The Mockingbird lattice

Samuele Giraudo

LaCIM, Université du Québec à Montréal

16th Workshop - Computational Logic and Applications
École Polytechnique
France

January 13, 2023

Outline

1. Combinatory logic
2. Mockingbird lattices
3. Enumerative properties

Outline

1. Combinatory logic

Applicative terms

Let \mathfrak{G} be a set, called alphabet.
A $\underline{\mathfrak{G} \text {-term is either }}$
■ a variable \mathbf{x}_{i} from the set $\mathbb{X}_{n}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\}$ for an $n \geqslant 0$;

- a basic combinator \mathbf{X} where $\mathbf{X} \in \mathfrak{G}$;

■ a pair $\left(\mathfrak{t}_{1}, \mathfrak{t}_{2}\right)$ where \mathfrak{t}_{1} and \mathfrak{t}_{2} are \mathfrak{G}-terms, denoted by $\mathfrak{t}_{1} \star \mathfrak{t}_{2}$.
Let $\mathfrak{T}(\mathfrak{G}):=\bigsqcup_{n \geqslant 0} \mathfrak{T}(\mathfrak{G})(n)$ where $\mathfrak{T}(\mathfrak{G})(n)$ is the set of the \mathfrak{G}-terms having all variables in \mathbb{X}_{n}.

> - Example -

The tree of the left is the tree representation of the \mathfrak{G}-term

$$
\left(\mathbf{A} \star\left(\mathrm{x}_{1} \star \mathbf{A}\right)\right) \star\left(\left(\left(\mathbf{B} \star \mathrm{x}_{2}\right) \star \mathrm{x}_{1}\right)\right)
$$

where $\mathfrak{G}:=\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$.
The short representation is obtained by considering that \star associates to the left and by removing the superfluous parentheses:

$$
\mathbf{A}\left(\mathrm{x}_{1} \mathbf{A}\right)\left(\mathbf{B} \mathrm{x}_{2} \mathrm{x}_{1}\right) .
$$

Combinatory logic systems

A combinatory logic system (CLS) is a pair $(\mathfrak{G}, \rightarrow)$ where \rightarrow is a binary relation on $\mathfrak{T}(\mathfrak{G})$ such that for each $\mathbf{X} \in \mathfrak{G}$, there is $n \geqslant 1$ and $\mathrm{t}_{\mathbf{X}} \in \mathfrak{T}(\emptyset)(n)$ such that

$$
\mathbf{X} \mathrm{x}_{1} \ldots \mathrm{x}_{n} \rightarrow \mathrm{t}_{\mathrm{X}} .
$$

The context closure of \rightarrow is the binary relation \Rightarrow on $\mathfrak{T}(\mathfrak{G})$ such that $\mathfrak{t} \Rightarrow \mathfrak{t}^{\prime}$ if \mathfrak{t}^{\prime} can be obtained from t by replacing a pattern $\mathbf{X} x_{1} \ldots x_{n}$ by t_{x}.

- Example -

Let the CLS $(\mathfrak{G}, \rightarrow)$ such that $\mathfrak{G}:=\{\mathbf{M}, \mathbf{T}\}$ where $\mathbf{M} \mathrm{x}_{1} \rightarrow \mathrm{x}_{1} \mathbf{x}_{1}$ and $\mathbf{T} \mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \mathrm{x}_{2} \mathrm{x}_{1}$. We have

$$
\left(\underline{\mathbf{M}\left(x_{2} \mathbf{M}\right)}\right)\left(\mathbf{T} x_{2} x_{3}\right) \Rightarrow\left(\underline{\left(x_{2} \mathbf{M}\right)\left(x_{2} \mathbf{M}\right)}\right)\left(\mathbf{T} x_{2} x_{3}\right)
$$

$$
\left(\mathbf{M}\left(\mathbf{x}_{2} \mathbf{M}\right)\right)\left(\underline{\mathbf{T} \mathrm{x}_{2} \mathrm{x}_{3}}\right) \Rightarrow\left(\mathbf{M}\left(\mathrm{x}_{2} \mathbf{M}\right)\right)\left(\underline{\mathrm{x}_{3} \mathrm{x}_{2}}\right)
$$

The S, K, I-system

Let the system [Curry, 1930] made on the three basic combinators \mathbf{S}, \mathbf{K}, and \mathbf{I}, satisfying

$$
\mathbf{S} \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \rightarrow \mathrm{x}_{1} \mathrm{x}_{3}\left(\mathrm{x}_{2} \mathrm{x}_{3}\right), \quad \mathbf{K} \mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \mathrm{x}_{1}, \quad \mathbf{I} \mathrm{x}_{1} \rightarrow \mathrm{x}_{1} .
$$

- Example -

Here is a sequence of computation:

This CLS is Turing-complete: there are algorithms to emulate any λ-term by a term of this CLS. These algorithms are called abstraction algorithms [Rosser, 1955], [Curry, Feys, 1958].

Rewrite graphs

Given a CLS $\mathcal{C}:=(\mathfrak{G}, \rightarrow)$, let

- \preccurlyeq be the reflexive and transitive closure of \Rightarrow;
- \equiv be the reflexive, symmetric, and transitive closure of \Rightarrow;
- for any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, let $\mathfrak{t}^{*}:=\left\{\mathfrak{t}^{\prime} \in \mathfrak{T}(\mathfrak{G}): \mathfrak{t} \preccurlyeq \mathfrak{t}^{\prime}\right\}$. The graph $\left(\mathfrak{t}^{*}, \Rightarrow\right)$ is the rewrite graph of \mathfrak{t}.

- Example -

Let the CLS $(\mathfrak{G}, \rightarrow)$ such that $\mathfrak{G}:=\{\mathbf{I}\}$ and $\mathbf{I x}_{1} \rightarrow \mathrm{x}_{1}$.

This is the rewrite graph of $\mathbf{I I}(\mathbf{I I I})$.

We have $\mathbf{I}(\mathbf{I I I}) \preccurlyeq \mathbf{I}$ and $\mathbf{I}(\mathbf{I I I}) \npreceq \mathbf{I I}(\mathbf{I I})$.
It is possible to prove that for any $\mathfrak{t}, \mathfrak{t}^{\prime} \in \mathfrak{T}(\mathfrak{G}), \mathfrak{t} \equiv \mathfrak{t}^{\prime}$.

The Enchanted Forest of combinator birds

In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a great number of basic combinators with their rules are listed, forming the Enchanted forest of combinator birds.

Here is a sublist:

- Identity bird: $\mathbf{I} \mathrm{x}_{1} \rightarrow \mathrm{x}_{1}$
- Mockingbird: $\mathbf{M} \mathrm{x}_{1} \rightarrow \mathrm{x}_{1} \mathrm{x}_{1}$
- Kestrel: $\mathbf{K ~}_{1} \mathbf{x}_{2} \rightarrow \mathbf{x}_{1}$
- Thrush: $\mathrm{T}_{\mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \mathrm{x}_{2} \mathrm{x}_{1}}$
- Mockingbird 1: $\mathbf{M}_{1} \mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \mathrm{x}_{1} \mathrm{X}_{1} \mathrm{x}_{2}$

■ Warbler: $\mathrm{W} \mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{2}$

- Lark: $\mathbf{L} x_{1} x_{2} \rightarrow x_{1}\left(x_{2} x_{2}\right)$
- Owl: $\mathbf{O} \mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \mathrm{x}_{2}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)$
- Turing bird: $\mathbf{U} \mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \mathrm{x}_{2}\left(\mathrm{x}_{1} \mathrm{x}_{1} \mathrm{x}_{2}\right)$

■ Cardinal: $\mathrm{C}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \rightarrow \mathrm{x}_{1} \mathrm{x}_{3} \mathrm{x}_{2}$

- Vireo: $V \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \rightarrow \mathrm{x}_{3} \mathrm{x}_{1} \mathrm{x}_{2}$
- Bluebird: $\mathbf{B} \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \rightarrow \mathrm{x}_{1}\left(\mathrm{x}_{2} \mathrm{x}_{3}\right)$
- Starling: $\boldsymbol{S} \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \rightarrow \mathrm{x}_{1} \mathrm{x}_{3}\left(\mathrm{x}_{2} \mathrm{x}_{3}\right)$
- Jay: J $x_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4} \rightarrow \mathrm{x}_{1} \mathrm{x}_{2}\left(\mathrm{x}_{1} \mathrm{x}_{4} \mathrm{x}_{3}\right)$

Rewrite graph of L

In the CLS containing only the Lark \mathbf{L}, the rewrite graphs of closed terms of degrees up to 5 and up to 4 rewrite steps have the shape

Rewrite graph of S

In the CLS containing only the Starling \mathbf{S}, the rewrite graphs of closed terms of degrees up to 6 and up to 11 rewrite steps have the shape

Usual questions

Let \mathcal{C} be a CLS.

- Word problem -

Is there an algorithm to decide, given two terms \mathfrak{t} and \mathfrak{t}^{\prime} of \mathcal{C}, if $\mathfrak{t} \equiv \mathfrak{t}^{\prime}$?
See [Baader, Nipkow, 1998], [Statman, 2000].

■ Yes for the CLS on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
■ Yes for the CLS on W [Sprenger, Wymann-Böni, 1993].
■ Yes for the CLS on $\mathbf{M}_{\mathbf{1}}$ [Sprenger, Wymann-Böni, 1993].

- Open for the CLS on \mathbf{S} [RTA Problem \#97, 1975].

- Strong normalization problem -

Is there an algorithm to decide, given a term \mathfrak{t} of \mathcal{C}, if all rewrite sequences from \mathfrak{t} are finite?

- Yes for the CLS on \mathbf{S} [Waldmann, 2000].

■ Yes for the CLS on \mathbf{J} [Probst, Studer, 2000].

Order theoretical questions

A lattice is a partial order (poset) wherein each pair $\left\{x, x^{\prime}\right\}$ of elements has a greatest lower bound $x \wedge x^{\prime}$ and a least upper bound $x \vee x^{\prime}$.

Let \mathcal{C} be a CLS. A \mathfrak{G}-term \mathfrak{t} has

1. the poset property if $\left(\mathfrak{t}^{*}, \preccurlyeq\right)$ is a poset;
2. the lattice property if $\left(\mathfrak{t}^{*}, \preccurlyeq\right)$, is a lattice.

This CLS has the poset (resp. lattice) property if all terms of \mathcal{C} have the poset (resp. lattice) property.

- Poset and lattice properties -

Is there an algorithm to decide, given a term \mathfrak{t} of \mathcal{C}, if \mathfrak{t} has the poset (resp. lattice) property?
Given a term t of \mathcal{C}, perform a combinatorial study of $\left(t^{*}, \preccurlyeq\right)$ as the enumeration of its elements and intervals.

- A new source of posets -

Use combinatory logic as a source to build original posets.

Outline

2. Mockingbird lattices

The Mockingbird system

The Mockingbird system is the CLS \mathcal{C} containing only the Mockingbird \mathbf{M}.
Recall that \mathbf{M} satisfies $\mathbf{M} x_{1} \rightarrow \mathbf{x}_{1} \mathbf{x}_{1}$.
The rewrite graphs of closed terms of \mathcal{C} of degrees up to 4 have the shape

- Proposition [G., 2022] -

The CLS \mathcal{C} has the poset property and each \equiv-equivalence class of \mathcal{C} is finite and contains a greatest and a least element.

Duplicative forests

A duplicative forest is a forest of planar rooted trees where nodes are either black \circ or white 0 .
Let \mathcal{D}^{F} be the set of the duplicative forests and \mathcal{D}^{T} be the set of the duplicative trees.
Let \Rightarrow be the binary relation on \mathcal{D}^{F} such that for any $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathcal{D}^{\mathrm{F}}$, we have $\mathfrak{f} \Rightarrow \mathfrak{f}^{\prime}$ if \mathfrak{f}^{\prime} is obtained by blackening a white node of \mathfrak{f} and then by duplicating its sequence of descendants.

- Example -

The reflexive and transitive closure \ll of \Rightarrow is a partial order relation.
For any $\mathfrak{f} \in \mathcal{D}^{\mathrm{F}}$, let $\mathfrak{f}^{*}:=\left\{\mathfrak{f}^{\prime} \in \mathcal{D}^{\mathrm{F}}: \mathfrak{f} \ll \mathfrak{f}^{\prime}\right\}$.

Lattice of duplicative forests

Let \wedge and \vee be the two binary, commutative, and associative partial operations on \mathcal{D}^{F} defined recursively, for any $\ell \geqslant 0, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{\ell} \in \mathcal{D}^{\mathrm{T}}, \mathfrak{f}_{1}^{\prime}, \ldots, \mathfrak{f}_{\ell}^{\prime} \in \mathcal{D}^{\mathrm{T}}$, and $\mathfrak{f}, \mathfrak{f}^{\prime}, \mathfrak{f}^{\prime \prime} \in \mathcal{D}^{\mathrm{F}}$, by

$$
\begin{aligned}
& \mathfrak{f}_{1} \ldots \mathfrak{f}_{\ell} \wedge \mathfrak{f}_{1}^{\prime} \ldots \mathfrak{f}_{\ell}^{\prime}:=\left(\mathfrak{f}_{1} \wedge \mathfrak{f}_{1}^{\prime}\right) \ldots\left(\mathfrak{f}_{\ell} \wedge \mathfrak{f}_{\ell}^{\prime}\right), \\
& \left.\circ(f) \wedge o\left(f^{\prime}\right):=o\left(f \wedge f^{\prime}\right), \quad o(f) \wedge \circ\left(f^{\prime}\right):=0(f) f^{\prime}\right), \\
& o(\mathfrak{f}) \wedge o\left(f^{\prime} \mathfrak{f}^{\prime \prime}\right):=o\left(\mathfrak{f} \wedge \mathfrak{f}^{\prime} \wedge \mathfrak{f}^{\prime \prime}\right) \text {, } \\
& \mathfrak{f}_{1} \ldots \mathfrak{f}_{\ell} \vee \mathfrak{f}_{1}^{\prime} \ldots \mathfrak{f}_{\ell}^{\prime}:=\left(\mathfrak{f}_{1} \vee \mathfrak{f}_{1}^{\prime}\right) \ldots\left(\mathfrak{f}_{\ell} \vee \mathfrak{f}_{\ell}^{\prime}\right) \text {, } \\
& o(f) \vee o\left(f^{\prime}\right):=o\left(f \vee f^{\prime}\right), \quad o(f) \vee o\left(f^{\prime}\right):=o\left(f \vee f^{\prime}\right), \\
& o(\mathfrak{f}) \vee \boldsymbol{\circ}\left(\mathfrak{f}^{\prime} \mathfrak{f}^{\prime \prime}\right):=\boldsymbol{o}\left(\left(\mathfrak{f} \vee \mathfrak{f}^{\prime}\right)\left(\mathfrak{f} \vee \mathfrak{f}^{\prime \prime}\right)\right) \text {. }
\end{aligned}
$$

Given a duplicative forest \mathfrak{f}, the poset $\left(\mathfrak{f}^{*}, \ll\right)$ is a lattice for the operations \wedge and \vee.

This can be proved by structural induction on duplicative forests.

From Mockingbird terms to duplicative trees

Let $\mathrm{dt}: \mathfrak{T}(\mathfrak{G}) \rightarrow \mathcal{D}^{\mathrm{T}}$ be the map defined recursively, for any $\mathrm{x}_{i} \in \mathbb{X}$ and $\mathfrak{t}, \mathfrak{t}^{\prime} \in \mathfrak{T}(\mathfrak{G})$, by

$$
\begin{gathered}
\operatorname{dt}\left(\mathbf{x}_{i}\right):=\epsilon, \\
\operatorname{dt}(\mathbf{M}):=\epsilon, \\
\operatorname{dt}\left(\mathfrak{t} * \mathfrak{t}^{\prime}\right):= \begin{cases}o\left(\operatorname{dt}\left(\mathfrak{t}^{\prime}\right)\right) & \text { if } \mathfrak{t}=\mathbf{M} \text { and } \mathfrak{t}^{\prime} \neq \mathbf{M}, \\
\left(\operatorname{dt}(\mathfrak{t}) \operatorname{dt}\left(\mathfrak{t}^{\prime}\right)\right) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- Example -

Poset isomorphism

- Proposition [G., 2022] -

For any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, the posets $\left(\mathrm{t}^{*}, \preccurlyeq\right)$ and $\left(\mathrm{dt}(\mathfrak{t})^{*}, \ll\right)$ are isomorphic and dt is such an isomorphism.

- Example -

Let $\mathrm{t}:=\mathbf{M}\left(\mathrm{x}_{1}\left(\mathbf{M} \mathrm{x}_{2}\right)\right)(\mathbf{M M})$.

The Hasse diagram of the poset $\left(t^{*}, \preccurlyeq\right)$.

The Hasse diagram of the poset $\left(\mathrm{dt}(\mathrm{t})^{*}, \ll\right)$.

For any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, the poset $\left(\mathfrak{t}^{*}, \preccurlyeq\right)$ is a finite lattice.

Mockingbird lattices

For any $h \geqslant 0$, the h-right comb tree is the \mathfrak{G}-term \mathfrak{r}_{h} satisfying

$$
\mathfrak{r}_{h}= \begin{cases}\mathbf{M} & \text { if } h=0 \\ \mathbf{M} \mathfrak{r}_{h-1} & \text { otherwise }\end{cases}
$$

The Mockingbird lattice of order h is the lattice $\mathcal{M}(h):=\left(\mathfrak{r}_{h}^{*}, \preccurlyeq\right)$.

- Examples -

0
0

$\mathcal{M}(0)$
$\mathcal{M}(1)$
$\mathcal{M}(2)$
$\mathcal{M}(3)$

$\mathcal{M}(4)$

For any $h \geqslant 0$, the h-ladder is the duplicative tree \mathfrak{l}_{h} satisfying

$$
\mathfrak{l}_{h}= \begin{cases}\epsilon & \text { if } h=0 \\ \circ\left(\mathfrak{l}_{h-1}\right) & \text { otherwise }\end{cases}
$$

When $h \geqslant 1$, the lattice $\mathcal{M}(h)$ is isomorphic to $\left(饣_{h-1}^{*}, \ll\right)$.

Outline

3. Enumerative properties

Number of elements

Let \boxtimes be the Hadamard product of generating series. It satisfies, for two generating series
$A_{1}=\sum_{h \in \mathbb{N}} a_{1}(h) z^{h}$ and $A_{2}=\sum_{h \in \mathbb{N}} a_{2}(n) z^{h}$,

$$
\left(\sum_{h \in \mathbb{N}} a_{1}(h) z^{h}\right) \boxtimes\left(\sum_{h \in \mathbb{N}} a_{2}(h) z^{h}\right)=\sum_{h \in \mathbb{N}} a_{1}(h) a_{2}(h) z^{h} .
$$

- Proposition [G., 2022] -

The generating series $A=\sum_{h \in \mathbb{N}} a(h) z^{h}$ of the cardinalities of $\left(\imath_{h}^{*}, \ll\right), h \geqslant 0$, satisfies

$$
A=1+z A+z(A \boxtimes A) .
$$

The coefficients $a(h), h \geqslant 0$, satisfy $a(0)=1$ and for any $h \geqslant 1$,

$$
a(h)=a(h-1)+a(h-1)^{2} .
$$

The sequence $(a(h))_{h \geqslant 0}$ starts by $1,2,6,42,1806,3263442,10650056950806$ (Sequence A007018).

Number of intervals

- Proposition [G., 2022] -

The generating series $A=\sum_{h \in \mathbb{N}} a(h) z^{h}$ of the numbers of intervals of $\left(\imath_{h}^{*}, \ll\right), h \geqslant 0$ is the series A_{1}, where for any $k \geqslant 1$, the series A_{k} satisfies

$$
A_{k}=1+z\left(A_{k} \boxtimes A_{k}\right)+z \sum_{0 \leqslant i \leqslant k}\binom{k}{i} A_{k+i} .
$$

The coefficients $a_{k}(h), h \geqslant 0$, satisfy $a_{k}(0)=1$ and for any $h \geqslant 1$,

$$
a_{k}(h)=a_{k}(h-1)^{2}+\sum_{0 \leqslant i \leqslant k}\binom{k}{i} a_{k+i}(h-1) .
$$

The sequence $\left(a_{1}(h)\right)_{h \geqslant 0}$ starts by
$1,3,17,371,144513,20932611523,438176621806663544657$.

Number of minimal and maximal elements

A term \mathfrak{t} of \mathcal{C} is minimal (resp. maximal if $\mathfrak{t}^{\prime} \preccurlyeq \mathfrak{t}$ (resp. $\mathfrak{t} \preccurlyeq \mathfrak{t}^{\prime}$) implies $\mathfrak{t}=\mathfrak{t}^{\prime}$.

- Proposition [G., 2022] -

The generating series A of the minimal elements of \mathcal{C} enumerated w.r.t. their degrees satisfies

$$
A=1+z+z A^{2}-z\left(A\left[z:=z^{2}\right]\right) .
$$

The first numbers are $1,1,2,4,12,34,108,344$ (Sequence A343663-semi-identity binary trees).

- Proposition [G., 2022] -

The generating series A of the maximal elements of \mathcal{C} enumerated w.r.t. their degrees satisfies

$$
A=1+z-z A+z A^{2} .
$$

The first numbers are 1, 1, 1, 2, 4, 9, 21, 51 (Sequence A001006 - Motzkin numbers).

Conclusion and perspectives

We have studied a very simple CLS, the Mockingbird system, having nevertheless some rich combinatorics:

- its rewrite graphs are Hasse diagrams of posets;
- all intervals of these posets are lattices;
- these lattices are not graded, not self-dual, and not semidistributive;
- enumerative data is accessible but nontrivial.

Some questions and projects:

1. study, under an order theoretic point of view, some other CLS built from some basic combinators of the Enchanted forest of combinator birds;
2. provide necessary and/or sufficient conditions for a CLS to have the poset or the lattice property;
3. realize some well-known posets (like Tamari lattices, Stanley lattices, or Kreweras lattices) as intervals of posets built from specific CLSs.
