
The safe λ-calculus is a fragment of the simply typed λ-calculus introduced
in [BO09], motivated by the theory of higher-order recursion schemes. It has
some interesting properties, e.g. there is a normalization procedure that never
needs to perform any α-renaming (i.e. uses capture-permitting substitution).

Determining the precise complexity of deciding whether two safe λ-terms
are βη-convertible has been an open problem until now (to my knowledge).
In [BO09, §3], a PSpace-hardness result is established. This is far below the
non-elementary lower bound for simply typed βη-convertibility due to Statman,
but it is argued that both Statman’s proof and its simplification by Mairson
fundamentally require unsafe terms. To quote [BO09], this “does not rule out
the possibility that another non-elementary problem is encodable in the safe
lambda calculus”.

We provide such an encoding here: by reduction from the star-free expression
equivalence problem, we show that safe βη-convertibility is Tower-complete in
the sense of [Sch16]. (We only provide a proof of Tower-hardness, membership
holds because it works for STLC already. [TODO: actually this proves that βη
in STLC is Tower-c which is not explicitly written anywhere in the published
literature])

First, let us recall the definitions of our objects of interest:

Definition 1 (slight simplification of [BO09]). As usual, the order of a simple
type is the nesting depth of function arrows to the left:

ord(o) = 0 ord(A → B) = max(ord(A) + 1, ord(B))

The typing rules of the safe λ-calculus are

x : A ` x : A

Θ ` t : A

Θ′ ` t : A
(Θ ⊂ Θ′)

Θ ` t : A1 → . . . → An → B Θ ` u1 : A1 . . . Θ ` un : An

Θ ` t u1 . . . un : B
when ord(B) ≤ inf

(y:C)∈Θ
ord(C)

Θ, x1 : A1, . . . , xn : An ` t : B

Θ ` λx1. . . . λxn. t : A1 → · · · → An → B
when ord(A1 → · · · → An → B) ≤ inf

(y:C)∈Θ
ord(C)

with the usual convention inf(∅) = +∞.

Definition 2. Star-free expressions are regular expressions without the Kleene
star, but with complementation:

E,F ::= ∅ | ε | c | E ∪ F | E · F | Ec

(for c in an alphabet Σ). The star-free equivalence problem consists in deciding
whether two star-free expressions denote the same language (subset of Σ∗).

Definition 3 (classical). The types StrΣ = (o → o) → · · · → (o → o) → o → o
(with |Σ| occurrences of (o → o)) and Bool = o → o → o are the so-called
Church encodings of strings and booleans. In the case of a unary alphabet, we
set Nat = Str{c} = (o → o) → o → o: it is the type of Church numerals.

1

The Church encoding of a word w = w1 . . . wn over an ordered alphabet
Σ = {c1, . . . , cn} is w = λfc1 λfcn . λx. fw[1] (. . . (fw[n] x)) : StrΣ. The
Church encoding of n ∈ N is n = c . . . c : Nat with n times c.

Note that Bool only has two closed β-normal inhabitants, true = λxy. x
and false = λxy. y. We will want to prove the following:

Theorem 4. Given a safe λ-term t, it is Tower-hard to decide whether t =βη

true.

This will proceed by reduction from star-free equivalence, which was given
in [Sch16, §3.1] as an example of a Tower-complete problem. Any elementary
complexity reduction will do, in fact we will even have a polynomial time re-
duction (or exponential time if we insist on writing out the full type derivation
for the term we build).

First, note that star-free equivalence reduces to star-free emptiness: given
two expressions E and F , the language denoted by (Ec ∪ F)c ∪ (E ∪ F c)c is
empty if and only if E and F are equivalent. This new problem can be solved
by a kind of bounded search:

Lemma 5 (classical). Suppose that the expression E of size n denotes a non-
empty language. This language then contains a word of length at most tower(n).

(Recall that tower(n+ 1) = 2tower(n).)

Proof sketch. We translate E to an equivalent nondeterministic finite automa-
ton (NFA), whose number of states bounds the length of a shortest word (indeed
such a word has an accepting run that visits each state at most once). This can
be done by induction of E, using any standard construction on NFA for union
and concatenation; the costliest operation is complementation, for which we use
determinization, inducing a single exponential state blowup.

Remark 6. If we wanted to inductively build deterministic finite automata,
then the exponential blowup would occur on the treatment of concatenation. In
fact it is a well-understood phenomenon that the source of complexity lies in the
alternations of concatenation and complementation (cf. dot-depth / Straubing-
Thérien hierarchy).

Thus, we only have to test E against all inputs of length at most tower(n).
We do so using the following lemmas (notation: A[B] = A[B/o]; note that any
t : A can be typecast to a term of type A[B]):

Lemma 7 (see [BO09, Remark 2.5(iii)]). One can build a safe λ-term that is
βη-convertible to tower(n) : Nat in polynomial time.

Lemma 8. For any finite alphabet Σ and # /∈ Σ, there exists a safe λ-term
enum : Nat[Aenum] → StrΣ∪{#} such that for any m ∈ N, enum m reduces to the
encoding of a #-separated list containing all words in Σ∗ of length at most m.

2

Lemma 9. There exists a simply typed λ-term exists : (StrΣ[α] → Bool) →
StrΣ∪{#}[Fexists(α)] → Bool, where α is a type variable, whose instantations
α = A are all safe and test whether some word (over Σ) in a given list of words
(encoded using the separator #) satisfies a given predicate.

Lemma 10. E can be turned in polynomial time into an equivalent safe λ-term
tE : StrΣ[AE] → Bool.

We conclude by composing the four terms built in the above lemmas and
not : Bool → Bool; this is allowed because safe terms of type A[T] → B and
B[U] → C can be composed into a safe term of type A[T [U]] → C whenever
ord(B) ≤ ord(A[T]).

Proof of Lemma 8. Let Σ = {c1, . . . , c|Σ|}. Take Aenum = StrΣ → StrΣ and

enum = λx. x (λf. λs. conc|Σ|+1 (f #) (f (conc c1 s)) . . . (f (conc c|Σ| s))) (λy. y) #

where conck : Str → · · · → Str → Str is the concatenation of k strings, which
is safely λ-definable according to [BO09, Theorem 2.8], and conc = conc2.

Proof of Lemma 9. Let Σ = {c1, . . . , c|Σ|}. Take Fexists(α) = StrΣ[α] → Bool

and exists = λp. λs. s u1 . . . u|Σ| v p ε where

ui = λf. λx. f (conc x ci) u# = λf. λx. or (p x) (f ε)

where or : Bool → Bool → Bool can be safely defined following the recipe
of [BO09, Remark 2.5(ii)]. (Explanation of this code: the accumulator of the
“right fold” contains a function that takes the maximal #-free factor strictly
before the current position, and tells you whether all blocks up to a certain
point satisfy the predicate p.) Note that all instantiations α = A of this term
are safe.

Proof of Lemma 10. By induction on the expression.

• We take A∅ = o and t∅ = λs. false : StrΣ → Bool.

• In the unsafe λ-calculus, testing for the empty word could be done with
type StrΣ → Bool, but here this is not possible anymore as discussed
in [BO09, §2]. We use instead Aε = Bool and

tε = λs. s (λx. false) . . . (λx. false) true

• To test whether the word contains a single letter, say, the first one in the
alphabet Σ (call it c1), we use Ac1 = Bool → Bool → Bool and

tc1 = λs. s (λfxy. f true (and (not x) y)) t′ . . . t′ and false true

where t′ = λfxy. f x false, and and is defined from or and not.

• Complementation is implemented by post-composing with not.

3

• To handle a union, we take AE∪F = Str[AE] → Str[AF] → Bool and

tE∪F = λs. s (λfxy. f (conc c1 x) (conc c1 y)) . . . (λxy. or (tE x) (tF y)) ε ε

Observe that tE and tF appear only once; otherwise, our construction
would not run in polynomial time.

• The remaining case, concatenation, is the most delicate:

– First, we introduce a new symbol □ /∈ Σ and build a term of type
StrΣ∪{□}[StrΣ[AE] → (StrΣ[AF] → Bool) → Bool] → Bool that
distinguishes, among the words of Σ∗□Σ∗, those that belong to E□F
(we do not care what it computes on the rest of (Σ ∪ {□})∗):

tE□F = λs. s vc1 . . . vc|Σ| v□ (λxf. f ε) ε (λy. false)

where
vc = λkxf. k (conc x c) (λy. f (conc c y))

v□ = λkxf. k ε (λy. and (tE x) (tF y)︸ ︷︷ ︸)
Note that the underbraced subterm has type StrΣ[AF] → Bool and
contains a free variable of type StrΣ[AE]. The safety condition tells
us that we need to have ord(AE) ≥ ord(AF)+1. We can always make
sure that we are in such a situation: by composing tE m times with
a safe λ-term copy : StrΣ[StrΣ] → StrΣ which realizes the identity
function on Σ∗ (its existence is left to the reader…) we can get a
term t

(m)
E : StrΣ[A

(m)
E] → Bool with ord(A

(m)
E) = ord(AE)+2m that

recognizes the same language.
– Then, we show that 123 7→ □123#1□23#12□3#123□ : Σ∗ → Γ∗

where Γ = Σ ∪ {□,#} (a typical polyregular function) is defined by
split : StrΣ[StrΓ[StrΓ] → (StrΓ → StrΓ) → StrΓ] → StrΓ:

split = λs. s v′c1 . . . v′c|Σ|
(λxf. conc3 (f #) (copy x) □) ε (λy. ε)

v′c = λkxf. k (conc x c) (λy. conc4 (f (conc c y)) (copy x) □c y)

Thanks to our use of StrΓ[StrΓ] and copy, this λ-term is safe.
– Finally, the term that we want is λs. exists tE□F (split s) (here

we use exists from Lemma 9).

References
[BO09] William Blum and C.-H. Luke Ong. The Safe Lambda Calculus. Logical

Methods in Computer Science, 5(1), February 2009.

[Sch16] Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM
Transactions on Computation Theory, 8(1):3:1–3:36, 2016.

4

