Counting Monads on Lists

Dylan McDermott, Maciej Piróg, Tarmo Uustalu

CLA 2023

Combinatorial approach to category theory (monads in particular)

The infamous definition:
A monad is a monoid in the category of endofunctors

Problem: Given an endofunctor, what monoid structures are there?

Motivation: e.g., composition of monads

This talk

- We focus on the list endofunctor on Set.
- Work in progress. Some known results, some new results, some directions to go from here.
- The main new result:

How many list monads are there?

Lists (finite sequences)

- $L A$ - set of all lists with elements coming from the set A
- $\left[x_{1}, \ldots, x_{n}\right]$ - constructing lists by enumerating elements

■ $x s++y s$ - concatenating lists (e.g., $[1,2]+[3,4,5]=[1,2,3,4,5])$
■ xs $\in L A, x \operatorname{ss} \in L(L A)$, xsss $\in L(L(L A))$ - naming convention for lists
■ $L f\left(\left[x_{1}, \ldots, x_{n}\right]=\left[f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right]\right.$ - "map"

Monads on lists

Two families of functions indexed by sets: $\boldsymbol{\eta}_{A}: A \rightarrow L A$ and $\mu_{A}: L(L A) \rightarrow L A$
$\mathrm{ASSOC} \quad \boldsymbol{\mu}_{A} \circ L \mu_{A}=\mu_{A} \circ \mu_{L A}: L(L(L A)) \rightarrow L A$
L-UNIT $\quad \mu_{A} \circ \eta_{L A}=\mathrm{id}: L A \rightarrow L A$
R-UNIT $\quad \mu_{A} \circ L \eta_{A}=\mathrm{id}: L A \rightarrow L A$
$\boldsymbol{\eta}$-NATURAL $\quad \boldsymbol{\eta}_{B} \circ f=L f \circ \boldsymbol{\eta}_{A}: A \rightarrow L B \quad$ for all $f: A \rightarrow B$
$\boldsymbol{\mu}$-NATURAL $\quad \boldsymbol{\mu}_{B} \circ L(L f)=L f \circ \boldsymbol{\mu}_{A}: L(L A) \rightarrow L B \quad$ for all $f: A \rightarrow B$

"The" list monad

$$
\begin{aligned}
\boldsymbol{\eta}(\boldsymbol{x}) & =[\boldsymbol{x}] \\
\mu([x s, \ldots, z s]) & =x s+\cdots+z s
\end{aligned}
$$

E.g., ASSOC :

$$
\begin{gathered}
\boldsymbol{\mu}(\boldsymbol{\mu}([[[1],[2,3]],[[4],[],[5,6]]]))=\boldsymbol{\mu}([[1],[2,3],[],[4],[5,6]])=[1,2,3,4,5,6] \\
\boldsymbol{\mu}(\boldsymbol{L} \boldsymbol{\mu}([[[1],[2,3]],[[4],[],[5,6]]]))=\boldsymbol{\mu}([[1,2,3],[4,5,6])=[1,2,3,4,5,6]
\end{gathered}
$$

But... did I just say families indexed by sets...?!?

The naturality rules $\boldsymbol{\eta}$-NATURAL and $\boldsymbol{\mu}$-NATURAL give us that to define a list monad it is enough to define $\boldsymbol{\eta}_{\mathbb{N}}$ and $\boldsymbol{\mu}_{\mathbb{N}}$.

Intuitively: $\boldsymbol{\eta}$ and $\boldsymbol{\mu}$ cannot "look" at what the particular element is.

Are there other monads on lists?

$$
\begin{aligned}
& \text { The "global error" monad } \\
& \boldsymbol{\eta}(x)=[x] \\
& \mu\left(\left[x s_{1}, \ldots, x s_{n}\right]\right)=[] \text { if } x s_{k} \text { empty for any } k \\
& \mu\left(\left[x s_{1}, \ldots, x s_{n}\right]\right)=x s_{1}+\cdots+x s_{n} \quad \text { otherwise }
\end{aligned}
$$

(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

$$
\begin{aligned}
& \text { The "mini" monad } \\
& \boldsymbol{\eta}(x)=[x] \\
& \mu([x s])=x s \\
& \mu([[x], \ldots,[z]])=[x, \ldots, z] \\
& \mu(x s)=[] \quad \text { otherwise }
\end{aligned}
$$

(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

The "maze walk" monad

$$
\begin{aligned}
\boldsymbol{\eta}(x) & =[x] \\
\mu\left(\left[x s_{1}, \ldots, x s_{n}\right]\right) & =[] \text { if } x s_{k} \text { empty for any } k \\
\mu\left(\left[x s_{1}, \ldots, x s_{n}\right]\right) & =p\left(x s_{1}\right)+\cdots+p\left(x s_{n-1}\right)+x s_{n} \quad \text { otherwise }
\end{aligned}
$$

where $p\left(\left[x_{1}, \ldots, x_{m}\right]\right)=\left[x_{1}, \ldots, x_{m-1}, x_{m}, x_{m-1}, \ldots, x_{1}\right]$
(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

The "stutter" monad

For any natural number n, in Haskell:

```
join xss | null xss
    = []
    | any (not . isSingle) (init xss) || null (last xss)
    = replicateLast (n + 1) (concat $
    takeWhile isSingle (init xss))
    | otherwise
    = concat xss
```

(see our PPDP 2020 paper or the exotic-list-monads Haskell library)

Are there other monads on lists?

Previous results (PPDP 2020):

- There are infinitely many list monads
- They can have rather complicated definitions
- $\boldsymbol{\mu}$ can discard, duplicate, and shuffle elements of lists
- Infinitely many list monads arise from finite equational theories
- Some list monads do not arise from any finite equational theory

Are there other monads on lists?

Previous results (PPDP 2020):

- There are infinitely many list monads
- They can have rather complicated definitions
- $\boldsymbol{\mu}$ can discard, duplicate, and shuffle elements of lists
- Infinitely many list monads arise from finite equational theories
- Some list monads do not arise from any finite equational theory

How many exactly?

How many list monads are there?

■ There are at least κ_{0} list monads
■ Every list monad is uniquely characterised by $\mu_{\mathbb{N}}: L(L \mathbb{N}) \rightarrow L \mathbb{N}$ and $\eta_{\mathbb{N}}: \mathbb{N} \rightarrow L \mathbb{N}$, so there are at most $2^{\aleph_{0}}$ list monads.

So, can we construct an uncountable family of list monads?

CORE list monads

$\underline{\text { CORE }}=\underline{\text { Concatenate }} \underline{\text { OR Error }}$

■ $\boldsymbol{\eta}(x)=[x]$
■ $\mu\left(\left[x s_{1}, \ldots, x s_{n}\right]\right)$ is either empty or equal to $x s_{1}+\cdots+x s_{n}$

This simplifies definition to specifying which lists of lists are not mapped to the empty list.

Attempt 1:"Good" sets

Each monad is defined by a property that is preserved by concatenation of an appropriate number of elements:

We call a set $C \subseteq \mathbb{N}$ good if $0 \notin C, 1 \in C$, and for all $k \in C$ and $n_{1}, \ldots, n_{k} \in C$ it is the case that $\sum_{i=1}^{k} n_{i} \in C$.

Examples:
\{1\}
$\{n \mid n$ is odd $\}$
$\{1\} \cup\{n, n+1, \ldots\}$ for any $n>1$

Attempt 1: "Good" sets

We call a set $C \subseteq \mathbb{N} \operatorname{good}$ if $0 \notin C, 1 \in C$, and for all $k \in C$ and $n_{1}, \ldots, n_{k} \in C$ it is the case that $\sum_{i=1}^{k} n_{i} \in C$.

Theorem: Every good set C induces a monad with $\eta(a)=[a]$ and

$$
\begin{aligned}
\boldsymbol{\mu}([x s]) & =x s & & \\
\mu\left(\left[\left[x_{1}\right], \ldots,\left[x_{n}\right]\right]\right) & =\left[x_{1}, \ldots, x_{n}\right] & & \\
\mu\left(\left[x s_{1}, \ldots, x s_{k}\right]\right) & =x s_{1}+\cdots+\cdots s_{k} & & \text { if } k \in C \text { and }\left|x s_{i}\right| \in C \text { for all } i=1, \ldots, k \\
\mu(x s s) & =[] & & \text { otherwise }
\end{aligned}
$$

How many "good" sets are there?

We call a set $C \subseteq \mathbb{N} \operatorname{good}$ if $0 \notin C, 1 \in C$,
and for all $k \in C$ and $n_{1}, \ldots, n_{k} \in C$ it is the case that $\sum_{i=1}^{k} n_{i} \in C$.

Theorem: Let $C^{-}=\{n-1 \mid n \in C\}$. Then, C is good if and only if C^{-}is a numerical monoid, that is, $0 \in C^{-}$and for all $k, n \in C^{-}$it is the case that $k+n \in C^{-}$.

It is a known fact that there are only \aleph_{0} numerical monoids.

Attempt 2: Uncountably many list monads

Let G be a subset of the set of odd natural numbers.
We define a monad with $\boldsymbol{\eta}(a)=[a]$ and

$$
\begin{aligned}
\boldsymbol{\mu}([x s]) & =x s \\
\mu\left(\left[\left[x_{1}\right], \ldots,\left[x_{n}\right]\right]\right) & =\left[x_{1}, \ldots, x_{n}\right] \\
\mu\left(\left[\left[x_{1}, \ldots, x_{n}\right],[y]\right]\right) & =\left[x_{1}, \ldots, x_{n}, y\right] \quad \text { if } n \in G \\
\mu(x s s) & =[] \quad \text { otherwise }
\end{aligned}
$$

Open questions and hypotheses

- Just knowing the cardinality of the set of list monads is not enough. Is some form of classification/characterisation theorem possible for (CORE) list monads?
- Hypothesis: There is no list monad with $\boldsymbol{\eta}(\boldsymbol{x}) \neq[\boldsymbol{x}]$. (We know there is such a monad on non-empty lists.)

Why is this difficult?

■ Problem: Each list monad is an infinite object.

- Problem: Working with lists of lists of lists has high mental complexity.
■ Desired solution: employ some non-elementary techniques.

Other functors

- Fact (PPDP'20): Every list monad induces a monad on non-empty lists by the Id \times - construction.
- Corollary: There are $2^{\aleph_{0}}$ monads on non-empty lists.
- Hypothesis: We can freely adjoin "global error" to a nonempty list monad to obtain a list monad - amazingly, this construction seems to work exactly for monads that do not discard elements.
- Hypothesis: The construction seems to extend to monads on multisets.

