to apply t_{E} to all "short enough" words and take the disjunction. Finally we get a term of type Bool which is true when $\llbracket E \rrbracket \neq \varnothing$, hence:

Theorem

Given a safe λ-term t : Bool, it is Tower-complete to decide whether $t={ }_{\beta}$ true.

Conclusion

Theorem

Given a safe λ-term t : Bool, it is Tower-complete to decide whether $t={ }_{\beta}$ true.

- The same holds for the simply typed λ-calculus (of which the safe λ-calculus is a fragment), "traditionally" proved via higher-order quantified boolean formulas
- This does not work in the safe case; instead we leverage connections between automata theory and λ-calculus

Conclusion

Theorem

Given a safe λ-term t : Bool, it is Tower-complete to decide whether $t={ }_{\beta}$ true.

- The same holds for the simply typed λ-calculus (of which the safe λ-calculus is a fragment), "traditionally" proved via higher-order quantified boolean formulas
- This does not work in the safe case; instead we leverage connections between automata theory and λ-calculus

Final remark: Pradic and I have characterized star-free languages using planar λ-terms (ICALP 2020). For this result, translating star-free expressions didn't work (instead we used the Krohn-Rhodes decomposition theorem).

