The safe λ-calculus is a fragment of the simply typed λ-calculus introduced in [BO09], motivated by the theory of higher-order recursion schemes. It has some interesting properties, e.g. there is a normalization procedure that never needs to perform any α-renaming (i.e. uses capture-permitting substitution).

Determining the precise complexity of deciding whether two safe λ-terms are $\beta \eta$-convertible has been an open problem until now (to my knowledge). In [BO09, §3], a PSPACE-hardness result is established. This is far below the non-elementary lower bound for simply typed $\beta \eta$-convertibility due to Statman, but it is argued that both Statman's proof and its simplification by Mairson fundamentally require unsafe terms. To quote [BO09], this "does not rule out the possibility that another non-elementary problem is encodable in the safe lambda calculus".

We provide such an encoding here: by reduction from the star-free expression equivalence problem, we show that safe $\beta \eta$-convertibility is TowER-complete in the sense of [Sch16]. (We only provide a proof of Tower-hardness, membership holds because it works for STLC already. [TODO: actually this proves that $\beta \eta$ in STLC is TowER-c which is not explicitly written anywhere in the published literature])

First, let us recall the definitions of our objects of interest:
Definition 1 (slight simplification of [BO09]). As usual, the order of a simple type is the nesting depth of function arrows to the left:

$$
\operatorname{ord}(o)=0 \quad \operatorname{ord}(A \rightarrow B)=\max (\operatorname{ord}(A)+1, \operatorname{ord}(B))
$$

The typing rules of the safe λ-calculus are

$$
\begin{gathered}
\frac{\Theta \vdash A \vdash x: A}{\frac{\Theta \vdash t: A}{\Theta^{\prime} \vdash t: A}\left(\Theta \subset \Theta^{\prime}\right)} \\
\frac{\Theta \vdash t: A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B \quad \Theta \vdash u_{1}: A_{1} \ldots \Theta \vdash u_{n}: A_{n}}{\Theta \vdash t u_{1} \ldots u_{n}: B} \text { when } \operatorname{ord}(B) \leq \inf _{(y: C) \in \Theta} \operatorname{ord}(C) \\
\frac{\Theta, x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B}{\Theta \vdash \lambda x_{1} \ldots \lambda x_{n} . t: A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B} \text { when } \operatorname{ord}\left(A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B\right) \leq \inf _{(y: C) \in \Theta} \operatorname{ord}(C)
\end{gathered}
$$

with the usual convention $\inf (\varnothing)=+\infty$.
Definition 2. Star-free expressions are regular expressions without the Kleene star, but with complementation:

$$
E, F::=\varnothing|\varepsilon| c|E \cup F| E \cdot F \mid E^{c}
$$

(for c in an alphabet Σ). The star-free equivalence problem consists in deciding whether two star-free expressions denote the same language (subset of Σ^{*}).

Definition 3 (classical). The types $\operatorname{Str}_{\Sigma}=(o \rightarrow o) \rightarrow \cdots \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o$ (with $|\Sigma|$ occurrences of $(o \rightarrow o)$) and Bool $=o \rightarrow o \rightarrow o$ are the so-called Church encodings of strings and booleans. In the case of a unary alphabet, we set Nat $=\operatorname{Str}_{\{c\}}=(o \rightarrow o) \rightarrow o \rightarrow o$: it is the type of Church numerals.

The Church encoding of a word $w=w_{1} \ldots w_{n}$ over an ordered alphabet $\Sigma=\left\{c_{1}, \ldots, c_{n}\right\}$ is $\bar{w}=\lambda f_{c_{1}} . \ldots \lambda f_{c_{n}} . \lambda x . f_{w[1]}\left(\ldots\left(f_{w[n]} x\right)\right): \operatorname{Str}_{\Sigma}$. The Church encoding of $n \in \mathbb{N}$ is $\bar{n}=\overline{c \ldots c}$: Nat with n times c.

Note that Bool only has two closed β-normal inhabitants, true $=\lambda x y . x$ and false $=\lambda x y . y$. We will want to prove the following:

Theorem 4. Given a safe λ-term t, it is TOWER-hard to decide whether $t={ }_{\beta \eta}$ true.

This will proceed by reduction from star-free equivalence, which was given in [Sch16, §3.1] as an example of a ToWER-complete problem. Any elementary complexity reduction will do, in fact we will even have a polynomial time reduction (or exponential time if we insist on writing out the full type derivation for the term we build).

First, note that star-free equivalence reduces to star-free emptiness: given two expressions E and F, the language denoted by $\left(E^{c} \cup F\right)^{c} \cup\left(E \cup F^{c}\right)^{c}$ is empty if and only if E and F are equivalent. This new problem can be solved by a kind of bounded search:

Lemma 5 (classical). Suppose that the expression E of size n denotes a nonempty language. This language then contains a word of length at most tower (n).
(Recall that tower $\left.(n+1)=2^{\operatorname{tower}(n)}.\right)$
Proof sketch. We translate E to an equivalent nondeterministic finite automaton (NFA), whose number of states bounds the length of a shortest word (indeed such a word has an accepting run that visits each state at most once). This can be done by induction of E, using any standard construction on NFA for union and concatenation; the costliest operation is complementation, for which we use determinization, inducing a single exponential state blowup.

Remark 6. If we wanted to inductively build deterministic finite automata, then the exponential blowup would occur on the treatment of concatenation. In fact it is a well-understood phenomenon that the source of complexity lies in the alternations of concatenation and complementation (cf. dot-depth / StraubingThérien hierarchy).

Thus, we only have to test E against all inputs of length at most tower (n). We do so using the following lemmas (notation: $A[B]=A[B / o]$; note that any $t: A$ can be typecast to a term of type $A[B]$):

Lemma 7 (see [BO09, Remark 2.5(iii)]). One can build a safe λ-term that is $\beta \eta$-convertible to tower (n) : Nat in polynomial time.

Lemma 8. For any finite alphabet Σ and $\# \notin \Sigma$, there exists a safe λ-term enum : $\operatorname{Nat}\left[A_{\text {enum }}\right] \rightarrow \operatorname{Str}_{\Sigma \cup\{\#\}}$ such that for any $m \in \mathbb{N}$, enum \bar{m} reduces to the encoding of a \#-separated list containing all words in Σ^{*} of length at most m.

Lemma 9. There exists a simply typed λ-term exists : $\left(\operatorname{Str}_{\Sigma}[\alpha] \rightarrow\right.$ Bool $) \rightarrow$ $\operatorname{Str}_{\Sigma \cup\{\#\}}\left[F_{\text {exists }}(\alpha)\right] \rightarrow$ Bool, where α is a type variable, whose instantations $\alpha=A$ are all safe and test whether some word (over Σ) in a given list of words (encoded using the separator \#) satisfies a given predicate.

Lemma 10. E can be turned in polynomial time into an equivalent safe λ-term $t_{E}: \operatorname{Str}_{\Sigma}\left[A_{E}\right] \rightarrow$ Bool.

We conclude by composing the four terms built in the above lemmas and not : Bool \rightarrow Bool; this is allowed because safe terms of type $A[T] \rightarrow B$ and $B[U] \rightarrow C$ can be composed into a safe term of type $A[T[U]] \rightarrow C$ whenever $\operatorname{ord}(B) \leq \operatorname{ord}(A[T])$.

Proof of Lemma 8. Let $\Sigma=\left\{c_{1}, \ldots, c_{|\Sigma|}\right\}$. Take $A_{\text {enum }}=\operatorname{Str}_{\Sigma} \rightarrow \operatorname{Str}_{\Sigma}$ and
enum $=\lambda x . x\left(\lambda f . \lambda s . \operatorname{conc}_{|\Sigma|+1}(f \overline{\#})\left(f\left(\operatorname{conc} \overline{c_{1}} s\right)\right) \ldots\left(f\left(\operatorname{conc} \overline{c_{|\Sigma|}} s\right)\right)\right)(\lambda y . y) \overline{\#}$
where conc $_{k}: \operatorname{Str} \rightarrow \cdots \rightarrow \operatorname{Str} \rightarrow \operatorname{Str}$ is the concatenation of k strings, which is safely λ-definable according to [BO09, Theorem 2.8], and conc $=\mathrm{conc}_{2}$.

Proof of Lemma 9. Let $\Sigma=\left\{c_{1}, \ldots, c_{|\Sigma|}\right\}$. Take $F_{\text {exists }}(\alpha)=\operatorname{Str}_{\Sigma}[\alpha] \rightarrow$ Bool and exists $=\lambda p . \lambda s . s u_{1} \ldots u_{|\Sigma|} v p \bar{\varepsilon}$ where

$$
u_{i}=\lambda f . \lambda x . f\left(\operatorname{conc} x \overline{c_{i}}\right) \quad u_{\#}=\lambda f . \lambda x . \text { or }(p x)(f \bar{\varepsilon})
$$

where or : Bool \rightarrow Bool \rightarrow Bool can be safely defined following the recipe of [BO09, Remark 2.5(ii)]. (Explanation of this code: the accumulator of the "right fold" contains a function that takes the maximal \#-free factor strictly before the current position, and tells you whether all blocks up to a certain point satisfy the predicate p.) Note that all instantiations $\alpha=A$ of this term are safe.

Proof of Lemma 10. By induction on the expression.

- We take $A_{\varnothing}=o$ and $t_{\varnothing}=\lambda s$. false $: \operatorname{Str}_{\Sigma} \rightarrow$ Bool.
- In the unsafe λ-calculus, testing for the empty word could be done with type $\operatorname{Str}_{\Sigma} \rightarrow$ Bool, but here this is not possible anymore as discussed in $[\mathrm{BO} 09, \S 2]$. We use instead $A_{\varepsilon}=\mathrm{Bool}$ and

$$
t_{\varepsilon}=\lambda s . s(\lambda x . \mathrm{false}) \ldots(\lambda x . \mathrm{false}) \text { true }
$$

- To test whether the word contains a single letter, say, the first one in the alphabet Σ (call it c_{1}), we use $A_{c_{1}}=$ Bool \rightarrow Bool \rightarrow Bool and

$$
t_{c_{1}}=\lambda s . s(\lambda f x y . f \text { true }(\text { and }(\operatorname{not} x) y)) t^{\prime} \ldots t^{\prime} \text { and false true }
$$

where $t^{\prime}=\lambda f x y . f x$ false, and and is defined from or and not.

- Complementation is implemented by post-composing with not.
- To handle a union, we take $A_{E \cup F}=\operatorname{Str}\left[A_{E}\right] \rightarrow \operatorname{Str}\left[A_{F}\right] \rightarrow$ Bool and

$$
t_{E \cup F}=\lambda s . s\left(\lambda f x y . f\left(\operatorname{conc} \overline{c_{1}} x\right)\left(\operatorname{conc} \overline{c_{1}} y\right)\right) \ldots\left(\lambda x y \text {. or }\left(t_{E} x\right)\left(t_{F} y\right)\right) \bar{\varepsilon} \bar{\varepsilon}
$$

Observe that t_{E} and t_{F} appear only once; otherwise, our construction would not run in polynomial time.

- The remaining case, concatenation, is the most delicate:
- First, we introduce a new symbol $\square \notin \Sigma$ and build a term of type $\operatorname{Str}_{\Sigma \cup\{\square\}}\left[\operatorname{Str}_{\Sigma}\left[A_{E}\right] \rightarrow\left(\operatorname{Str}_{\Sigma}\left[A_{F}\right] \rightarrow\right.\right.$ Bool $) \rightarrow$ Bool $] \rightarrow$ Bool that distinguishes, among the words of $\Sigma^{*} \square \Sigma^{*}$, those that belong to $E \square F$ (we do not care what it computes on the rest of $\left.(\Sigma \cup\{\square\})^{*}\right)$:

$$
t_{E \square F}=\lambda s . s v_{c_{1}} \ldots v_{c_{|\Sigma|} \mid} v_{\square}(\lambda x f . f \bar{\varepsilon}) \bar{\varepsilon}(\lambda y . f \text { false })
$$

where

$$
\begin{gathered}
v_{c}=\lambda k x f \cdot k(\operatorname{conc} x \bar{c})(\lambda y \cdot f(\operatorname{conc} \bar{c} y)) \\
v_{\square}=\lambda k x f . k \bar{\varepsilon}(\underbrace{\lambda y . \text { and }\left(t_{E} x\right)\left(t_{F} y\right)})
\end{gathered}
$$

Note that the underbraced subterm has type $\operatorname{Str}_{\Sigma}\left[A_{F}\right] \rightarrow$ Bool and contains a free variable of type $\operatorname{Str}_{\Sigma}\left[A_{E}\right]$. The safety condition tells us that we need to have ord $\left(A_{E}\right) \geq \operatorname{ord}\left(A_{F}\right)+1$. We can always make sure that we are in such a situation: by composing $t_{E} m$ times with a safe λ-term copy : $\operatorname{Str}_{\Sigma}\left[\operatorname{Str}_{\Sigma}\right] \rightarrow \operatorname{Str}_{\Sigma}$ which realizes the identity function on Σ^{*} (its existence is left to the reader...) we can get a term $t_{E}^{(m)}: \operatorname{Str}_{\Sigma}\left[A_{E}^{(m)}\right] \rightarrow$ Bool with ord $\left(A_{E}^{(m)}\right)=\operatorname{ord}\left(A_{E}\right)+2 m$ that recognizes the same language.

- Then, we show that $123 \mapsto \square 123 \# 1 \square 23 \# 12 \square 3 \# 123 \square: \Sigma^{*} \rightarrow \Gamma^{*}$ where $\Gamma=\Sigma \cup\{\square, \#\}$ (a typical polyregular function) is defined by split: $\operatorname{Str}_{\Sigma}\left[\operatorname{Str}_{\Gamma}\left[\operatorname{Str}_{\Gamma}\right] \rightarrow\left(\operatorname{Str}_{\Gamma} \rightarrow \operatorname{Str}_{\Gamma}\right) \rightarrow \operatorname{Str}_{\Gamma}\right] \rightarrow \operatorname{Str}_{\Gamma}:$

$$
\begin{gathered}
\text { split }=\lambda s . s v_{c_{1}}^{\prime} \ldots v_{c_{|\Sigma|}}^{\prime}\left(\lambda x f . \operatorname{conc}_{3}(f \overline{\#})(\operatorname{copy} x) \bar{\square}\right) \bar{\varepsilon}(\lambda y \cdot \bar{\varepsilon}) \\
v_{c}^{\prime}=\lambda k x f . k(\operatorname{conc} x \bar{c})\left(\lambda y . \operatorname{conc}_{4}(f(\operatorname{conc} \bar{c} y))(\operatorname{copy} x) \overline{\square c} y\right)
\end{gathered}
$$

Thanks to our use of $\operatorname{Str}_{\Gamma}\left[\operatorname{Str}_{\Gamma}\right]$ and copy, this λ-term is safe.

- Finally, the term that we want is λs. exists $t_{E \square F}$ (split s) (here we use exists from Lemma 9).

References

[BO09] William Blum and C.-H. Luke Ong. The Safe Lambda Calculus. Logical Methods in Computer Science, 5(1), February 2009.
[Sch16] Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Transactions on Computation Theory, 8(1):3:1-3:36, 2016.

