
Counting Monads on Lists
Dylan McDermott, Maciej Piróg, Tarmo Uustalu

CLA 2023

Combinatorial approach to category theory

(monads in particular)

The infamous definition:

A monad is a monoid in the category of endofunctors

Problem: Given an endofunctor , what monoid structures are there?

Motivation: e.g., composition of monads

This talk

� We focus on the list endofunctor on Set.

� Work in progress. Some known results, some new results, some
directions to go from here.

� The main new result:

How many list monads are there?

Lists (finite sequences)

� LA – set of all lists with elements coming from the set A

� [x1, . . . , xn] – constructing lists by enumerating elements

� xs ++ ys – concatenating lists (e.g., [1,2] ++ [3,4,5] = [1,2,3,4,5])

� xs ∈ LA, xss ∈ L(LA), xsss ∈ L(L(LA)) – naming convention for lists

� Lf ([x1, . . . , xn] = [f (x1), . . . , f (xn)] – “map”

Monads on lists

Two families of functions indexed by sets: ηA : A→ LA and µA : L(LA)→ LA

ASSOC µA ◦ LµA = µA ◦ µLA : L(L(LA))→ LA

L-UNIT µA ◦ ηLA = id : LA→ LA

R-UNIT µA ◦ LηA = id : LA→ LA

η-NATURAL ηB ◦ f = Lf ◦ ηA : A→ LB for all f : A→ B

µ-NATURAL µB ◦ L(Lf) = Lf ◦ µA : L(LA)→ LB for all f : A→ B

“The” list monad

η(x) = [x]

µ([xs, . . . , zs]) = xs ++ · · ·++ zs

E.g., ASSOC :

µ(µ([[[1], [2,3]], [[4], [], [5,6]]])) = µ([[1], [2,3], [], [4], [5,6]]) = [1,2,3,4,5,6]

µ(Lµ([[[1], [2,3]], [[4], [], [5,6]]])) = µ([[1,2,3], [4,5,6]) = [1,2,3,4,5,6]

But... did I just say families indexed by sets...?!?

The naturality rules η-NATURAL and µ-NATURAL give us that to define
a list monad it is enough to define ηN and µN.

Intuitively: η and µ cannot “look” at what the particular element is.

Are there other monads on lists?

The “global error” monad

η(x) = [x]

µ([xs1, . . . , xsn]) = [] if xsk empty for any k

µ([xs1, . . . , xsn]) = xs1 ++ · · ·++ xsn otherwise

(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

The “mini” monad

η(x) = [x]

µ([xs]) = xs

µ([[x], . . . , [z]]) = [x , . . . , z]

µ(xs) = [] otherwise

(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

The “maze walk” monad

η(x) = [x]

µ([xs1, . . . , xsn]) = [] if xsk empty for any k

µ([xs1, . . . , xsn]) = p(xs1) ++ · · ·++ p(xsn−1) ++ xsn otherwise

where p([x1, . . . , xm]) = [x1, . . . , xm−1, xm , xm−1, . . . , x1]

(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

The “stutter” monad

For any natural number n, in Haskell:

join xss | null xss
= []
| any (not . isSingle) (init xss) || null (last xss)
= replicateLast (n + 1) (concat $

takeWhile isSingle (init xss))
| otherwise
= concat xss

(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

Previous results (PPDP 2020):

� There are infinitely many list monads

� They can have rather complicated definitions

� µ can discard, duplicate, and shuffle elements of lists

� Infinitely many list monads arise from finite equational theories

� Some list monads do not arise from any finite equational theory

How many exactly?

Are there other monads on lists?

Previous results (PPDP 2020):

� There are infinitely many list monads

� They can have rather complicated definitions

� µ can discard, duplicate, and shuffle elements of lists

� Infinitely many list monads arise from finite equational theories

� Some list monads do not arise from any finite equational theory

How many exactly?

How many list monads are there?

� There are at least ℵ0 list monads

� Every list monad is uniquely characterised by µN : L(LN) → LN and
ηN : N→ LN, so there are at most 2ℵ0 list monads.

So, can we construct an uncountable family of list monads?

CORE list monads

CORE = Concatenate OR Error

� η(x) = [x]

� µ([xs1, . . . , xsn]) is either empty or equal to xs1 ++ · · ·++xsn

This simplifies definition to specifying which lists of lists
are not mapped to the empty list.

Attempt 1: “Good” sets

Each monad is defined by a property that is preserved by concatenation of
an appropriate number of elements:

We call a set C ⊆ N good if 0 /∈ C, 1 ∈ C,

and for all k ∈ C and n1, . . . ,nk ∈ C it is the case that
∑k

i=1 ni ∈ C.

Examples:
{1}
{n | n is odd}
{1} ∪ {n,n + 1, . . .} for any n > 1

Attempt 1: “Good” sets

We call a set C ⊆ N good if 0 /∈ C, 1 ∈ C,

and for all k ∈ C and n1, . . . ,nk ∈ C it is the case that
∑k

i=1 ni ∈ C.

Theorem: Every good set C induces a monad with η(a) = [a] and

µ([xs]) = xs

µ([[x1], . . . , [xn]]) = [x1, . . . , xn]

µ([xs1, . . . , xsk]) = xs1 ++ · · ·++ xsk if k ∈ C and |xsi | ∈ C for all i = 1, . . . ,k

µ(xss) = [] otherwise

How many “good” sets are there?

We call a set C ⊆ N good if 0 /∈ C, 1 ∈ C,

and for all k ∈ C and n1, . . . ,nk ∈ C it is the case that
∑k

i=1 ni ∈ C.

Theorem: Let C− = {n − 1 | n ∈ C}. Then, C is good if and only if
C− is a numerical monoid, that is, 0 ∈ C− and for all k,n ∈ C− it is the

case that k + n ∈ C−.

It is a known fact that there are only ℵ0 numerical monoids.

Attempt 2: Uncountably many list monads

Let G be a subset of the set of odd natural numbers.

We define a monad with η(a) = [a] and

µ([xs]) = xs

µ([[x1], . . . , [xn]]) = [x1, . . . , xn]

µ([[x1, . . . , xn], [y]]) = [x1, . . . , xn ,y] if n ∈ G

µ(xss) = [] otherwise

Open questions and hypotheses

� Just knowing the cardinality of the set of list monads is
not enough. Is some form of classification/characterisation
theorem possible for (CORE) list monads?

� Hypothesis: There is no list monad with η(x) 6= [x]. (We
know there is such a monad on non-empty lists.)

Why is this difficult?

� Problem: Each list monad is an infinite object.

� Problem: Working with lists of lists of lists has high men-
tal complexity.

� Desired solution: employ some non-elementary tech-
niques.

Other functors

� Fact (PPDP’20): Every list monad induces a monad on
non-empty lists by the Id× - construction.

� Corollary: There are 2ℵ0 monads on non-empty lists.

� Hypothesis: We can freely adjoin “global error” to a non-
empty list monad to obtain a list monad – amazingly, this
construction seems to work exactly for monads that do not
discard elements.

� Hypothesis: The construction seems to extend to monads
on multisets.

