
Holonomic equations and e�cient random generation
of binary trees

Pierre Lescanne

École normale supérieure de Lyon
CLA 2023

January 2023

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 1 / 27



Holonomic equation

An holonomic recurrence is

Ps(n)Fn+s + Ps−1(n)Fn+s−1 + ... + P0(n)Fn = 0

where the Ps(n) are polynomials in n.

The paradigm is

(n + 1)Cn − 2(2n − 1)Cn−1 = 0

an equation for Catalan numbers known from Olinde

Rodrigues in 1838.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 2 / 27



Catalan, Motzkin, Schröder

Numbers

Catalan

(n + 1)Cn = 2(2n − 1)Cn−1

counts binary trees.

Motzkin

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

counts unary binary trees.

Schröder

3(2n − 1)Sn = (n + 1)Sn+1 + (n − 2)Sn−1

counts binary trees in which every nonnull right link

is colored either white or black.

Constructive proofs

Rémy

Dulucq and Penaud

Foata and Zeilberger

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 3 / 27



Catalan, Motzkin, Schröder

Numbers

Catalan

(n + 1)Cn = 2(2n − 1)Cn−1

counts binary trees.

Motzkin

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

counts unary binary trees.

Schröder

3(2n − 1)Sn = (n + 1)Sn+1 + (n − 2)Sn−1

counts binary trees in which every nonnull right link

is colored either white or black.

Constructive proofs

Rémy

Dulucq and Penaud

Foata and Zeilberger

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 3 / 27



Catalan, Motzkin, Schröder

Numbers

Catalan

(n + 1)Cn = 2(2n − 1)Cn−1

counts binary trees.

Motzkin

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

counts unary binary trees.

Schröder

3(2n − 1)Sn = (n + 1)Sn+1 + (n − 2)Sn−1

counts binary trees in which every nonnull right link

is colored either white or black.

Constructive proofs

Rémy

Dulucq and Penaud

Foata and Zeilberger

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 3 / 27



Catalan, Motzkin, Schröder

Numbers

Catalan

(n + 1)Cn = 2(2n − 1)Cn−1

counts binary trees.

Motzkin

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

counts unary binary trees.

Schröder

3(2n − 1)Sn = (n + 1)Sn+1 + (n − 2)Sn−1

counts binary trees in which every nonnull right link

is colored either white or black.

Constructive proofs

Rémy

Dulucq and Penaud

Foata and Zeilberger

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 3 / 27



Rémy's construction

1

13 0

15 3

16 14 2 5

9 7

11 6 8 4

12 10

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 4 / 27



Implementation in an array of size 2n + 1
1

13 0

15 3

16 14 2 5

9 7

11 17 8 4

12 10 18 6

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

values 1 13 0 2 5 9 7 8 4 11 17 12 10 15 3 16 14 18 6

Nodes are labeled by

odd numbers

Leaves are labeled by

even numbers

root is index 0

left child of node

labeled by 2n + 1 is

at index 2n + 1

right child of node

labeled by 2n + 1 is

at index 2n + 2.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 5 / 27



Implementation in an array of size 2n + 1
1

13 0

15 3

16 14 2 5

9 7

11 17 8 4

12 10 18 6

indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

values 1 13 0 2 5 9 7 8 4 11 17 12 10 15 3 16 14 18 6

Nodes are labeled by

odd numbers

Leaves are labeled by

even numbers

root is index 0

left child of node

labeled by 2n + 1 is

at index 2n + 1

right child of node

labeled by 2n + 1 is

at index 2n + 2.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 5 / 27



Two di�erences

Motzkin

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

In the construction, an oracle chooses between two possibilities.

Schröder

(n + 1)Sn+1 = 3(2n − 1)Sn − (n − 2)Sn−1

In the construction,

one builds a Schröder tree of size n + 1 from a tree of size n, or

one fails.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 6 / 27



Two di�erences

Motzkin

(n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2

In the construction, an oracle chooses between two possibilities.

Schröder

(n + 1)Sn+1 = 3(2n − 1)Sn − (n − 2)Sn−1

In the construction,

one builds a Schröder tree of size n + 1 from a tree of size n, or

one fails.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 6 / 27



Foata & Zeilberger construction for Schröder trees

The 11 Schröder trees with 4 leaves.
Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 7 / 27



Insertion of a leaf in a Schröder tree

⋆ ○

T

⋆ ○

T

○ ⋆
T

Three impossible insertions of leaves

⋆ ▲ ⋆
▲ ▲

▲ ⋆

a b c

Two unreachables

▲ ⋆ ▲ ⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 8 / 27



Insertion of a leaf in a Schröder tree

⋆ ○

T

⋆ ○

T

○ ⋆
T

Three impossible insertions of leaves

⋆ ▲ ⋆
▲ ▲

▲ ⋆

a b c

Two unreachables

▲ ⋆ ▲ ⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 8 / 27



Insertion of a leaf in a Schröder tree

⋆ ○

T

⋆ ○

T

○ ⋆
T

Three impossible insertions of leaves

⋆ ▲ ⋆
▲ ▲

▲ ⋆

a b c

Two unreachables

▲ ⋆ ▲ ⋆
Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 8 / 27



Foata-Zeilberger Isomophism (�rst case)

L1
⍟

⋆ ⍟

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 9 / 27



Foata-Zeilberger Isomophism (second case)

L2
⋆

▲ ▲ ⋆
▲ ▲

⋆ ▲ ▲
⋆

←
→ ↓↑

▲
⋆

⋆
▲ ▲

↘ ⋆
▲ ▲

▲ ⋆
▲

⋆
↓↑

▲
⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 10 / 27



Foata-Zeilberger Isomophism (third case)

R1
⍟

⍟ ⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 11 / 27



The data structure

Like for Rémy's algorithm, one uses an array of size 2n + 1.

To represent colors of the links, one adds a boolean component.

A Node is labeled by a pair of an odd number and a boolean.

A Leaf is labeled by a pair of an even number and a boolean.

The boolean says that the right link that starts from this node is white.

Therefore when one considers a triple (m, (k,b)) :

m is an index (for a right link),

(k ,b) is located at m in the array (k corresponds to a node).

If b ≡ True then m is even and k is odd.

In other words, triples with True are of the form (2p, (2q + 1,True)).

This must be checked when designing the algorithm.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 12 / 27



The data structure

Like for Rémy's algorithm, one uses an array of size 2n + 1.

To represent colors of the links, one adds a boolean component.

A Node is labeled by a pair of an odd number and a boolean.

A Leaf is labeled by a pair of an even number and a boolean.

The boolean says that the right link that starts from this node is white.

Therefore when one considers a triple (m, (k,b)) :

m is an index (for a right link),

(k ,b) is located at m in the array (k corresponds to a node).

If b ≡ True then m is even and k is odd.

In other words, triples with True are of the form (2p, (2q + 1,True)).

This must be checked when designing the algorithm.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 12 / 27



The data structure

Like for Rémy's algorithm, one uses an array of size 2n + 1.

To represent colors of the links, one adds a boolean component.

A Node is labeled by a pair of an odd number and a boolean.

A Leaf is labeled by a pair of an even number and a boolean.

The boolean says that the right link that starts from this node is white.

Therefore when one considers a triple (m, (k,b)) :

m is an index (for a right link),

(k ,b) is located at m in the array (k corresponds to a node).

If b ≡ True then m is even and k is odd.

In other words, triples with True are of the form (2p, (2q + 1,True)).

This must be checked when designing the algorithm.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 12 / 27



The algorithm (1)
6 cases L1, L2 (with 4 subcases), R1.

Draw a number x between 0 and 6n − 4.

L1 if x mod 3 ≡ 0

L2 if x mod 3 ≡ 1

R1 if x mod 3 ≡ 2.

Let us call k the number x ÷ 3.

Assume the kth is (h,b).

● L1 :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← v[k]
⍟

→ ⋆ ⍟

● L2 and h is odd :
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← (fst(v[k]),True)

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 13 / 27



The algorithm (1)
6 cases L1, L2 (with 4 subcases), R1.

Draw a number x between 0 and 6n − 4.

L1 if x mod 3 ≡ 0

L2 if x mod 3 ≡ 1

R1 if x mod 3 ≡ 2.

Let us call k the number x ÷ 3.

Assume the kth is (h,b).

● L1 :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← v[k]
⍟

→ ⋆ ⍟

● L2 and h is odd :
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← (fst(v[k]),True)

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 13 / 27



The algorithm (1)
6 cases L1, L2 (with 4 subcases), R1.

Draw a number x between 0 and 6n − 4.

L1 if x mod 3 ≡ 0

L2 if x mod 3 ≡ 1

R1 if x mod 3 ≡ 2.

Let us call k the number x ÷ 3.

Assume the kth is (h,b).

● L1 :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← v[k]
⍟

→ ⋆ ⍟

● L2 and h is odd :
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← (fst(v[k]),True)

⋆
▲ ▲ → ⋆

▲ ▲

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 13 / 27



The algorithm (1)
6 cases L1, L2 (with 4 subcases), R1.

Draw a number x between 0 and 6n − 4.

L1 if x mod 3 ≡ 0

L2 if x mod 3 ≡ 1

R1 if x mod 3 ≡ 2.

Let us call k the number x ÷ 3.

Assume the kth is (h,b).

● L1 :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← v[k]
⍟

→ ⋆ ⍟

● L2 and h is odd :
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← (fst(v[k]),True)

Check the constraint !

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 13 / 27



The algorithm (1)
6 cases L1, L2 (with 4 subcases), R1.

Draw a number x between 0 and 6n − 4.

L1 if x mod 3 ≡ 0

L2 if x mod 3 ≡ 1

R1 if x mod 3 ≡ 2.

Let us call k the number x ÷ 3.

Assume the kth is (h,b).

● L1 :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← v[k]
⍟

→ ⋆ ⍟

● L2 and h is odd :
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] ← (2n − 1,False)
v[2n − 1] ← (2n,False)

v[2n] ← (fst(v[k]),True)

⋆
▲ ▲ → ⋆

▲ ▲

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 13 / 27



The algorithm (2)

● L2 and h is even and k is odd and
the second component of v[k + 1] is False
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

v[k] ← v[k + 1]

v[k + 1] ← (2n − 1,True)
v[2n − 1] ← v[k]

v[2n] ← (2n,False)
⋆ ▲

→ ▲
⋆

←
→ ↓↑

▲
⋆

● L2 and h is even and k is odd and
the second component of v[k + 1] is True

Failure Retry

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 14 / 27



The algorithm (2)

● L2 and h is even and k is odd and
the second component of v[k + 1] is False
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

v[k] ← v[k + 1]

v[k + 1] ← (2n − 1,True)
v[2n − 1] ← v[k]

v[2n] ← (2n,False)

Check the constraint !

● L2 and h is even and k is odd and
the second component of v[k + 1] is True

Failure Retry

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 14 / 27



The algorithm (2)

● L2 and h is even and k is odd and
the second component of v[k + 1] is False
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

v[k] ← v[k + 1]

v[k + 1] ← (2n − 1,True)
v[2n − 1] ← v[k]

v[2n] ← (2n,False)
⋆ ▲

→ ▲
⋆

←
→ ↓↑

▲
⋆

● L2 and h is even and k is odd and
the second component of v[k + 1] is True

Failure Retry ⋆
▲ ▲

↘ ⋆
▲ ▲

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 14 / 27



The algorithm (2)

● L2 and h is even and k is odd and
the second component of v[k + 1] is False
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

v[k] ← v[k + 1]

v[k + 1] ← (2n − 1,True)
v[2n − 1] ← v[k]

v[2n] ← (2n,False)
⋆ ▲

→ ▲
⋆

←
→ ↓↑

▲
⋆

● L2 and h is even and k is odd and
the second component of v[k + 1] is True

Failure Retry ⋆
▲ ▲

↘ ⋆
▲ ▲

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 14 / 27



The algorithm (3)

● L2 and h is even and k is even

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] → (2n − 1,True)
v[2n − 1] → v[k]

v[2n] → (2n,False)
▲ ⋆ → ▲

⋆

↓↑
▲

⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 15 / 27



The algorithm (3)

● L2 and h is even and k is even

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] → (2n − 1,True)
v[2n − 1] → v[k]

v[2n] → (2n,False)

Check the constraint !

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 15 / 27



The algorithm (3)

● L2 and h is even and k is even

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] → (2n − 1,True)
v[2n − 1] → v[k]

v[2n] → (2n,False)
▲ ⋆ → ▲

⋆

↓↑
▲

⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 15 / 27



The algorithm (3)

● L2 and h is even and k is even

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] → (2n − 1,True)
v[2n − 1] → v[k]

v[2n] → (2n,False)
▲ ⋆ → ▲

⋆

↓↑
▲

⋆

● R1

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v[k] → (2n − 1,False)
v[2n − 1] → v[k]

v[2n] → (2n,False)

⍟ → ⍟ ⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 15 / 27



Complexity

The algorithm is quasi-linear.

Except for ⋆
▲ ▲

, all the cases require a computation in O(1) to

build a tree of size n from a tree of size n − 1.

In case ⋆
▲ ▲

, one fails and retries with probability less that 1
3 and

the total average complexity of building a tree of size n is in O(n).

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 16 / 27



Complexity

The algorithm is quasi-linear.

Except for ⋆
▲ ▲

, all the cases require a computation in O(1) to

build a tree of size n from a tree of size n − 1.

In case ⋆
▲ ▲

, one fails and retries with probability less that 1
3 and

the total average complexity of building a tree of size n is in O(n).

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 16 / 27



Benchmarks

size time ratio

1000 0.012s 0.024

5000 0.031s 0.0288

10000 0.064s 0.025

50000 0.200s 0.0269

100000 0.290s 0.02707

500000 1.295s 0.027762

1000000 3.065s 0.027883

5000000 15.183s 0.0276378

10000000 30.738s 0.0275827

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 17 / 27



Thank you !

Any Question ?

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 18 / 27



Thank you !

Any Question ?

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 18 / 27



Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 19 / 27



The 9 Motzkin trees and the slanted binary trees

Instead of Motzkin trees, we consider slanted binary trees.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 20 / 27



●
●
●
●
●

●
●
●

● ●

●
●

● ●
●

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 21 / 27



●
●

● ●
●

●
● ●
●
●

●
● ●
● ●

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 22 / 27



●
● ●

●
●

●
● ●

● ●

●
● ●
● ●

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 23 / 27



The 7 patterns of leaf-marked slanting trees

leaf-marked Choice and

slanting trees marked node-marked

slanting trees slanting trees

1.

⋆
▲ ▲

⋆
▲ ▲

2.

⋆ ▲ ▲

LR , ⋆
▲ ▲

3.

⋆
⋆

4.

▲ ▲ ⋆
⋆

▲ ▲

RR , ⋆
▲ ▲

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 24 / 27



5.

▲ ▲ ⋆

RL ,
⋆

▲ ▲

6.

⋆ ▲ ▲

LL ,
⋆

▲ ▲

7.

⋆
⋆

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 25 / 27



The key choice

In the algorithm there are two cases

1 Building a tree of size n from a tree of size n − 1,

2 Building a tree of size n from a tree of size n − 2,

Assume we draw a number between 0 and 1, and

if c ≤ (2n+1)Mn−1
(n+2)Mn

, we choose case1,

if c > (2n+1)Mn−1
(n+2)Mn

, we choose case2.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 26 / 27



The key choice

In the algorithm there are two cases

1 Building a tree of size n from a tree of size n − 1,

2 Building a tree of size n from a tree of size n − 2,

Assume we draw a number between 0 and 1, and

if c ≤ (2n+1)Mn−1
(n+2)Mn

, we choose case1,

if c > (2n+1)Mn−1
(n+2)Mn

, we choose case2.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 26 / 27



For an implementation with no recursion

For an imlementation with a while loop, I proceed as follows :

1 I create the stack of recursive calls,

2 I pop the stack, building the Motzkin trees from the small ones to the

large ones.

I can build a random Motzkin tree of size 10 millions in 45s.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 27 / 27



For an implementation with no recursion

For an imlementation with a while loop, I proceed as follows :

1 I create the stack of recursive calls,

2 I pop the stack, building the Motzkin trees from the small ones to the

large ones.

I can build a random Motzkin tree of size 10 millions in 45s.

Pierre Lescanne (ENS Lyon) Holonomic and random generation CLA 2023 27 / 27


