
Counting Monads on Lists

Dylan McDermott, Reykjav́ık University
Maciej Piróg, Standard Chartered

Tarmo Uustalu, Reykjav́ık University and Tallinn University of Technology

1 Introduction

Monads are one of the fundamental concepts in category theory. They play an important role in
semantics of programming languages, process algebra, and the practice of programming. A monad
can be concisely defined as an endofunctor equipped with a structure of a monoid in the category
of endofunctors and natural transformations. (We unpack these notions into our concrete setting of
lists on the category Set of sets and functions in Section 2.) One rarely studied aspect of monads
are combinatorial questions, such as: given an endofunctor, how many such monoid structures are
there and what do they look like?

While we are not aware of many general combinatorial approaches to category theory (in
Set or generally), some results on possible monad structures on given endofunctors have already
seen applications, mostly in the study of composition of monads [1, 4], which is important in
understanding how computational effects compose in programming languages. Other examples
include work on the relationship of monads and graded monads [2], and explorations of equational
presentation of monads [3].

In this note, we focus on the endofunctor of lists (that is, finite sequences) on the category Set.
The most standard example of a monad on lists is formed by singleton as the unit and concate-
nation as the multiplication. It is used in programming and semantics to model nondeterministic
computations – and is usually referred to as the list monad. However, as we show in a previous
work [2], it is only one of infinitely many ways to turn the list endofunctor into a monad. Moreover,
the picture is quite diverse: there are infinitely many list monads that are generated by a finite
equational theory on a binary an nullary operation, as well as list monads that are not generated
by any finite equational theory; there are monads that discard, duplicate, and shuffle the elements.
Here, we settle the question of the size of the set of list monads: we prove that the set of list monads
on Set has the cardinality of the continuum.

2 List Monads on Set

Given a set A, we define LA to be the set of all finite, possibly empty sequences (lists) of elements
coming from A. We write [x1, . . . , xn] to enumerate the elements of a list. As a convention, for a
fixed set A, we use xs, ys, etc. as variables standing for lists of type LA, and xss for L(LA). We
use ++ as concatenation of elements, that is [x1, . . . , xn] ++ [y1, . . . , yk] = [x1, . . . , xn, y1, . . . , yk].
For a function f : A→ B, we define Lf : LA→ LB to be Lf([a1, . . . , ak]) = [f(a1), . . . , f(ak)].

The direct instantiation of the definition of a monad on lists on Set (the category of sets and
functions) can be expressed in terms of two families of functions indexed by sets: ηA : A → LA
(the unit) and µA : L(LA)→ LA (the multiplication) subject to:

• Lf(ηA(a)) = ηB(f(a)), for all a ∈ A and f : A→ B,

• Lf(µA(xss)) = µB(L(Lf)(xss)), for all xss ∈ L(LA) and f : A→ B,

• µA(LηA(xs)) = xs = µA(ηLA(xs)), for all xs ∈ LA,

• µA(µLA(xss)) = µA(LµA(xss)), for all xss ∈ L(LA).

1

The first two laws say that η and µ are natural transformations – their actions do not depend
on the concrete values of the elements of the lists. From this, we can derive a more compact
characterisation: every list monad is uniquely determined by η1 (where 1 is a singleton set) and µN
with the domain restricted to lists [xs, . . . , zs] such that xs ++ · · ·++ zs = [0, 1, . . . , k] for some k,
and for all elements x of µN([xs, . . . , zs]), x is an element of xs ++ · · ·++ zs, as long as these two
functions satisfy the last two laws.

The last two laws are the properties of a monoid in the category of endofunctors. The former
says that η is a neutral element of µ on both sides, that is, both when applied to each individual
element and to the entire list. The latter is the associativity: if we go from L(L(LA)) to LA, it
doesn’t matter if we first multiply the inner or outer two layers. For example, the usual list monad
is defined by η(a) = [a] and µ([xs, . . . , zs]) = xs ++ · · ·++ zs.

The characterisation above means that the number of possible units is at most ℵ0, and there
are no more than |(LN)L(LN)| = 2ℵ0 possible multiplications. In Section 4, we show a construction
of a family of list monads injectively indexed by subsets of the set of odd natural numbers, and so
of the cardinality 2ℵ0 .

3 Warmup: Numerical Monoids

Each list monad is an infinite object, as µN needs to be defined on an infinite domain. Moreover,
there exist monads with multiplications that discard, shuffle, and duplicate elements [2]. So, to curb
this complexity, in this note we narrow our focus to monads for which η(a) = [a], while µ([xs, . . . , zs])
equals either xs ++ · · ·++ zs or [] (the empty list). Thus, the multiplication is determined by a set
of finite sequences of natural numbers that represent the lengths of the elements of lists for which µ
is concatenation. We say that such sequences are accepted by µ. It remains to establish which sets
of accepted sequences induce a monad.

We start with a simple example, which leads only to a countable family of monads, but which,
we believe, provides useful intuitions about our setting. This candidate can be obtained by choosing
a property of non-empty lists that is preserved by concatenation if all the inner lists and the outer
list all satisfy the property, and “defaulting” to the empty list the moment we encounter a list that
does not satisfy the property. In our setting, the preservation by multiplication becomes a form of
closure under addition:

We call a set C ⊆ N good if 0 /∈ C, 1 ∈ C, and for all k ∈ C and n1, . . . , nk ∈ C it is the case
that

∑k
i=1 ni ∈ C. Examples of good sets include the singleton set {1}, the set {n | n is odd} (since

1 is odd and the sum of odd number of odd numbers is odd) and {1} ∪ {n, n+ 1, . . .} for any n > 1.
Every good set C induces a monad with η(a) = [a] and

µ([xs]) = xs

µ([[x1], . . . , [xn]]) = [x1, . . . , xn]

µ([xs1, . . . , xsk]) = xs1 ++ · · ·++ xsk if k ∈ C and |xsi| ∈ C for all i = 1, . . . , k

µ(xss) = [] otherwise

Clearly, different good sets induce different monads, but how many good sets are there? By C−

we denote the set {n − 1 | n ∈ C}. It turns out that C is good if and only if C− is a numerical
monoid, that is, 0 ∈ C− and for all k, n ∈ C− it is the case that k+ n ∈ C−. Moreover, it is known
that every numerical monoid has a finite set of generators.1 This means that there are exactly as
many numerical monoids as finite sets of natural numbers (that is, ℵ0), and so the set of monads
induced by good sets as above is also of the cardinality ℵ0.

4 An Uncountable Family of List Monads

The construction above gives us only countably many monads, because it is in a sense too dense:
the associativity of µ forces too many inputs to be accepted. To obtain uncountably many list

1This fact is often expressed as an exercise in basic computational complexity: the Kleene closure of any set of
words over a unary alphabet is regular.

2

monads, we need less interaction between inputs. We obtain this by proposing a multiplication
whose results never correspond to accepted sequences, whatever their inner lists might be.

Let G be a subset of the set of odd natural numbers. We define a monad with η(a) = [a] and

µ([xs]) = xs (R1)

µ([[x1], . . . , [xn]]) = [x1, . . . , xn] (R2)

µ([[x1, . . . , xn], [y]]) = [x1, . . . , xn, y] if n ∈ G (R3)

µ(xss) = [] otherwise (R4)

This means that the set of accepted inputs include the trivial singleton and all-singleton lists,
together with lists of the shape xs = [[x1, . . . , xn], [y]] for n ∈ G. Since G contains only odd numbers,
the result of µ([[xs1, . . . , xsn], [ys]]), that is [xs1, . . . , xsn, ys] is not accepted. This is of course just
a rough idea, the full proof that this is indeed a monad requires some more detailed case analysis
to deal with the singleton cases.

Different sets G induce different monads, and since we put no further constraints on G, there
are as many such monads as subsets of the set of odd natural numbers, that is, 2ℵ0 .

5 Discussion

Knowing just the cardinality of the set of list monads is not entirely satisfactory. One future
direction would be to explore the structure of this set: is being a list monad a random property,
or is a form of classification theorem possible? In our concatenate-or-empty setting, one can start
with any set of inputs, and form a valid monad by taking the closure of this set by adding lists that
need to be accepted because of the associativity of µ (such a closure always exists, because the set
of all positive natural numbers is good). Then, one measure of the randomness of the structure of
the set of all list monads would be decidability, e.g., if a given input is in the smallest closure of the
given finite initial set.

It is also possible to find some classes of non-examples. For instance, we hypothesise (based on
extensive computer search) that there are no list monads with units other than η(a) = [a].

References

[1] Bartek Klin and Julian Salamanca. Iterated covariant powerset is not a monad. In MFPS, 2018.
DOI 10.1016/j.entcs.2018.11.013.

[2] Dylan McDermott, Maciej Piróg, and Tarmo Uustalu. Degrading lists. In PPDP, 2020.
DOI 10.1145/3414080.3414084.

[3] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Equational theories and monads from
polynomial Cayley representations. In FOSSACS, 2019. DOI 10.1007/978-3-030-17127-8 26.

[4] Maaike Zwart and Dan Marsden. No-go theorems for distributive laws. In LICS, 2019.
DOI 10.5555/3470152.3470189.

A Proofs

In the following, we consider the candidate for a monad defined by η(a) = [a] and µ defined by
the rules (R1)–(R4) for a set G ⊆ P{n | n odd, n ≥ 3}. We begin with the following three trivial
lemmas, for which we skip the proofs:

Lemma 1. For xss such that |xss| ≥ 3, if at least one of the elements of xss is not a singleton,
then µ(xss) = [].

Lemma 2. For all xss, it is the case that |µ(xss)| is odd only if one of the following holds:

1. xss is all-singleton, i.e., xss = [[x1], . . . , [xn]] for an odd n,

3

https://doi.org/10.1016/j.entcs.2018.11.013
https://doi.org/10.1145/3414080.3414084
https://doi.org/10.1007/978-3-030-17127-8_26
https://doi.org/10.5555/3470152.3470189

2. xss is a singleton, i.e., xss = [[x1, . . . , xn]] for an odd n.

Lemma 3. For all xss, µ(xss) = [x] if and only if xss = [[x]].

Theorem 4. The natural transformations η and µ defined as above form a list monad.

Proof. The unit laws hold trivially due to rules (R1) and (R2). For the associativity, we consider
a list of lists of lists xsss. We need to show that µ(µ(xsss)) = µ(Lµ(xsss)). We proceed by case
analysis of the rule that can be used to calculate µ(xsss).

• Case (R1). In this case, xsss = [xss] for some xss. We assume that µ(xss) = xs for some xs.
This means that:

µ(µ([xss])) = µ(xss) = xs ((R1), assumption)

while:
µ(Lµ([xss])) = µ([xs]) = xs (assumption, (R1))

• Case (R2). In this case, xsss = [[xs1], . . . , [xsn]] for some xs1, . . . , xsn. We assume that
µ([xs1, . . . , xsn]) = xs for some xs. This means that:

µ(µ([[xs1], . . . , [xsn]])) = µ([xs1, . . . , xsn]) = xs ((R2), assumption)

while:
µ(Lµ([[xs1], . . . , [xsn]]) = µ([xs1, . . . , xsn]) = xs ((R1), assumption)

• Case (R3). In this case, xsss = [[xs1, . . . , xsn], [ys]] for some n ∈ G. We consider three cases,
depending on whether the inner-most lists are singletons:

– Subcase: xs1, . . . , xsn, ys are all singletons. This means that xsss = [[[x1], . . . , [xn]], [[y]]]
for some x1, . . . , xn, and y. This gives us:

µ(µ([[[x1], . . . , [xn]], [[y]]])) = µ([[x1], . . . , [xn], [y]]) = [x1, . . . , xn, y] ((R3), (R2))

while:

µ(Lµ([[[x1], . . . , [xn]], [[y]]])) = µ([[x1, . . . , xn], [y]]) = [x1, . . . , xn, y] ((R2), (R3))

– Subcase: There is a non-singleton list among xs1, . . . , xsn. This means that:

µ(µ([[xs1, . . . , xsn], [ys]])) = µ([xs1, . . . , xsn, ys]) = [] ((R3), Lemma 1)

while:
µ(Lµ([[xs1, . . . , xsn], [ys]])) = µ([[], µ([ys])]) = [] (Lemma 1, (R4))

– Subcase: ys is not a singleton. This means that:

µ(µ([[xs1, . . . , xsn], [ys]])) = µ([xs1, . . . , xsn, ys]) = [] ((R3), Lemma 1)

while:

µ(Lµ([[xs1, . . . , xsn], [ys]])) = µ([µ([xs1, . . . , xsn]), ys]) = [] ((R1), (R4))

• Case (R4). In this case, µ(xsss) = []. We proceed by case analysis of the rule used to calculate
the outer µ in µ(Lµ(xsss)):

– Subcase (R1). In this case, Lµ(xsss) = [xss] for some xss , which means that µ(xsss) is a
singleton. This contradicts µ(xsss) = [], therefore this subcase cannot happen.

– Subcase (R2). In this case, Lµ(xsss) = [[x1], . . . , [xn]] for some n. Using Lemma 3, it
follows that xsss = [[[x1]], . . . , [[xn]]], but µ([[[x1]], . . . , [[xn]]]) = [[x1], . . . , [xn]] by (R2).
This contradicts µ(xsss) = [], therefore this subcase cannot happen.

4

– Subcase (R3). In this case, Lµ(xsss) = [[x1, . . . , xn], [y]] for some n ∈ G, and thus
xsss = [xss, yss] such that µ(xss) = [x1, . . . , xn] and µ(yss) = [y]. By Lemma 2,
xss = [[x1], . . . , [xn]] or xss = [[x1, . . . , xn]]. By Lemma 3, yss = [[y]]. We proceed by
case analysis of the two possible values of xss:

∗ Subsubcase: xss = [[x1], . . . , [xn]]. In this case, xsss = [[[x1], . . . , [xn]], [[y]]]. But
µ([[[x1], . . . , [xn]], [[y]]]) = [[x1], . . . , [xn], [y]] by (R3), which contradicts µ(xsss) = [].
Therefore, this subsubcase cannot happen.

∗ Subsubcase: xss = [[x1, . . . , xn]]. In this case, xsss = [[[x1, . . . , xn]], [[y]]]. But
µ([[[x1, . . . , xn]], [[y]]]) = [[x1, . . . , xn], [y]] by (R2), which contradicts µ(xsss) = [].
Therefore, this subsubcase cannot happen.

– Subcase (R4). We have:

µ(µ(xsss)) = µ([]) = [] (assumption of case, (R4))

while:
µ(Lµ(xsss)) = [] (assumption of subcase)

5

	Introduction
	List Monads on Set
	Warmup: Numerical Monoids
	An Uncountable Family of List Monads
	Discussion
	Proofs

