Holonomic equations and efficient random generation of binary trees

Pierre Lescanne
École Normale Supérieure de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL), 46 allée d'Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

Considering a recurrence defining a sequence of integer coefficients F_{n}. In this paper, I am interested in specific recurrences called "holonomic recurrence" where roughly speaking, "holonomic" means that F_{n+s} is a combination, using polynomials in n, of the F_{i} 's, for $n \leq i \leq$ $n+s$. More precisely, (see Flajolet and Sedgewick's book, Appendix B.4) the coefficients fulfill the following recurrence:

$$
P_{s}(n) F_{n+s}+P_{s-1}(n) F_{n+s-1}+\ldots+P_{0}(n) F_{n}=0
$$

for some $n \geq n_{0}$, where the $P_{j}(n)$ are polynomials in n. This kind of recurrence is called a P-recurrence. For instance, for Catalan numbers:

$$
C_{n}-\sum_{k=0}^{n-1} C_{k} C_{n-k-1}=0
$$

is the classical recurrence that is used in general to defined them, but it is not a P-recurrence, whereas

$$
(n+1) C_{n}-2(2 n-1) C_{n-1}=0
$$

is the P-recurrence, which will be considered later on. Notice that initial values should be added to this P-recurrence. This will be considered in the paper for each specific case.

In this paper, I consider three families of binary trees (binary trees, Motzkin trees aka unary-binary trees, Schröder trees) and their random generation. It turns out that holonomic recurrences play a key role in the design of efficient random generation algorithms.

The three examples: binary trees, Motzkin trees, Schröder trees are interesting because they have different holonomic equations, one (Catalan numbers) has one term on the right, one (Motzkin numbers) has a sum of two terms on the right and one (Schröder numbers) has a subtraction of two terms, on the right. These yield different algorithms, as this is explained further in this paper.

This paper is associated with a Haskell program available on GitHub which serves as an executable specification. The full paper can be loaded here.

