Holonomic equations and efficient random generation of binary trees

Pierre Lescanne

École normale supérieure de Lyon CLA 2023

$$
\text { January } 2023
$$

Holonomic equation

An holonomic recurrence is

$$
P_{s}(n) F_{n+s}+P_{s-1}(n) F_{n+s-1}+\ldots+P_{0}(n) F_{n}=0
$$

where the $P_{s}(n)$ are polynomials in n.
The paradigm is

$$
(n+1) C_{n}-2(2 n-1) C_{n-1}=0
$$

an equation for Catalan numbers known from Olinde Rodrigues in 1838.

Catalan, Motzkin, Schröder

Numbers

Catalan

$$
(n+1) C_{n}=2(2 n-1) C_{n-1}
$$

counts binary trees.
Motzkin

$$
(n+2) M_{n}=(2 n+1) M_{n-1}+3(n-1) M_{n-2}
$$

counts unary binary trees.
Schröder

$$
3(2 n-1) S_{n}=(n+1) S_{n+1}+(n-2) S_{n-1}
$$

counts binary trees in which every nonnull right link is colored either white or black.

Catalan, Motzkin, Schröder

Numbers

Constructive proofs

Catalan

$$
(n+1) C_{n}=2(2 n-1) C_{n-1}
$$

Rémy
counts binary trees.
Motzkin

$$
(n+2) M_{n}=(2 n+1) M_{n-1}+3(n-1) M_{n-2}
$$

counts unary binary trees.
Schröder

$$
3(2 n-1) S_{n}=(n+1) S_{n+1}+(n-2) S_{n-1}
$$

counts binary trees in which every nonnull right link is colored either white or black.

Catalan, Motzkin, Schröder

Numbers

Constructive proofs

Catalan

$$
(n+1) C_{n}=2(2 n-1) C_{n-1}
$$

Rémy
counts binary trees.
Motzkin

$$
(n+2) M_{n}=(2 n+1) M_{n-1}+3(n-1) M_{n-2}
$$

Dulucq and Penaud
counts unary binary trees.
Schröder

$$
3(2 n-1) S_{n}=(n+1) S_{n+1}+(n-2) S_{n-1}
$$

counts binary trees in which every nonnull right link is colored either white or black.

Catalan, Motzkin, Schröder

Numbers

Constructive proofs

Catalan

$$
(n+1) C_{n}=2(2 n-1) C_{n-1}
$$

Rémy
counts binary trees.
Motzkin

$$
(n+2) M_{n}=(2 n+1) M_{n-1}+3(n-1) M_{n-2}
$$

Dulucq and Penaud
counts unary binary trees.
Schröder

$$
3(2 n-1) S_{n}=(n+1) S_{n+1}+(n-2) S_{n-1}
$$

Foata and Zeilberger
counts binary trees in which every nonnull right link is colored either white or black.

Rémy's construction

Implementation in an array of size $2 n+1$

- Nodes are labeled by odd numbers
- Leaves are labeled by even numbers

indices	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
values	1	13	0	2	5	9	7	8	4	11	17	12	10	15	3	16	14	18	6

Implementation in an array of size $2 n+1$

- Nodes are labeled by odd numbers
- Leaves are labeled by even numbers
- root is index 0
- left child of node labeled by $2 n+1$ is at index $2 n+1$
- right child of node labeled by $2 n+1$ is at index $2 n+2$.

indices	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
values	1	13	0	2	5	9	7	8	4	11	17	12	10	15	3	16	14	18	6

Two differences

Motzkin

$$
(n+2) M_{n}=(2 n+1) M_{n-1}+3(n-1) M_{n-2}
$$

In the construction, an oracle chooses between two possibilities.

Two differences

Motzkin

$$
(n+2) M_{n}=(2 n+1) M_{n-1}+3(n-1) M_{n-2}
$$

In the construction, an oracle chooses between two possibilities.

Schröder

$$
(n+1) S_{n+1}=3(2 n-1) S_{n}-(n-2) S_{n-1}
$$

In the construction,

- one builds a Schröder tree of size $n+1$ from a tree of size n, or
- one fails.

Foata \& Zeilberger construction for Schröder trees

The 11 Schröder trees with 4 leaves.

Insertion of a leaf in a Schröder tree

Insertion of a leaf in a Schröder tree

Three impossible insertions of leaves

a

Insertion of a leaf in a Schröder tree

Three impossible insertions of leaves

Two unreachables

Foata-Zeilberger Isomophism (first case)

Foata-Zeilberger Isomophism (second case)

Foata-Zeilberger Isomophism (third case)

The data structure

Like for Rémy's algorithm, one uses an array of size $2 n+1$.
To represent colors of the links, one adds a boolean component.

- A Node is labeled by a pair of an odd number and a boolean.
- A Leaf is labeled by a pair of an even number and a boolean.

The boolean says that the right link that starts from this node is white.
Therefore when one considers a triple $(m,(k, b))$:

- m is an index (for a right link),
- (k, b) is located at m in the array (k corresponds to a node). If $b \equiv$ True then m is even and k is odd.

The data structure

Like for Rémy's algorithm, one uses an array of size $2 n+1$.
To represent colors of the links, one adds a boolean component.

- A Node is labeled by a pair of an odd number and a boolean.
- A Leaf is labeled by a pair of an even number and a boolean.

The boolean says that the right link that starts from this node is white.
Therefore when one considers a triple $(m,(k, b))$:

- m is an index (for a right link),
- (k, b) is located at m in the array (k corresponds to a node). If $b \equiv$ True then m is even and k is odd.

In other words, triples with True are of the form (2p, (2q+1, True)).

The data structure

Like for Rémy's algorithm, one uses an array of size $2 n+1$.
To represent colors of the links, one adds a boolean component.

- A Node is labeled by a pair of an odd number and a boolean.
- A Leaf is labeled by a pair of an even number and a boolean.

The boolean says that the right link that starts from this node is white.
Therefore when one considers a triple $(m,(k, b))$:

- m is an index (for a right link),
- (k, b) is located at m in the array (k corresponds to a node). If $b \equiv$ True then m is even and k is odd.

In other words, triples with True are of the form (2p, (2q+1, True)).
This must be checked when designing the algorithm.

The algorithm (1)
6 cases L_{1}, L_{2} (with 4 subcases), R_{1}.
Draw a number x between 0 and $6 n-4$.

- L_{1} if $x \bmod 3 \equiv 0$
- L_{2} if $x \bmod 3 \equiv 1$
- R_{1} if $x \bmod 3 \equiv 2$.
- Let us call k the number $x \div 3$.

Assume the $k^{\text {th }}$ is (h, b).

The algorithm (1)
6 cases L_{1}, L_{2} (with 4 subcases), R_{1}.
Draw a number x between 0 and $6 n-4$.

- L_{1} if $x \bmod 3 \equiv 0$
- L_{2} if $x \bmod 3 \equiv 1$
- R_{1} if $x \bmod 3 \equiv 2$.
- Let us call k the number $x \div 3$.

Assume the $k^{\text {th }}$ is (h, b).

- $L_{1}:\left\{\begin{aligned} v[k] & \leftarrow(2 n-1, \text { False }) \\ v[2 n-1] & \leftarrow(2 n, \text { False }) \\ v[2 n] & \leftarrow v[k]\end{aligned}\right.$

The algorithm (1)
6 cases L_{1}, L_{2} (with 4 subcases), R_{1}.
Draw a number x between 0 and $6 n-4$.

- L_{1} if $x \bmod 3 \equiv 0$
- L_{2} if $x \bmod 3 \equiv 1$
- R_{1} if $x \bmod 3 \equiv 2$.
- Let us call k the number $x \div 3$.

Assume the $k^{t h}$ is (h, b).

- $L_{1}:\left\{\begin{aligned} v[k] & \leftarrow(2 n-1, \text { False }) \\ v[2 n-1] & \leftarrow(2 n, \text { False }) \\ v[2 n] & \leftarrow v[k]\end{aligned}\right.$
- L_{2} and h is odd :

$$
\left\{\begin{aligned}
v[k] & \leftarrow(2 n-1, \text { False }) \\
v[2 n-1] & \leftarrow(2 n, \text { False }) \\
v[2 n] & \leftarrow(\text { fst }(v[k]), \text { True })
\end{aligned}\right.
$$

The algorithm (1)
6 cases L_{1}, L_{2} (with 4 subcases), R_{1}.
Draw a number x between 0 and $6 n-4$.

- L_{1} if $x \bmod 3 \equiv 0$
- L_{2} if $x \bmod 3 \equiv 1$
- R_{1} if $x \bmod 3 \equiv 2$.
- Let us call k the number $x \div 3$.

Assume the $k^{t h}$ is (h, b).

- $L_{1}:\left\{\begin{aligned} v[k] & \leftarrow(2 n-1, \text { False }) \\ v[2 n-1] & \leftarrow(2 n, \text { False }) \\ v[2 n] & \leftarrow v[k]\end{aligned}\right.$

- L_{2} and h is odd :

$$
\left\{\begin{aligned}
v[k] & \leftarrow(2 n-1, \text { False }) \\
v[2 n-1] & \leftarrow(2 n, \text { False }) \\
v[2 n] & \leftarrow(\text { fst }(v[k]), \text { True })
\end{aligned}\right.
$$

> Check the constraint!

The algorithm (1)
6 cases L_{1}, L_{2} (with 4 subcases), R_{1}.
Draw a number x between 0 and $6 n-4$.

- L_{1} if $x \bmod 3 \equiv 0$
- L_{2} if $x \bmod 3 \equiv 1$
- R_{1} if $x \bmod 3 \equiv 2$.
- Let us call k the number $x \div 3$.

Assume the $k^{t h}$ is (h, b).

- $L_{1}:\left\{\begin{aligned} v[k] & \leftarrow(2 n-1, \text { False }) \\ v[2 n-1] & \leftarrow(2 n, \text { False }) \\ v[2 n] & \leftarrow v[k]\end{aligned}\right.$
- L_{2} and h is odd :

$$
\left\{\begin{aligned}
v[k] & \leftarrow(2 n-1, \text { False }) \\
v[2 n-1] & \leftarrow(2 n, \text { False }) \\
v[2 n] & \leftarrow(\text { fst }(v[k]), \text { True })
\end{aligned}\right.
$$

The algorithm (2)

- L_{2} and h is even and k is odd and the second component of $v[k+1]$ is False

$$
\left\{\begin{aligned}
v[k] & \leftarrow v[k+1] \\
v[k+1] & \leftarrow(2 n-1, \text { True }) \\
v[2 n-1] & \leftarrow v[k] \\
v[2 n] & \leftarrow(2 n, \text { False })
\end{aligned}\right.
$$

The algorithm (2)

- L_{2} and h is even and k is odd and the second component of $v[k+1]$ is False

$$
\left\{\begin{aligned}
v[k] & \leftarrow v[k+1] \\
v[k+1] & \leftarrow(2 n-1, \text { True }) \\
v[2 n-1] & \leftarrow v[k] \\
v[2 n] & \leftarrow(2 n, \text { False })
\end{aligned}\right.
$$

The algorithm (2)

- L_{2} and h is even and k is odd and the second component of $v[k+1]$ is False

$$
\left\{\begin{aligned}
v[k] & \leftarrow v[k+1] \\
v[k+1] & \leftarrow(2 n-1, \text { True }) \\
v[2 n-1] & \leftarrow v[k] \\
v[2 n] & \leftarrow(2 n, \text { False })
\end{aligned}\right.
$$

- L_{2} and h is even and k is odd and the second component of $v[k+1]$ is True

The algorithm (2)

- L_{2} and h is even and k is odd and the second component of $v[k+1]$ is False

$$
\left\{\begin{aligned}
v[k] & \leftarrow v[k+1] \\
v[k+1] & \leftarrow(2 n-1, \text { True }) \\
v[2 n-1] & \leftarrow v[k] \\
v[2 n] & \leftarrow(2 n, \text { False })
\end{aligned}\right.
$$

- L_{2} and h is even and k is odd and the second component of $v[k+1]$ is True

Failure

Retry

The algorithm (3)

- L_{2} and h is even and k is even

$$
\left\{\begin{aligned}
v[k] & \rightarrow(2 n-1, \text { True }) \\
v[2 n-1] & \rightarrow v[k] \\
v[2 n] & \rightarrow(2 n, \text { False })
\end{aligned}\right.
$$

The algorithm (3)

- L_{2} and h is even and k is even

$$
\left\{\begin{aligned}
v[k] & \rightarrow(2 n-1, \text { True }) \quad \text { Check the constraint }! \\
v[2 n-1] & \rightarrow v[k] \\
v[2 n] & \rightarrow(2 n, \text { False })
\end{aligned}\right.
$$

The algorithm (3)

- L_{2} and h is even and k is even

$$
\left\{\begin{aligned}
v[k] & \rightarrow(2 n-1, \text { True }) \\
v[2 n-1] & \rightarrow v[k] \\
v[2 n] & \rightarrow(2 n, \text { False })
\end{aligned}\right.
$$

The algorithm (3)

- L_{2} and h is even and k is even

$$
\left\{\begin{aligned}
v[k] & \rightarrow(2 n-1, \text { True }) \\
v[2 n-1] & \rightarrow v[k] \\
v[2 n] & \rightarrow(2 n, \text { False })
\end{aligned}\right.
$$

- R_{1}

$$
\left\{\begin{aligned}
v[k] & \rightarrow(2 n-1, \text { False }) \\
v[2 n-1] & \rightarrow v[k] \\
v[2 n] & \rightarrow(2 n, \text { False })
\end{aligned}\right.
$$

Complexity

The algorithm is quasi-linear.

- Except for
, all the cases require a computation in $O(1)$ to build a tree of size n from a tree of size $n-1$.

Complexity

The algorithm is quasi-linear.

- Except for , all the cases require a computation in $O(1)$ to build a tree of size n from a tree of size $n-1$.
- In case \mathbb{C}, one fails and retries with probability less that $\frac{1}{3}$ and the total average complexity of building a tree of size n is in $O(n)$.

Benchmarks

size	time	ratio
1000	$0.012 s$	0.024
5000	$0.031 s$	0.0288
10000	$0.064 s$	0.025
50000	$0.200 s$	0.0269
100000	$0.290 s$	0.02707
500000	$1.295 s$	0.027762
1000000	$3.065 s$	0.027883
5000000	$15.183 s$	0.0276378
10000000	$30.738 s$	0.0275827

Thank you!

Thank you!

Any Question?

The 9 Motzkin trees and the slanted binary trees

Instead of Motzkin trees, we consider slanted binary trees.

1

The 7 patterns of leaf-marked slanting trees

The key choice

In the algorithm there are two cases
(1) Building a tree of size n from a tree of size $n-1$,
(2) Building a tree of size n from a tree of size $n-2$,

The key choice

In the algorithm there are two cases
(1) Building a tree of size n from a tree of size $n-1$,
(2) Building a tree of size n from a tree of size $n-2$,

Assume we draw a number between 0 and 1 , and

- if $c \leq \frac{(2 n+1) M n-1}{(n+2) M_{n}}$, we choose case1,
- if $c>\frac{(2 n+1) M n-1}{(n+2) M_{n}}$, we choose case2.

For an implementation with no recursion

For an imlementation with a while loop, I proceed as follows :
(1) I create the stack of recursive calls,

For an implementation with no recursion

For an imlementation with a while loop, I proceed as follows :
(1) I create the stack of recursive calls,
(2) I pop the stack, building the Motzkin trees from the small ones to the large ones.

I can build a random Motzkin tree of size 10 millions in 45 s .

