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A little light reading

On strict extensional reflexivity in compact closed categories

Outstanding Contributions in Logic, (to appear March 2023)

https://arxiv.org/abs/2202.08130

The inverse semigroup theory of elementary arithmetic

(submitted 2022)

www.arxiv.org/abs/2206.07412

From a conjecture of Collatz to Thompson’s group F, via a conjunction of Girard

(submitted 2022)

www.arxiv.org/abs/2202.04443

Congruential functions via categorical coherence, (submitted 2022)

Operads, Groups, Monoids, & Conjectures. (Draft manuscript)
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FRACTRAN – syntax and semantics

A programming language introduced by John H. Conway (1987)

Syntax Programs are (finite?) lists of positive rationals :
„

P0

Q0
,

P1

Q1
,

P2

Q2
,

P3

Q3
, . . .

ȷ

Execution Input is a positive natural number n P N`

The iterated step :

Multiply n by each P0
Q0

, P1
Q1

, P2
Q2

, P3
Q3

, . . . in turn, until

a whole number n ˆ
Pj
Qj

P N` is found.

replace n by this number n Ð n ˆ
Pj
Qj

Conditional looping The above step is repeated,

until the end of the list is reached.

Output Either :
1 The final value of n.
2 The sequence of values n takes on during execution.
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An example FRACTRAN program

FRACTRAN is computationally universal

— it can simulate e.g. Turing Machines, or pure untyped λ-calculus

Conway gave the following example :
„

17
91

,
78
85

,
19
51

,
23
38

,
29
33

,
77
29

,
95
23

,

77
19

,
1

17
,

11
13

,
13
11

,
15
2

,
1
7

,
55
1

ȷ

On input n “ 2, this program fails to terminate1. The powers of two in the infinite
sequence generated are :

22, . . . , 23, . . . , 25, . . . , 27, . . . , 211, . . . , 213, . . . , 217, . . . , 219, . . . , 223, . . . , 229, . . .

We recover the list : r2p : p P Primess.

Fun exercise : What is the action of the program given by i/ Inverting every fraction, ii/ reversing the list, iii/ doing both ??

1First proved by Euclid, 350 BCE
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Registers and conditionals from p-adic norms

(The F.T.A.) Every n ě 1 admits a unique prime decomposition :

n “ 2x0 ˆ 3x1 ˆ 5x2 ˆ 7x3 ˆ 11x4 ˆ . . .

where a finite number of these txj ujPN are non-zero. Think of these as registers.

Each fraction becomes a conditional increment and branch

53 ˆ 112

33 ˆ 71

COND px1 ě 3 AND x3 ě 1q

tx2 ÞÑ x2 ` 3;
x4 ÞÑ x4 ` 2;
BRANCH; u

Conditionals ‘consume resources’ :

Each (successful) conditional pxj ě Mq decrements

the register by the test value xj ÞÑ xj ´ M.

Taking reciprocals interchanges conditionals/decrements with instructions/increments.
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Motivation?

FRACTRAN came out of Conway’s work2 on undecidability in elementary arithmetic

“Unpredictable Iterations” – J. H. Conway (1972)

This was demonstrated via the halting problem, based on

computational universality of iterative problems on congruential functions.

Functions defined “piece-wise linearly on modulo classes”

A function f : N Ñ N is congruential when there exists a set of modulo classes
tAjN ` Bj u such that

f pnq “
Xin ` Yi

Zi
where n ” Bi mod Ai

2See also “On E. L. Post’s Tag problem” – S. Maslov (1964)
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Some non-trivial motivating examples

1 The Notorious Collatz Conjecture: n ÞÑ

#

n
2 n even,

3n`1
2 n odd.

(Conjecture: every iterated sequence eventually arrives at 1).
2 The Original Collatz Conjecture (L. C., unpublished notebooks, 1 July, 1932,

as described by J. Lagarias (1985)).

J. Conway’s ‘Amusical Permutation’

The congruential bijection γpnq “

$

’

&

’

%

2n
3 n ” 0 mod 3,

4n´1
3 n ” 1 mod 3,

4n`1
3 n ” 2 mod 3,

(Conjecture: This function has infinite orbits – the orbit of 8 is 8).

Conway described 2. (the OCC) as,
“The best candidate we have for a true but unprovable statement.”
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Conjectures as code??

Both the N.C.C. and the O.C.C. are undecided – possibly undecidable3.

Can we nevertheless understand them better,

by interpreting them as FRACTRAN programs?

A correspondence of Conway:

Every FRACTRAN program implements a purely multiplicative congruential function

f pnq “
Xi

Yi
n ` 0 n ” Bi mod Ai

. . . rather neatly ruling out his motivating examples.

A question: Instead of looking at simple procedural languages, should we interpret
congruential functions via (categorical) logic / lambda calculus??

3Although we could never prove undecidability(!)
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The domain of congruential functions

Congruential functions are defined piece-wise linearly on
dissections of N into disjoint modulo classes.

Exact Covering Systems (P. Erdös et al., 1950s - present)

An E.C.S. is an indexed family of modulo classes C “ tAjN ` Bj ujPJ where:

N “
Ť

jPJ AjN ` Bj

pAiN ` Bi q X pCjN ` Dj q “ H @ i ‰ j

Instead of indexed sets, we should take a more dynamical, algebraic view,

and define them via arrows in a category (monoid).

A complete triviality Each modulo class AjN ` Bj of an e.c.s. is countably infinite,

and so in 1:1 correspondence with N itself.

Which arrows exhibit these correspondences,
& what properties must they satisfy?
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Dynamical Algebras via exact covering systems (I)

Let C “ tAiN ` Bi u
n
i“1 be an exact covering system

1 AiN ` Bi is bijective with N for all i “ 1..n

This is exhibited by the injection : pi pnq
def .
“ Ain ` Bi

2 Elements of C are pairwise disjoint

becomes the condition : imppi q X imppj q “ H @ i ‰ j

3 Elements of C cover the whole of N

is equivalent to :
n

ď

i“1

imppi q “ N
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Dynamical Algebras via exact covering systems (II)

Instead of discussing domains and images . . .

We work with the ‘symmetric inverse monoid’ IpNq of partial injective functions

f pxq “ f px 1
q ñ x “ x 1 provided both are defined.

and their unique generalised inverses f pxq “ y ô f ˚
pyq “ x

The generalised inverse of pj is given by

p˚
j pnq “

# n´Bj
Aj

n ” Bj mod Aj

K otherwise

The required conditions are the defining relations of the n-th dynamical algebra :

p˚
j pi “

#

Id i “ j

H i ‰ j
and

n
ÿ

i“1

pip˚
i “ Id

where ‘sum’ is union of partial functions with disjoint domains / images.
(Categorically, “sum” is the join w.r.t. the poset-enrichment of the category of partial injective functions).

peter.hines@york.ac.uk Category theory in arithmetic www.peterhines.info 11 / 43



Congruential functions in logic & lambda calculii

Given an exact covering system tAiN ` Bi u
n´1
i“0 , the corresponding partial injections

p0 , p1 , . . . , pn´1 : N Ñ N

generate a copy of the n-th dynamical algebra (a.k.a. Nivat & Perot’s n-th

polycyclic monoid), as (partial) congruential functions.

These appear in a series of (closely related) logical / computational models :

M.E.L.L. and system F Geometry of Interaction I and II
– J.-Y. Girard (1988,1990),

untyped lambda calculus Local and asynchronous β-reduction
– V. Danos & L. Regnier (1992),

combinatory logic GoI and linear combinatory algebra
– S. Abramsky, E. Hagverdi, P. Scott (2002),

. . .

The examples that motivated Conway arise when

we consider the category theory behind these models.
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A categorically significant example

In J.-Y. Girard’s Geometry of Interaction system (Parts I, II) :

Propositions are modelled by partial injective functions – elements of IpNq.

Conjunction is defined in terms of the two-generator dynamical algebra,
based on the odd-even dissection N “ 2N Y 2N ` 1.

Expanding out his definition, we get :

pf ‹ gqp2nq “ 2.f pnq

pf ‹ gqp2n ` 1q “ 2.gpnq ` 1

A simple description, based on Hilbert’s Grand Hotel

This “writes two functions as a single function”, by

replicating their behaviour on the even and odd numbers respectively.

Key point : Girard’s conjunction p ‹ q : IpNq ˆ IpNq ãÑ IpNq is a (semi-monoidal)
categorical tensor on a monoid.
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Congruential Canonical Isomorphisms

Girard’s conjunction cannot be strictly associative

Strict associativity of a faithful (injective) tensor on a monoid
ðñ

The unique object of the monoid is the unit object.

Coherence & Strictification for Self-Similarity
Journal Homotopy & Related Structures (P.M.H. 2016)

There is a non-trivial natural isomorphism p ‹ p ‹ qq ñ pp ‹ q ‹ q

αpa ‹ pb ‹ cqq “ ppa ‹ bq ‹ cqα @ a, b, c P IpNq

whose unique component (the associator) αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4,

is a congruential function, satisfying MacLane’s pentagon condition

α2
“ pα ‹ Idq α pId ‹ αq
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Collatz-like problems for canonical isomorphisms?

Question :

Can we decide whether orbits of natural numbers under the
associativity isomorphism α are finite or infinite?

The associator α has disappointingly simple behaviour under iteration :

n is even αpnq “ 2n ą n for all n ‰ 0

n is odd Two possibilities :
1 αpnq is odd ñ αpnq ă n
2 αpnq is even.

All orbits, apart from the fixed point αp0q “ 0, are infinite.

We see similar disturbingly trivial behaviour under iteration for arbitrary associativity
isomorphisms4

4i.e. components of natural isomorphisms between k -fold bracketings of Girard’s conjunction.
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Briefing for a descent into group theory

The structure group for the associativity identity, P. Dehornoy (1996)

Given a tensor on a monoid, the associativity isomorphisms form a group, isomorphic
to R. Thompson’s group F “ xXj : XjXk X ´1

j “ Xk´1 @ j ă k ´ 1 P Ny.

A suitable generating set is given by

X0 “ α , X1 “ pId ‹ αq , X2 “ Id ‹ pId ‹ αq , . . .

since
αpId ‹ pId ‹ Xj qqα´1

“ pId ‹ Idq ‹ α “ Id ‹ α

X0,X1,X2, . . . can be thought of as: “α replicated on

2N ` 1 , 4N ` 3 , 8N ` 7 , , . . .

and the identity elsewhere.”

Again, all orbits are either infinite or fixed points.
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Characterising canonical isomorphisms for Girard’s conjunction

A standard result

The above ‘infinite presentation’ of Thompson’s F is not minimal;

X0 and X1 suffice to generate the whole group.

Corollary The two bijections

αpnq “

$

’

&

’

%

2n n pmod 2q “ 0
n ` 1 n pmod 4q “ 1
n´1

2 n pmod 4q “ 3
pId ‹ αqpnq “

$

’

’

’

&

’

’

’

%

n n pmod 2q “ 0
2n ´ 1 n pmod 4q “ 1
n ` 2 n pmod 8q “ 3
n´1

2 n pmod 8q “ 7

generate a copy of Thompson’s group F , and so capture all canonical associativity
isomorphisms for ‹ .

None of these have interesting behaviour under iteration!
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An important question(!)

Are congruential canonical isomorphisms always so uninteresting5??

“Given any n objects of a monoidal category, the canonical associativity
isomorphisms give a commuting diagram whose shape is the 1-skeleton of
the nth associahedron Kn”. — M. Kapranov (1993)

The claim :

We see non-trivial behavioura when we move off the 1-skeleton, and consider

commuting diagrams of maps between more general facets of associahedra.

aPrecisely, the operators of Collatz that motivated Conway . . .

5from an iterative, rather than group-theoretic viewpoint!
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An unbiased series of conjunctions

Girard gave a binary model of conjunction p ‹ q : IpNq ˆ IpNq ãÑ IpNq.

“pa ‹ bq replicates a, b on the congruence classes 2N, 2N ` 1 respectively”.

We draw this as
‚ ‚

‚

There is an obvious ternary analogue, p ‹ ‹ q : IpNq ˆ IpNq ˆ IpNq ãÑ IpNq

pa ‹ b ‹ cqp3n ` iq “

$

&

%

3.apnq i “ 0
3.bpnq ` 1 i “ 1
3.cpnq ` 2 i “ 2

“Replicate a, b, c on the congruence classes 3N , 3N ` 1 , 3N ` 2 respectively”.

We draw this as
‚ ‚ ‚

‚
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The general case :

For any k ě 1, we form the k th unbiased conjunction by :

pf0 ‹ . . . ‹ fk´1qpkn ` iq “ k .fi pnq ` i where i “ 0, 1, 2, . . . , k ´ 1

Alternatively & equivalently,

pf0 ‹ . . . fk´1qpxq “ k .fi

ˆ

x ´ i
k

˙

` i where x ” i mod k

This gives, for any k ą 0, an injective homomorphism IpNq
ˆk

ãÑ IpNq that :
replicates f0 , f1 , . . . , fk´1 on the congruence classes modulo k

i.e. tkN , kN ` 1 , . . . , kN ` pk ´ 1qu

For k “ 1, 2, 3, 4, . . ., we draw the unbiased conjunctions as
"

‚

‚

, ‚ ‚

‚

, ‚ ‚ ‚

‚

, ‚ ‚ ‚ ‚

‚

, . . .

*

We may compose these, to build an operad.
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Composing elementary conjunctions

These ‘compose by substitution’ to give an operad GC of generalised conjunctions.
Each k -leaf tree determines an injective hom. IpNq

ˆk
ãÑ IpNq.

¨ ¨ ¨

¨ ¨

¨ ¨

¨

: IpNq
ˆ5

ãÑ IpNq

pf0, f1, f2, f3, f4q ÞÑ ppf0 ‹ pf1 ‹ f2 ‹ f3qq ‹ f4q

More formally :

Consider the (non-symmetric) endomorphism operad of IpNq within the category
pInv,ˆq of inverse monoids, with Cartesian product. This contains one unbiased
conjunction of each arity ą 0.

These generate the sub-operad GC of generalised conjunctions.
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A freely generated operad

Claim : The operad GC is isomorphic to the operad RPT of rooted planar trees.

Thus

It is freely generated by the unbiased conjunctions.

Every distinct rooted planar tree determines a distinct generalised conjunction.

The n-ary operations GCn are in 1:1 correspondence with

facets of the nth associahedron Kn.

To be proved :

Each tree in RPTk determines a distinct homomorphism IpNq
ˆk

ãÑ IpNq.
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Back to simple arithmetic!

The tree

¨ ¨ ¨

¨ ¨

¨ ¨

¨

defines a homomorphism : IpNq
ˆ5

ãÑ IpNq

In the generalised conjunction ppf0 ‹ pf1 ‹ f2 ‹ f3qq ‹ f4q, the action of each fj is mapped :

from The whole of the natural numbers N

to Some modulo class AjN ` Bj .

For example : f3 is ‘replicated’ on the modulo class 12N ` 10.

Obvious Question:

How do we derive these coefficients from the tree?
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A root and branch approach

Deriving 12N ` 10, from the leaf-to-root path :

f1 f2 f3

f0 ¨ Branch number 2 of 3

¨ f4 Branch number 1 of 2

¨ Branch number 0 of 2

Multiplicative coefficient : 12 “ 3 ˆ 2 ˆ 2

Additive coefficient : (Decimal) Base 3 Base 2 Base 2
10 “ 2 1 0

Positional mixed-radix number systems

First formal study by G. Cantor, Über einfache Zahlensysteme (1869)
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Covering the Numbers with Trees

Rooted Planar Trees are uniquely determined by the addresses of their leaves

leaf1 leaf2 leaf3

leaf0 ¨

¨ leaf4

¨

leaf0 p0, 2q p0, 2q 4N
leaf1 p0, 3q p1, 2q p0, 2q 12N ` 2
leaf2 p1, 3q p1, 2q p0, 2q 12N ` 6
leaf3 p2, 3q p1, 2q p0, 2q 12N ` 10
leaf4 p1, 2q 2N ` 1

which uniquely determine ordered exact covering systems, such as

4N , 12N ` 2 , 12N ` 6 , 12N ` 10 , 2N ` 1

Corollaries:

1 Distinct trees determine distinct homomorphisms, so GC – RPT.

2 Distinct k -leaf trees determine distinct realisations of
the k -th dynamical algebra.
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Mapping between generalised conjunctions

The operations of GCk are homomorphisms (functors).

Given generalised conjunctions T ,U : IpNq
ˆk

ãÑ IpNq, how can we find

(well-behaved) natural isomorphisms between them?

IpNq
ˆk

T

))

U

55 IpNq??
��

Convention : As generalised conjunctions are monoid homomorphisms,
natural transformations have a single component.

We identify nat. iso.s with their unique component in IpNq.
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Congruential functions as natural isomorphisms

Consider the generalised conjunctions6 T ,U : IpNq
ˆ5

ãÑ IpNq

T “

¨ ¨ ¨

¨ ¨

¨ ¨

¨

U “

¨ ¨ ¨ ¨

¨ ¨ ¨

¨

We build a natural isomorphism ηT ,U : T ñ U by monotonically mapping between their
respective ordered exact covering systems :

leaf 0 4N ÞÑ 6N
leaf 1 12N ` 2 ÞÑ 6N ` 3
leaf 2 12N ` 6 ÞÑ 3N ` 1
leaf 3 12N ` 10 ÞÑ 6N ` 2
leaf 4 2N ` 1 ÞÑ 6N ` 4

This gives, as desired,

ηT ,U .ppa ‹ pb ‹ c ‹ dqq ‹ eq “ ppa ‹ bq ‹ c ‹ pd ‹ eqq.ηT ,U

6edges of the fifth associahedron K5
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Concrete formulæ for congruential natural isomorphisms

Given two ordered exact covering systems, determined by k -ary generalised
conjunctions T ,U

leaf 0 A0N ` B0 ÞÑ C0N ` D0

leaf 1 A1N ` B1 ÞÑ C1N ` D1

...
...

...

leaf k ´ 1 Ak´1N ` Bk´1 ÞÑ Ck´1N ` Dk´1

The natural isomorphism ηT ,U is the congruential bijection

ηT ,Upxq “
1
Aj

ˆ

Cjx `

ˇ

ˇ

ˇ

ˇ

Aj Bj

Cj Dj

ˇ

ˇ

ˇ

ˇ

˙

where x ” Bj mod Aj

Think of these as, “mapping between distinct realisations of the k -th dynamical
algebra”.
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Some context :

These are a special kind of congruential function, where

each element of an e.c.s. is mapped linearly to another modulo class.

A computational interpretation :

Functional equations associated with congruential functions,

Theoretical Computer Science S. Berckel (1994)

Pure group theory :

A simple group given by interchanging residue classes of the integers

Mathematische Zeitschrift S. Kohl (2010)

Close connections with the N.C.C. :

The [3x ` 1] Collatz conjecture in a group-theoretic context

Journal of Group Theory S. Kohl (2017)

Normal forms & formulæ for composition :

The inverse semigroup theory of elementary arithmetic

www.arxiv.org/2206.07412 P.M.H. (2022)
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A groupoid of generalised conjunctions

Observe that :

ηT ,T “ Id P IpNq

ηT ,UηS,T “ ηS,U

η´1
T ,U “ ηU,T

We have a posetal groupoid7 Cω of functors / natural iso.s, given by :

Objects Generalised conjunctions (operations of GC)

Arrows CωpT ,Uq “

$

&

%

tηT ,Uu T ,U have the same arity,

H otherwise.

A reminder :

Arrows are natural isomorphisms between homomorphisms IpNq
ˆk

ãÑ IpNq

determined by their unique components in IpNq

7within which, ‘all diagrams commute’
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Generalised conjunctions within a posetal category

Claim: As well as being the objects of the posetal groupoid Cω,

generalised conjunctions are also functors
śk Cω Ñ Cω.

On Objects : this is defined by operadic composition

pT0 ‹ . . . ‹ Tx q
def .
“

T0 T1

...

Tx

¨

On Arrows : We take the generalised conjunction of unique components.

To check functoriality :

ηpT0‹...‹Tx q,pU0‹...‹Ux q “ pηT0,U0 ‹ . . . ‹ ηTx ,Ux q

T0

ηT0,U0

��

T1

ηT1,U1

��

. . . Tk

ηT0,U0

��
U0 U1 . . . Ux
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Generalised conjunctions within a posetal category

Claim: As well as being the objects of the posetal groupoid Cω,

generalised conjunctions are also functors
śk Cω Ñ Cω.

On Objects : this is defined by operadic composition

pT0 ‹ . . . ‹ Tx q
def .
“

T0 T1

...

Tx

¨

On Arrows : We take the generalised conjunction of unique components.

To check functoriality :

ηpT0‹...‹Tx q,pU0‹...‹Ux q “ pηT0,U0 ‹ . . . ‹ ηTx ,Ux q

T0 T1

...

Tx

¨

ηT0,U0
‹...‹ηTx ,Ux +3

U0 U1

...

Ux

¨
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Operads all the way down

Key points :

The groupoid Cω is posetal, with objects in 1:1 correspondence with facets of
associahedra.

There is a unique arrow between any two facets of the same associahedron.

It admits an N`-indexed family of faithful functors :

Id : Cω Ñ Cω
p ‹ q : Cω ˆ Cω Ñ Cω

p ‹ ‹ q : Cω ˆ Cω ˆ Cω Ñ Cω
...

As a very special case, it contains a copy of MacLane’s
posetal monoidal groupoid pW, l q.

Fun question :

What does the endomorphism operada of Cω look like, in the category pCat,ˆq ?

aor functor category thereof . . .
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Commuting diagrams from associahedra
As Cω is posetal, all diagrams over it commute.

There exists a unique arrow between any two objects
iff

they are facets of the same associahedron.

We may build commuting diagrams from paths between arbitrary facets.

Labels on edges are congruential functions.
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Concrete examples : the third associahedron

pp ‹ q ‹ q p ‹ p ‹ qq
αks

p ‹ ‹ qγ5

ai

γ

6>

αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4.
γpnq “

$

’

&

’

%

2n
3 n ” 0 mod 3,

4n´1
3 n ” 1 mod 3,

4n`1
3 n ” 2 mod 3.

γ5pnq “

$

’

&

’

%

4n
3 n ” 0 mod 3,

4n`2
3 n ” 1 mod 3,

2n´1
3 n ” 2 mod 3.

We have already seen these (!)

α : the associativity isomorphism for Girard’s conjunction.

γ : the ‘amusical permutation’, from the Original Collatz Conjecture.

γ5 related to γ by a natural transformation : 1 ` γ5pnq “ γpn ` 1q.

This ‘replicates the behaviour of γ, one step down’.
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From the third to the fourth associahedron

‹ p ‹ p ‹ qq

p ‹ ‹ p ‹ qq

p ‹ q ‹ p ‹ q

pp ‹ q ‹ ‹ q

pp ‹ q ‹ q ‹

pp ‹ ‹ q ‹ q

p ‹ p ‹ qq ‹ p ‹ p ‹ q ‹ q

p ‹ pp ‹ q ‹ q

p ‹ p ‹ ‹ qq

α

α

Id ‹ αα

α ‹ Id

γ´1

γ5

γ´1γ5

Id ‹ γ´1

Id
‹
γ 5

γ´1

γ5

γ
´

1 ‹
Id

γ
5

‹
Id

γ ´1
γ

5

pγ
´

1
5

‹
Idqγ 5

pγ
´

1
‹

Id
qγ

5

γ´1
pId ‹ γ5q

γ
´

1 pI
d

‹
γ

q
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A Convergent Series?

MacLane’s pentagon is the 1-skeleton of Stasheff’s associahedron K4;

we understand the rest of the pentagram in similar terms.

Mapping between Vertices Mapping between Mapping between Edges
Edges & Vertices

The associator for Girard’s p ‹ q Collatz’s bijection(s) Girard-Collatz composites

These are natural isomorphisms in a posetal functor category
and also, congruential bijections on the natural numbers.
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From associativity to symmetry

One of Conway’s motivating examples (the O.C.C.) arises from :

Coherence for associativity

Re-bracketing generally

The other motivating example (the N.C.C.) is seen when we extend to :

Coherence for symmetry & associativity,

Non-symmetric operads.

The core operator from the 3x ` 1 problem is not a bijection!

The problem has, however, been characterised in terms of (congruential) bijections

Claim : these are coherence isomorphisms
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A relevant reference(!)

Journal of Group Theory, Stefan Kohl (2017)

“The [Notorious] Collatz conjecture in a group-theoretic context”

Many thanks to Matt Brin (Binghampton) for bringing this to my attention!

Introduces a three-generator group of permutations GT Ď IpNq satisfying :

“GT acts transitively8 on N iff the 3x ` 1 conjecture is true”.

The generators – and hence all elements of GT – are congruential bijections.

Claim : Once we include symmetry, these are natural isomorphisms between
generalised conjunctions, describing coherence for p ‹ q and p ‹ ‹ q.

8For all x , y P N, there exists f P GT such that f pxq “ y .
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What has been missing . . .

Girard’s conjunction ‹ : IpNq ˆ IpNq Ñ IpNq is a symmetric tensor.

σpf ‹ gq “ pg ‹ f qσ @ g, f P IpNq

where the symmetry iso. σ P IpNq is given by : σpnq “

#

n ` 1 n even,

n ´ 1 n odd.

Coherence for symmetry requires MacLane’s hexagon condition :

ασα “ pσ ‹ IdqαpId ‹ σq

which arises from the 1-skeleton of Kapranov’s third permutoassociahedron, KP3,
based on symmetric operads with an action of Spt0, . . . , k ´ 1uq on leaves of trees.
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MacLane’s hexagon for Girard’s conjunction

Vertices are bracketings of orderings of three symbols, t0, 1, 2u.

0 1

2

2

0 12 0

1

0 2

1

0

1 2

0

2 1

n ÞÑ

$

’

’

&

’

’

%

n n ” 0 pmod 4q

2n n ” 1 pmod 2q

n
2 n ” 2 pmod 4q

σ

α

σ ‹ Id

α´1

Id ‹ σ

α
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The generators of GT

From KP2 The symmetry isomorphism for Girard’s conjunction, σ P IpNq

1 0

ð
0 1

n ÞÑ

#

n ` 1 n ” 0 pmod 2q

n ´ 1 n ” 1 pmod 2q

From KP3 The bijection from MacLane’s hexagon pσ ‹ Idqασ “ αpId ‹ σqα´1

0 2

1 ð

0 1

2 n ÞÑ

$

’

’

&

’

’

%

n n ” 0 pmod 4q

2n n ” 1 pmod 2q

n
2 n ” 2 pmod 4q

From KP5 A mapping between edges of the fifth9 permutoassociahedron.

0 3 2 1 4

ð

0 1 2 3 4

n ÞÑ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

n n ” 0 pmod 6q

2n`2
3 n ” 2 pmod 6q

n n ” 4 pmod 6q

3n´1
2 n ” 1 pmod 4q

n n ” 2 pmod 4q

All of these decompose into composites & generalised conjunctions of α, σ, γ, γ5.

9Caution : KPn is not simple, for n ě 4.
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That third generator, via canonical isomorphisms

Using vertex-to-vertex and vertex-to-edge maps, we implement
the required edge-to-edge map.

p 0 ‹ 1 ‹ 2q ‹ p 3 ‹ 4q

γ‹Idqy

3rd generator +3

n ÞÑ

$

’

’

’

’

&

’

’

’

’

%

n n pmod 6q “ 0
2n`2

3 n pmod 6q “ 2
n n pmod 6q “ 4
3n´1

2 n pmod 4q “ 1
n n pmod 4q “ 2

p 0 ‹ 3 ‹ 2q ‹ p 1 ‹ 4q

p 0 ‹ p 1 ‹ 2qq ‹ p 3 ‹ 4q

α

��

pp 0 ‹ 3q ‹ 2q ‹ p 1 ‹ 4q

γ´1
5

‹Id

em

pp 0 ‹ p 1 ‹ 2qq ‹ 3q ‹ 4

α´1‹Id

��

ppp 0 ‹ 3q ‹ 2q ‹ 1q ‹ 4

α´1

KS

p 0 ‹ pp 1 ‹ 2q ‹ 3qq ‹ 4

pId‹σq‹Id

%-

pp 0 ‹ 3q ‹ p 2 ‹ 1qq ‹ 4

α‹Id

KS

p 0 ‹ p 3 ‹ p 1 ‹ 2qqq ‹ 4
pId‹pId‹σqq‹Id

+3 p 0 ‹ p 3 ‹ p 2 ‹ 1qqq ‹ 4

α‹Id
19
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