The categorical logic of elementary arithmetic

Peter M. Hines — University of York

Computational Logic & Applications

Paris – I'X, 13 Janvier 2023

Au fond de l'Inconnu pour trouver du nouveau!

A little light reading

- On strict extensional reflexivity in compact closed categories *Outstanding Contributions in Logic, (to appear March 2023)* https://arxiv.org/abs/2202.08130
- The inverse semigroup theory of elementary arithmetic (submitted 2022) www.arxiv.org/abs/2206.07412
- From a conjecture of Collatz to Thompson's group F, via a conjunction of Girard (submitted 2022)
 www.arxiv.org/abs/2202.04443
- Congruential functions via categorical coherence, (submitted 2022)
- Operads, Groups, Monoids, & Conjectures. (Draft manuscript)

FRACTRAN - syntax and semantics

A programming language introduced by John H. Conway (1987)

Syntax Programs are (finite?) lists of positive rationals :

Execution **Input** is a positive natural number $n \in \mathbb{N}^+$

The iterated step :

• Multiply *n* by each $\frac{P_0}{Q_0}$, $\frac{P_1}{Q_1}$, $\frac{P_2}{Q_2}$, $\frac{P_3}{Q_3}$, ... in turn, until

a whole number $n \times \frac{P_j}{Q_i} \in \mathbb{N}^+$ is found.

• replace *n* by this number $n \leftarrow n \times \frac{P_j}{Q_i}$

Conditional looping The above step is repeated,

until the end of the list is reached.

Output Either :

- The final value of *n*.
- The sequence of values *n* takes on during execution.

FRACTRAN is computationally universal

— it can simulate e.g. Turing Machines, or pure untyped λ -calculus

Conway gave the following example :

$$\begin{bmatrix} \frac{17}{91} &, \frac{78}{85} &, \frac{19}{51} &, \frac{23}{38} &, \frac{29}{33} &, \frac{77}{29} &, \frac{95}{23} \\ \frac{77}{19} &, \frac{1}{17} &, \frac{11}{13} &, \frac{13}{11} &, \frac{15}{2} &, \frac{1}{7} &, \frac{55}{1} \end{bmatrix}$$

On input n = 2, this program fails to terminate¹. The powers of two in the infinite sequence generated are :

 $2^2, \ldots, 2^3, \ldots, 2^5, \ldots, 2^7, \ldots, 2^{11}, \ldots, 2^{13}, \ldots, 2^{17}, \ldots, 2^{19}, \ldots, 2^{23}, \ldots, 2^{29}, \ldots$

We recover the list : $[2^p : p \in \mathbf{Primes}]$.

Fun exercise : What is the action of the program given by i/ Inverting every fraction, ii/ reversing the list, iii/ doing both ??

¹First proved by Euclid, 350 BCE

peter.hines@york.ac.uk

Category theory in arithmetic

Registers and conditionals from *p*-adic norms

(The F.T.A.) Every $n \ge 1$ admits a unique prime decomposition :

 $n = 2^{x_0} \times 3^{x_1} \times 5^{x_2} \times 7^{x_3} \times 11^{x_4} \times \dots$

where a finite number of these $\{x_i\}_{i \in \mathbb{N}}$ are non-zero. Think of these as **registers**.

Each fraction becomes a conditional increment and branch

 $\frac{5^3~\times~11^2}{3^3~\times~7^1}$

COND
$$(x_1 \ge 3 \text{ AND } x_3 \ge 1)$$

 $\begin{cases} x_2 \mapsto x_2 + 3; \\ x_4 \mapsto x_4 + 2; \\ \text{BRANCH;} \end{cases}$

Conditionals 'consume resources' :

Each (successful) conditional ($x_i \ge M$) decrements

the **register** by the **test value** $x_j \mapsto x_j - M$.

Taking reciprocals interchanges conditionals/decrements with instructions/increments.

FRACTRAN came out of Conway's work² on undecidability in elementary arithmetic

"Unpredictable Iterations" – J. H. Conway (1972)

This was demonstrated via the halting problem, based on

computational universality of iterative problems on congruential functions.

Functions defined "piece-wise linearly on modulo classes"

A function $f : \mathbb{N} \to \mathbb{N}$ is **congruential** when there exists a set of modulo classes $\{A_j\mathbb{N} + B_j\}$ such that

$$f(n) = \frac{X_i n + Y_i}{Z_i} \quad \text{where} \quad n \equiv B_i \mod A_i$$

²See also "On E. L. Post's Tag problem" – S. Maslov (1964)

6/43

Some non-trivial motivating examples

• The Notorious Collatz Conjecture: $n \mapsto \begin{cases} \frac{n}{2} & n \text{ even,} \\ \frac{3n+1}{2} & n \text{ odd.} \end{cases}$

(Conjecture: every iterated sequence eventually arrives at 1).

The Original Collatz Conjecture (L. C., unpublished notebooks, 1 July, 1932, as described by J. Lagarias (1985)).

J. Conway's 'Amusical Permutation'		
The congruential bijection $\gamma(\mathbf{n})$	$= \begin{cases} \frac{2n}{3} \\ \frac{4n-1}{3} \\ \frac{4n+1}{3} \end{cases}$	$n \equiv 0 \mod 3,$ $n \equiv 1 \mod 3,$ $n \equiv 2 \mod 3,$

(Conjecture: This function has infinite orbits – the orbit of 8 is ∞).

Conway described 2. (the OCC) as,

"The best candidate we have for a true but unprovable statement."

Both the N.C.C. and the O.C.C. are undecided – possibly undecidable³.

Can we nevertheless understand them better,

by interpreting them as FRACTRAN programs?

A correspondence of Conway:

Every FRACTRAN program implements a purely multiplicative congruential function

$$f(n) = \frac{X_i}{Y_i}n + 0$$
 $n \equiv B_i \mod A_i$

... rather neatly ruling out his motivating examples.

A question: Instead of looking at simple procedural languages, should we interpret congruential functions via (categorical) logic / lambda calculus??

8/43

³Although we could never prove undecidability(!)

The domain of congruential functions

Congruential functions are defined piece-wise linearly on dissections of \mathbb{N} into disjoint modulo classes.

Exact Covering Systems (P. Erdös et al., 1950s - present)

An E.C.S. is an indexed family of modulo classes $C = \{A_i \mathbb{N} + B_i\}_{i \in J}$ where:

- $\mathbb{N} = \bigcup_{i \in J} A_i \mathbb{N} + B_i$
- $(A_i \mathbb{N} + B_i) \cap (C_j \mathbb{N} + D_j) = \emptyset \quad \forall i \neq j$

Instead of *indexed sets*, we should take a more *dynamical*, *algebraic* view, and define them via arrows in a category (monoid).

A complete triviality Each modulo class $A_j \mathbb{N} + B_j$ of an e.c.s. is countably infinite, and so in 1:1 correspondence with \mathbb{N} itself.

> Which arrows exhibit these correspondences, & what properties must they satisfy?

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $C = \{A_i \mathbb{N} + B_i\}_{i=1}^n$ be an exact covering system

1 $A_i \mathbb{N} + B_i$ is bijective with \mathbb{N} for all i = 1..n

This is exhibited by the injection : $p_i(n) \stackrel{\text{def.}}{=} A_i n + B_i$

Elements of C are pairwise disjoint

becomes the condition : $im(p_i) \cap im(p_j) = \emptyset \quad \forall i \neq j$

Iements of C cover the whole of N

is equivalent to : $\bigcup_{i=1}^{n} im(p_i) = \mathbb{N}$

Dynamical Algebras via exact covering systems (II)

Instead of discussing domains and images ...

We work with the 'symmetric inverse monoid' $\mathcal{I}(\mathbb{N})$ of partial injective functions

 $f(x) = f(x') \Rightarrow x = x'$ provided both are defined.

and their unique generalised inverses $f(x) = y \iff f^*(y) = x$

The generalised inverse of p_j is given by

$$p_j^*(n) = \begin{cases} rac{n-B_j}{A_j} & n \equiv B_j \mod A_j \\ \perp & ext{otherwise} \end{cases}$$

The required conditions are the defining relations of the *n*-th dynamical algebra :

$$p_j^* p_i = \begin{cases} Id & i = j \\ \emptyset & i \neq j \end{cases}$$
 and $\sum_{i=1}^n p_i p_i^* = Id$

where 'sum' is union of partial functions with disjoint domains / images.

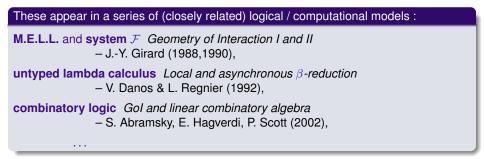
(Categorically, "sum" is the join w.r.t. the poset-enrichment of the category of partial injective functions).

peter.hines@york.ac.uk

Congruential functions in logic & lambda calculii

Given an exact covering system $\{A_i \mathbb{N} + B_i\}_{i=0}^{n-1}$, the corresponding partial injections $p_0, p_1, \dots, p_{n-1} : \mathbb{N} \to \mathbb{N}$

generate a copy of the *n*-th **dynamical algebra** (a.k.a. Nivat & Perot's *n*-th polycyclic monoid), as (partial) congruential functions.



The examples that motivated Conway arise when

we consider the category theory behind these models.

peter.hines@york.ac.uk

Category theory in arithmetic

A categorically significant example

In J.-Y. Girard's Geometry of Interaction system (Parts I, II) :

Propositions are modelled by partial injective functions – elements of $\mathcal{I}(\mathbb{N})$.

Expanding out his definition, we get :

 $(f \star g)(2n) = 2.f(n)$ $(f \star g)(2n+1) = 2.g(n) + 1$

A simple description, based on Hilbert's Grand Hotel

This "writes two functions as a single function", by

replicating their behaviour on the even and odd numbers respectively.

Key point : Girard's conjunction $(_ \star _) : \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \hookrightarrow \mathcal{I}(\mathbb{N})$ is a (semi-monoidal) categorical tensor on a monoid.

13/43

Strict associativity of a faithful (injective) tensor on a monoid

The unique object of the monoid is the unit object.

Coherence & Strictification for Self-Similarity Journal Homotopy & Related Structures (P.M.H. 2016)

There is a non-trivial natural isomorphism $(_ \star (_ \star _)) \Rightarrow ((_ \star _) \star _)$

$$\alpha(a \star (b \star c)) = ((a \star b) \star c)\alpha \quad \forall a, b, c \in \mathcal{I}(\mathbb{N})$$

whose <u>unique</u> component (the **associator**) $\alpha(n) = \begin{cases} 2n & n \equiv 0 \mod 2, \\ n+1 & n \equiv 1 \mod 4, \\ \frac{n-1}{2} & n \equiv 3 \mod 4, \end{cases}$

is a congruential function, satisfying MacLane's pentagon condition

$$\alpha^2 = (\alpha \star Id) \alpha (Id \star \alpha)$$

Question :

Can we decide whether orbits of natural numbers under the associativity isomorphism α are **finite** or **infinite**?

The associator α has disappointingly simple behaviour under iteration :

n is even $\alpha(n) = 2n > n$ for all $n \neq 0$

n is odd Two possibilities :

1 $\alpha(n)$ is odd $\Rightarrow \alpha(n) < n$ 2 $\alpha(n)$ is even.

All orbits, apart from the fixed point $\alpha(0) = 0$, are infinite.

We see similar *disturbingly trivial* behaviour under iteration for arbitrary associativity isomorphisms⁴

15/43

⁴i.e. components of natural isomorphisms between k-fold bracketings of Girard's conjunction.

The structure group for the associativity identity, P. Dehornoy (1996)

Given a tensor on a monoid, the associativity isomorphisms form a group, isomorphic to R. Thompson's group $\mathcal{F} = \langle X_j : X_j X_k X_j^{-1} = X_{k-1} \quad \forall j < k-1 \in \mathbb{N} \rangle$.

A suitable generating set is given by

$$X_0 = \alpha$$
, $X_1 = (Id \star \alpha)$, $X_2 = Id \star (Id \star \alpha)$, ...

since

$$\alpha(Id \star (Id \star X_j))\alpha^{-1} = (Id \star Id) \star \alpha = Id \star \alpha$$

 X_0, X_1, X_2, \ldots can be thought of as: " α replicated on

 $2\mathbb{N} + 1$, $4\mathbb{N} + 3$, $8\mathbb{N} + 7$, ...

and the identity elsewhere."

Again, all orbits are either infinite or fixed points.

peter.hines@york.ac.uk

A standard result

The above 'infinite presentation' of Thompson's \mathcal{F} is not minimal;

 X_0 and X_1 suffice to generate the whole group.

Corollary The two bijections

$$\alpha(n) = \begin{cases} 2n & n \pmod{2} = 0\\ n+1 & n \pmod{4} = 1\\ \frac{n-1}{2} & n \pmod{4} = 3 \end{cases} \quad (Id \star \alpha)(n) = \begin{cases} n & n \pmod{2} = 0\\ 2n-1 & n \pmod{4} = 1\\ n+2 & n \pmod{8} = 3\\ \frac{n-1}{2} & n \pmod{8} = 7 \end{cases}$$

generate a copy of Thompson's group \mathcal{F} , and so capture *all* canonical associativity isomorphisms for _* .

None of these have interesting behaviour under iteration!

Are congruential canonical isomorphisms always so uninteresting⁵??

"Given any *n* objects of a monoidal category, the canonical associativity isomorphisms give a commuting diagram whose shape is the 1-skeleton of the n^{th} associahedron \mathcal{K}_n ". — M. Kapranov (1993)

The claim :

We see non-trivial behaviour^a when we move off the 1-skeleton, and consider

commuting diagrams of maps between more general facets of associahedra.

^aPrecisely, the operators of Collatz that motivated Conway ...

⁵from an *iterative*, rather than *group-theoretic* viewpoint!

Girard gave a **binary** model of conjunction $(_ \star _) : \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \hookrightarrow \mathcal{I}(\mathbb{N})$.

"($a \star b$) replicates a, b on the congruence classes $2\mathbb{N}, 2\mathbb{N} + 1$ respectively".

• We draw this as

There is an obvious **ternary** analogue, $(_ \star _ \star _) : \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \hookrightarrow \mathcal{I}(\mathbb{N}) \hookrightarrow \mathcal{I}(\mathbb{N})$

$$(a \star b \star c)(3n+i) = \begin{cases} 3.a(n) & i = 0\\ 3.b(n)+1 & i = 1\\ 3.c(n)+2 & i = 2 \end{cases}$$

"Replicate a, b, c on the congruence classes $3\mathbb{N}$, $3\mathbb{N} + 1$, $3\mathbb{N} + 2$ respectively".

• We draw this as

The general case :

For any $k \ge 1$, we form the k^{th} unbiased conjunction by :

 $(f_0 \star \ldots \star f_{k-1})(kn+i) = k f_i(n) + i$ where $i = 0, 1, 2, \ldots, k-1$

Alternatively & equivalently,

$$(f_0 \star \dots f_{k-1})(x) = k \cdot f_i\left(\frac{x-i}{k}\right) + i \text{ where } x \equiv i \mod k$$

This gives, for any k > 0, an injective homomorphism $\mathcal{I}(\mathbb{N})^{\times k} \hookrightarrow \mathcal{I}(\mathbb{N})$ that : replicates f_0 , f_1 , ..., f_{k-1} on the congruence classes modulo ki.e. $\{k\mathbb{N}, k\mathbb{N} + 1, ..., k\mathbb{N} + (k-1)\}$

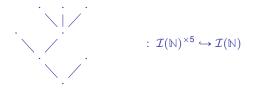
For $k = 1, 2, 3, 4, \ldots$, we draw the unbiased conjunctions as

We may compose these, to build an operad.

{ _ _ , _ / , _ / , _ / , ... }

Composing elementary conjunctions

These 'compose by substitution' to give an operad \mathcal{GC} of **generalised conjunctions**. Each *k*-leaf tree determines an injective hom. $\mathcal{I}(\mathbb{N})^{\times k} \hookrightarrow \mathcal{I}(\mathbb{N})$.



$$(f_0, f_1, f_2, f_3, f_4) \quad \mapsto \ ((f_0 \star (f_1 \star f_2 \star f_3)) \star f_4)$$

More formally :

Consider the (non-symmetric) endomorphism operad of $\mathcal{I}(\mathbb{N})$ within the category (Inv, \times) of inverse monoids, with Cartesian product. This contains one *unbiased conjunction* of each arity > 0.

These generate the sub-operad \mathcal{GC} of generalised conjunctions.

Claim : The operad \mathcal{GC} is isomorphic to the operad \mathbb{RPT} of **rooted planar trees**. Thus

- It is *freely* generated by the unbiased conjunctions.
- Every distinct rooted planar tree determines a distinct generalised conjunction.
- The *n*-ary operations \mathcal{GC}_n are in 1:1 correspondence with facets of the n^{th} associahedron \mathcal{K}_n .

To be proved :

Each tree in \mathbb{RPT}_k determines a *distinct* homomorphism $\mathcal{I}(\mathbb{N})^{\times k} \hookrightarrow \mathcal{I}(\mathbb{N})$.

defines a homomorphism : $\mathcal{I}(\mathbb{N})^{\times 5} \hookrightarrow \mathcal{I}(\mathbb{N})$

In the generalised conjunction $((f_0 \star (f_1 \star f_2 \star f_3)) \star f_4)$, the action of each f_j is mapped :

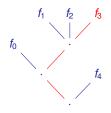
from The whole of the natural numbers \mathbb{N}

to Some modulo class $A_i \mathbb{N} + B_i$.

For example : f_3 is 'replicated' on the modulo class 12N + 10.

A root and branch approach

Deriving $12\mathbb{N} + 10$, from the leaf-to-root path :



Branch number 2 of 3

Branch number 1 of 2

Branch number 0 of 2

< 口 > < 同

Multiplicative coefficient : $12 = 3 \times 2 \times 2$

Additive coefficient :	(Decimal)		Base 3	Base 2	Base 2
	10	=	2	1	0

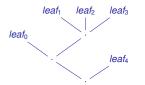
Positional mixed-radix number systems

First formal study by G. Cantor, Über einfache Zahlensysteme (1869)

24/43

Covering the Numbers with Trees

Rooted Planar Trees are uniquely determined by the addresses of their leaves



leaf ₀		(0,2)	(0, 2)	4ℕ
leaf ₁	(0,3)	(1,2)	(0,2)	12N + 2
leaf ₂	(1,3)	(1,2)	(0,2)	$12\mathbb{N}+6$
leaf ₃	(2,3)	(1,2)	(0,2)	12N + 10
leaf ₄			(1,2)	2ℕ + 1

which uniquely determine ordered exact covering systems, such as

 $4\mathbb{N}$, $12\mathbb{N}+2$, $12\mathbb{N}+6$, $12\mathbb{N}+10$, $2\mathbb{N}+1$

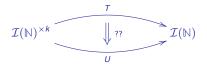
Corollaries:

- **1** Distinct trees determine distinct homomorphisms, so $\mathcal{GC} \cong \mathbb{RPT}$.
- Distinct k-leaf trees determine distinct realisations of the k-th dynamical algebra.

Mapping between generalised conjunctions

The operations of \mathcal{GC}_k are homomorphisms (functors).

Given generalised conjunctions $T, U : \mathcal{I}(\mathbb{N})^{\times k} \hookrightarrow \mathcal{I}(\mathbb{N})$, how can we find (well-behaved) natural isomorphisms between them?



Convention : As generalised conjunctions are **monoid** homomorphisms, natural transformations have a **single** component.

We identify nat. iso.s with their unique component in $\mathcal{I}(\mathbb{N})$.

Congruential functions as natural isomorphisms

Consider the generalised conjunctions⁶ $T, U : \mathcal{I}(\mathbb{N})^{\times 5} \hookrightarrow \mathcal{I}(\mathbb{N})$

We build a natural isomorphism $\eta_{T,U}: T \Rightarrow U$ by monotonically mapping between their respective ordered exact covering systems :

leaf 0	4ℕ	\mapsto	6 N
leaf 1	12ℕ + 2	\mapsto	$6\mathbb{N}+3$
leaf 2	12ℕ + 6	\mapsto	$3\mathbb{N}+1$
leaf 3	12N + 10	\mapsto	6ℕ + 2
leaf 4	$2\mathbb{N}+1$	\mapsto	$6\mathbb{N}+4$

This gives, as desired,

 $\eta_{T,U}.((a \star (b \star c \star d)) \star e) = ((a \star b) \star c \star (d \star e)).\eta_{T,U}$

⁶edges of the fifth associahedron \mathcal{K}_5

Concrete formulæ for congruential natural isomorphisms

Given two ordered exact covering systems, determined by k-ary generalised conjunctions T, U

leaf 0	$A_0\mathbb{N}+B_0$	\mapsto	$C_0\mathbb{N}+D_0$
leaf 1	$A_1\mathbb{N} + B_1$	\mapsto	$C_1 \mathbb{N} + D_1$
÷	÷		÷

leaf k-1 $A_{k-1}\mathbb{N}+B_{k-1} \mapsto C_{k-1}\mathbb{N}+D_{k-1}$

The natural isomorphism $\eta_{T,U}$ is the congruential bijection

$$\eta_{T,U}(x) = rac{1}{A_j} \left(C_j x + \left| \begin{array}{cc} A_j & B_j \\ C_j & D_j \end{array} \right| \right) \ \text{where} \ x \equiv B_j \mod A_j$$

Think of these as, "mapping between distinct realisations of the k-th dynamical algebra".

Some context :

These are a special kind of congruential function, where

each element of an e.c.s. is mapped linearly to another modulo class.

A computational interpretation :

Functional equations associated with congruential functions, Theoretical Computer Science *S. Berckel (1994)*

Pure group theory :

A simple group given by interchanging residue classes of the integers Mathematische Zeitschrift *S. Kohl (2010)*

Close connections with the N.C.C. :

The [3x + 1] Collatz conjecture in a group-theoretic context Journal of Group Theory *S. Kohl (2017)*

Normal forms & formulæ for composition :

The inverse semigroup theory of elementary arithmetic www.arxiv.org/2206.07412 *P.M.H. (2022)*

Observe that :

- $\eta_{T,T} = Id \in \mathcal{I}(\mathbb{N})$
- $\eta_{T,U}\eta_{S,T} = \eta_{S,U}$
- $\eta_{T,U}^{-1} = \eta_{U,T}$

We have a **posetal groupoid**⁷ $C\omega$ of functors / natural iso.s, given by :

Objects Generalised conjunctions (operations of \mathcal{GC})

Arrows $C\omega(T, U) = \begin{cases} \{\eta_{T,U}\} & T, U \text{ have the same arity,} \\ \emptyset & \text{otherwise.} \end{cases}$

A reminder :

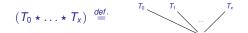
Arrows are natural isomorphisms between homomorphisms $\mathcal{I}(\mathbb{N})^{\times k} \hookrightarrow \mathcal{I}(\mathbb{N})$ determined by their unique components in $\mathcal{I}(\mathbb{N})$

30/43

⁷within which, 'all diagrams commute'

Generalised conjunctions within a posetal category

Claim: As well as being the **objects** of the posetal groupoid $C\omega$, generalised conjunctions are also **functors** $\prod^{k} C\omega \rightarrow C\omega$. On Objects : this is defined by operadic composition



On Arrows : We take the generalised conjunction of unique components. To check **functoriality** :

$$\eta_{(T_0\star\ldots\star T_x),(U_0\star\ldots\star U_x)} = (\eta_{T_0,U_0}\star\ldots\star\eta_{T_x,U_x})$$

Generalised conjunctions within a posetal category

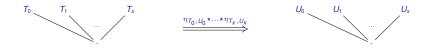
Claim: As well as being the **objects** of the posetal groupoid $C\omega$,

generalised conjunctions are also **functors** $\prod^{k} C\omega \rightarrow C\omega$.

On Objects : this is defined by operadic composition

On Arrows : We take the generalised conjunction of unique components. To check **functoriality** :

$$\eta_{(T_0 \star \ldots \star T_x), (U_0 \star \ldots \star U_x)} = (\eta_{T_0, U_0} \star \ldots \star \eta_{T_x, U_x})$$



Operads all the way down

Key points :

- The groupoid Cω is posetal, with objects in 1:1 correspondence with facets of associahedra.
- There is a **unique arrow** between any two facets of the same associahedron.
- It admits an N⁺-indexed family of faithful functors :

$$\begin{array}{rcl} Id & : & \mathcal{C}\omega \to \mathcal{C}\omega \\ (_\star_) & : & \mathcal{C}\omega \times \mathcal{C}\omega \to \mathcal{C}\omega \\ (_\star_\star_) & : & \mathcal{C}\omega \times \mathcal{C}\omega \times \mathcal{C}\omega \to \mathcal{C}\omega \\ & \vdots \end{array}$$

As a very special case, it contains a copy of MacLane's posetal monoidal groupoid (W, ____).

Fun question :

What does the endomorphism operad^a of $\mathcal{C}\omega$ look like, in the category (Cat, \times) ?

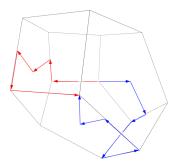
^aor functor category thereof ...

Commuting diagrams from associahedra

As $C\omega$ is posetal, all diagrams over it commute.

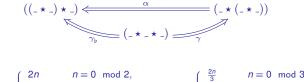
There exists a unique arrow between any two objects iff they are facets of the same associahedron.

We may build commuting diagrams from paths between arbitrary facets.



Labels on edges are congruential functions.

Concrete examples : the third associahedron



$\alpha(\mathbf{n}) = \langle$	n+1 $\frac{n-1}{2}$	$n \equiv 0 \mod 2,$ $n \equiv 1 \mod 4,$ $n \equiv 3 \mod 4.$	$\gamma(n) = \begin{cases} \frac{3}{3} \\ \frac{4n-1}{3} \\ \frac{4n+1}{3} \end{cases}$	$n \equiv 0 \mod 3$, $n \equiv 1 \mod 3$, $n \equiv 2 \mod 3$.
			$\gamma_{\mathfrak{b}}(n) = \begin{cases} \frac{4n}{3} \\ \frac{4n+2}{3} \\ \frac{2n-1}{3} \end{cases}$	$n \equiv 0 \mod 3,$ $n \equiv 1 \mod 3,$ $n \equiv 2 \mod 3.$

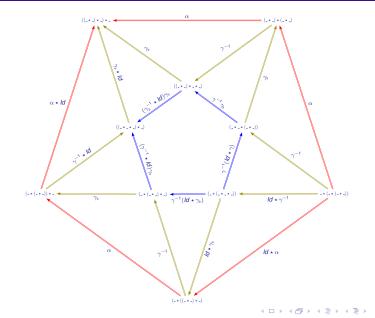
We have already seen these (!)

- α : the **associativity isomorphism** for Girard's conjunction.
- γ : the 'amusical permutation', from the Original Collatz Conjecture.
- γ_b related to γ by a natural transformation : $1 + \gamma_b(n) = \gamma(n+1)$.

This 'replicates the behaviour of γ , one step down'.

peter.hines@york.ac.uk

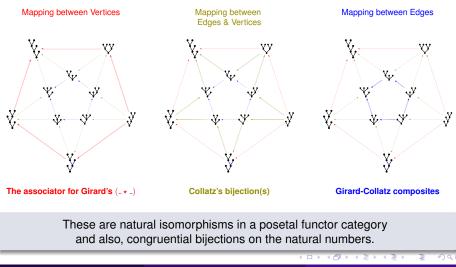
From the third to the fourth associahedron



э

A Convergent Series?

MacLane's pentagon is the 1-skeleton of Stasheff's associahedron \mathcal{K}_4 ; we understand the rest of the pentagram in similar terms.



peter.hines@york.ac.uk

Category theory in arithmetic

37/43

One of Conway's motivating examples (the O.C.C.) arises from :

- Coherence for **associativity**
- Re-bracketing generally

The other motivating example (the N.C.C.) is seen when we extend to :

- Coherence for symmetry & associativity,
- Non-symmetric operads.

The core operator from the 3x + 1 problem is not a bijection!

The problem has, however, been characterised in terms of (congruential) bijections

Claim : these are coherence isomorphisms

Journal of Group Theory, Stefan Kohl (2017)

"The [Notorious] Collatz conjecture in a group-theoretic context"

Many thanks to Matt Brin (Binghampton) for bringing this to my attention!

Introduces a three-generator group of permutations $\mathcal{G}_{\mathcal{T}} \subseteq \mathcal{I}(\mathbb{N})$ satisfying :

"*G*^{*T*} acts transitively⁸ on ℕ iff the 3x + 1 conjecture is true".

The generators – and hence all elements of $\mathcal{G}_{\mathcal{T}}$ – are **congruential bijections**.

Claim : Once we include symmetry, these are natural isomorphisms between generalised conjunctions, describing coherence for $(_ \star _)$ and $(_ \star _ \star _)$.

⁸For all $x, y \in \mathbb{N}$, there exists $f \in \mathcal{G}_{\mathcal{T}}$ such that f(x) = y.

Girard's conjunction $_{-} \star _{-} : \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \rightarrow \mathcal{I}(\mathbb{N})$ is a **symmetric** tensor.

 $\sigma(f \star g) = (g \star f)\sigma \quad \forall \ g, f \in \mathcal{I}(\mathbb{N})$

where the **symmetry iso.** $\sigma \in \mathcal{I}(\mathbb{N})$ is given by : $\sigma(n) = \begin{cases} n+1 & n \text{ even,} \\ n-1 & n \text{ odd.} \end{cases}$

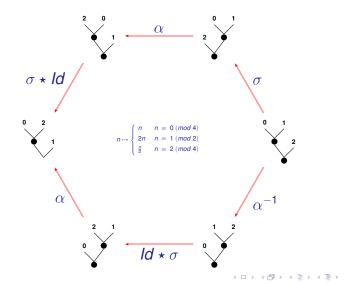
Coherence for symmetry requires MacLane's hexagon condition :

 $\alpha \sigma \alpha = (\sigma \star \mathbf{Id}) \alpha (\mathbf{Id} \star \sigma)$

which arises from the 1-skeleton of Kapranov's third **permutoassociahedron**, \mathcal{KP}_3 , based on *symmetric operads* with an action of $\mathcal{S}(\{0, \dots, k-1\})$ on leaves of trees.

MacLane's hexagon for Girard's conjunction

Vertices are **bracketings** of **orderings** of three symbols, {0, 1, 2}.

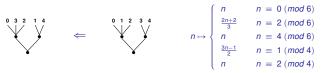


41/43

The generators of $\mathcal{G}_\mathcal{T}$

From \mathcal{KP}_3 The bijection from MacLane's hexagon $(\sigma \star Id)\alpha\sigma = \alpha(Id \star \sigma)\alpha^{-1}$

From \mathcal{KP}_5 A mapping between *edges* of the fifth⁹ permutoassociahedron.



All of these decompose into composites & generalised conjunctions of $\alpha, \sigma, \gamma, \gamma_b$.

⁹Caution : KP_n is not **simple**, for $n \ge 4$.

Using vertex-to-vertex and vertex-to-edge maps, we implement the required edge-to-edge map.

