Counting Monads on Lists

Dylan McDermott, Maciej Pirég, Tarmo Uustalu

CLA 2023

Combinatorial approach to category theory
(monads in particular)

The infamous definition:

A monad is a monoid in the category of endofunctors

Problem: Given an endofunctor , what monoid structures are there?

Motivation: e.g., composition of monads

This talk

B We focus on the list endofunctor on Set.

B Work in progress. Some known results, some new results, some
directions to go from here.

B The main new result:

How many list monads are there?

Lists (finite sequences)

B LA - set of all lists with elements coming from the set A
B [x,...,Xxy] - constructing lists by enumerating elements
B xs -+ ys - concatenating lists (e.g., [1,2] ++[3,4,5] =[1,2,3,4,5])
B xsc LA, xss e L(LA), xsss € L(L(LA)) — naming convention for lists

u Lf([xlv cee ,Xn] = [f(xl)a s 7f(xn)] - “map”

Monads on lists

Two families of functions indexed by sets: 1, : A — LA and pu, : L(LA) — LA

ASSOC pipoLjip = g0 ipa - L(L(LA)) — LA
L-UNIT ppomy=1id:LA— LA
R-UNIT jppolLny=1id:LA — LA
n-NATURAL ngof=Lfony:A—LB forallf:A— B
pu-NATURAL pgoL(Lf)=Lfop,: L(LA)—LB forallf:A— B

“The” list monad

n(x) = [x]
p([xs,...,zs|) =xs+ -+ zs
E.g., ASSOC :

u(u([[[lh[273]]7[[4]7[]7[5]H))= p([[1),[2,3], 1], (4], [5,6]]) = [1,2,3,4,5,6]
=p([[1,2,3],[4,5,6]) =[1,2,3,4,5, 6]

But... did I just say families indexed by sets...?!?

The naturality rules n-NATURAL and p-NATURAL give us that to define
a list monad it is enough to define 7y and py.

Intuitively: n and p cannot “look” at what the particular element is.

Are there other monads on lists?

The “global error” monad

]
| if xs; empty for any k

n(x)
p([xs1,...,xsn))
w([xsy,...,xsn])

[x
[

XSy +H - +H xsp, otherwise

(see our PPDP 2020 paper or the exotic-1ist-monads Haskell library)

Are there other monads on lists?

The “mini” monad

n(x) =]
ullxs]) = xs
p(llxd, -2 =[x, 2]
p(xs) =[] otherwise

(see our PPDP 2020 paper or the exotic-1list-monads Haskell library)

Are there other monads on lists?

The “maze walk” monad

n(x) = [x]
p([xsy,...,xsn]) =[] if xs) empty for any k
p([xs1,...,Xxsn]) = p(xs1) + -+ -+ p(xsp—1) + xsp otherwise
where p([xlv 7xm]) = [xlv"'vxm—laxm)xm—la ,Xl]

(see our PPDP 2020 paper or the exotic-1list-monads Haskell library)

join xss

Are there other monads on lists?

The “stutter” monad

For any natural number n, in Haskell:

null xss
[]
any (not . 1isSingle) (init xss) || null (last xss)
replicatelast (n + 1) (concat $

takeWhile isSingle (init xss))
otherwise

concat xss

(see our PPDP 2020 paper or the exotic-1list-monads Haskell library)

Are there other monads on lists?

Previous results (PPDP 2020):

There are infinitely many list monads

They can have rather complicated definitions

p can discard, duplicate, and shuffle elements of lists

Infinitely many list monads arise from finite equational theories

Some list monads do not arise from any finite equational theory

Are there other monads on lists?

Previous results (PPDP 2020):

There are infinitely many list monads

They can have rather complicated definitions

p can discard, duplicate, and shuffle elements of lists

Infinitely many list monads arise from finite equational theories

Some list monads do not arise from any finite equational theory

How many exactly?

How many list monads are there?

B There are at least Ny list monads

B Every list monad is uniquely characterised by py : L(LN) — LN and
Ny : N — LN, so there are at most 2% list monads.

So, can we construct an uncountable family of list monads?

CORE list monads

CORE = Concatenate OR Error

B 7(x) = [x]

B u([xsy,...,xsy)) is either empty or equal to xs; +- - - H xs,,

This simplifies definition to specifying which lists of lists
are not mapped to the empty list.

Attempt 1: “Good” sets

Each monad is defined by a property that is preserved by concatenation of
an appropriate number of elements:

We calla set CC N good if0¢ C, 1 € C,
and forallk € Cand ny,...,n € C it is the case thatzzczlni eC.

Examples:

{n

{n| nis odd}
{1}u{n,n+1,...} forany n > 1

Attempt 1: “Good” sets

We calla set CC N good if0¢ C, 1 € C,
and forallk € Cand n,,...,n € C it is the case thatz:i.‘:1 n; € C.

Theorem: Every good set C induces a monad with n(a) = [a] and

=[x1,...,Xn]

p(xss) =[] otherwise

How many “good” sets are there?

We calla set CC N good if0¢ C, 1€ C,
and forallk € Cand ny,...,n. € C it is the case thatZLlni eC.

Theorem: Let C~ = {n— 1 | n € C}. Then, C is good if and only if
C~ is a numerical monoid, that is, 0 € C~ and for all k,n € C™ it is the
casethat k+ne C™.

It is a known fact that there are only Yo numerical monoids.

Attempt 2: Uncountably many list monads

Let G be a subset of the set of odd natural numbers.

We define a monad with n(a) = [a] and

[x1,..
=[x,...,xp,y] ifneG
[

Open questions and hypotheses

B Just knowing the cardinality of the set of list monads is
not enough. Is some form of classification/characterisation
theorem possible for (CORE) list monads?

B Hypothesis: There is no list monad with n(x) # [x]. (We
know there is such a monad on non-empty lists.)

Why is this difficult?

B Problem: Each list monad is an infinite object.

B Problem: Working with lists of lists of lists has high men-
tal complexity.

B Desired solution: employ some non-elementary tech-
niques.

Other functors

B Fact (PPDP’20): Every list monad induces a monad on
non-empty lists by the Id x - construction.

B Corollary: There are 2% monads on non-empty lists.

B Hypothesis: We can freely adjoin “global error” to a non-
empty list monad to obtain a list monad - amazingly, this
construction seems to work exactly for monads that do not
discard elements.

B Hypothesis: The construction seems to extend to monads
on multisets.

