The Mockingbird lattice

Samuele Giraudo

LaCIM, Université du Québec à Montréal

16th Workshop — Computational Logic and Applications École Polytechnique France

January 13, 2023

Outline

1. Combinatory logic

2. Mockingbird lattices

3. Enumerative properties

1. Combinatory logic

Applicative terms

Let \mathfrak{G} be a set, called <u>alphabet</u>.

A $\underline{\mathfrak{G}}$ -term is either

- a <u>variable</u> x_i from the set $X_n := \{x_1, \ldots, x_n\}$ for an $n \ge 0$;
- a <u>basic combinator</u> \mathbf{X} where $\mathbf{X} \in \mathfrak{G}$;
- a pair $(\mathfrak{t}_1, \mathfrak{t}_2)$ where \mathfrak{t}_1 and \mathfrak{t}_2 are \mathfrak{G} -terms, denoted by $\mathfrak{t}_1 \star \mathfrak{t}_2$.

Let $\mathfrak{T}(\mathfrak{G}) := \bigsqcup_{n \ge 0} \mathfrak{T}(\mathfrak{G})(n)$ where $\mathfrak{T}(\mathfrak{G})(n)$ is the set of the \mathfrak{G} -terms having all variables in \mathbb{X}_n .

– Example –

The tree of the left is the tree representation of the &-term

$$(\mathbf{A} \star (x_1 \star \mathbf{A})) \star (((\mathbf{B} \star x_2) \star x_1))$$

 $\begin{array}{c} & & & \\ & & & \\ \mathbf{A} & & & \\ \mathbf{X}_1 & \mathbf{A} & \mathbf{B} & \mathbf{X}_2 \end{array}$

where $\mathfrak{G} := \{A, B, C\}.$

The **short representation** is obtained by considering that \star associates to the left and by removing the superfluous parentheses:

 $\mathbf{A}(\mathbf{x}_1 \, \mathbf{A})(\mathbf{B} \, \mathbf{x}_2 \mathbf{x}_1).$

Combinatory logic systems

A <u>combinatory logic system</u> (CLS) is a pair $(\mathfrak{G}, \rightarrow)$ where \rightarrow is a binary relation on $\mathfrak{T}(\mathfrak{G})$ such that for each $\mathbf{X} \in \mathfrak{G}$, there is $n \ge 1$ and $\mathfrak{t}_{\mathbf{X}} \in \mathfrak{T}(\emptyset)(n)$ such that

$$\mathbf{X} \mathbf{x}_1 \dots \mathbf{x}_n \to \mathfrak{t}_{\mathbf{X}}.$$

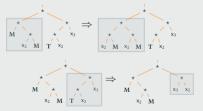
The <u>context closure</u> of \rightarrow is the binary relation \Rightarrow on $\mathfrak{T}(\mathfrak{G})$ such that $\mathfrak{t} \Rightarrow \mathfrak{t}'$ if \mathfrak{t}' can be obtained from \mathfrak{t} by replacing a pattern $\mathbf{X} \mathbf{x}_1 \dots \mathbf{x}_n$ by $\mathfrak{t}_{\mathbf{X}}$.

- Example -

Let the CLS $(\mathfrak{G}, \rightarrow)$ such that $\mathfrak{G} := \{M, T\}$ where $Mx_1 \rightarrow x_1x_1$ and $Tx_1x_2 \rightarrow x_2x_1$. We have

$$\left(\underline{M(x_2M)}\right)(T\,x_2x_3) \Rightarrow \left(\underline{(x_2M)(x_2M)}\right)(T\,x_2x_3)$$

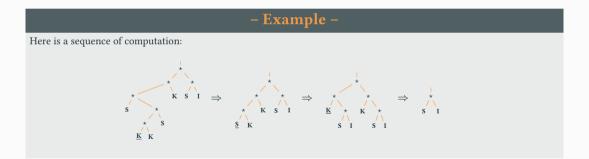
 $(M(x_2M))\big(\underline{T\,x_2x_3}\big) \Rightarrow (M(x_2M))\big(\underline{x_3x_2}\big)$



The S, K, I-system

Let the system [Curry, 1930] made on the three basic combinators S, K, and I, satisfying

$$\label{eq:starsess} \begin{split} & \mathbf{S}\, x_1 x_2 x_3 \rightarrow x_1 x_3 (x_2 x_3), \quad \mathbf{K}\, x_1 x_2 \rightarrow x_1, \quad \mathbf{I}\, x_1 \rightarrow x_1. \end{split}$$



This CLS is Turing-complete: there are algorithms to emulate any λ -term by a term of this CLS. These algorithms are called **abstraction algorithms** [Rosser, 1955], [Curry, Feys, 1958].

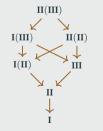
Rewrite graphs

Given a CLS $\mathcal{C} := (\mathfrak{G}, \rightarrow)$, let

- \preccurlyeq be the **reflexive and transitive closure** of \Rightarrow ;
- **•** \equiv be the **reflexive**, symmetric, and transitive closure of \Rightarrow ;
- for any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, let $\mathfrak{t}^* := {\mathfrak{t}' \in \mathfrak{T}(\mathfrak{G}) : \mathfrak{t} \preccurlyeq \mathfrak{t}'}$. The graph $(\mathfrak{t}^*, \Rightarrow)$ is the <u>rewrite graph</u> of \mathfrak{t} .

– Example –

Let the CLS $(\mathfrak{G}, \rightarrow)$ such that $\mathfrak{G} := \{I\}$ and $Ix_1 \rightarrow x_1$.



This is the rewrite graph of **II**(**III**).

We have $I(III) \preccurlyeq I$ and $I(III) \preccurlyeq II(II)$. It is possible to prove that for any $\mathfrak{t}, \mathfrak{t}' \in \mathfrak{T}(\mathfrak{G}), \mathfrak{t} \equiv \mathfrak{t}'$.

The Enchanted Forest of combinator birds

In *To Mock a Mockingbird: and Other Logic Puzzles* [Smullyan, 1985], a great number of basic combinators with their rules are listed, forming the Enchanted forest of combinator birds.

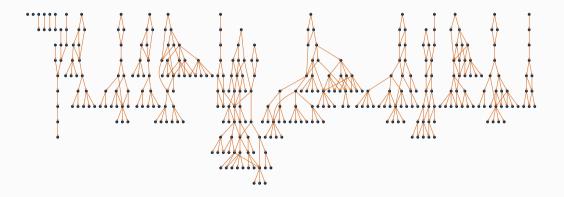
Here is a sublist:

- **Identity bird**: $I x_1 \rightarrow x_1$
- **Mockingbird**: $M x_1 \rightarrow x_1 x_1$
- Kestrel: $\mathbf{K} \mathbf{x}_1 \mathbf{x}_2 \rightarrow \mathbf{x}_1$
- $\blacksquare \ \textbf{Thrush}: \textbf{T} \textbf{x}_1 \textbf{x}_2 \rightarrow \textbf{x}_2 \textbf{x}_1$
- **Mockingbird 1**: $M_1 x_1 x_2 \rightarrow x_1 x_1 x_2$
- **Warbler**: $\mathbf{W} \mathbf{x}_1 \mathbf{x}_2 \rightarrow \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_2$
- $\blacksquare \textbf{ Lark: } L x_1 x_2 \rightarrow x_1(x_2 x_2)$

- $\bullet \quad \mathbf{Owl}: \mathbf{O} \, \mathbf{x}_1 \mathbf{x}_2 \to \mathbf{x}_2(\mathbf{x}_1 \mathbf{x}_2)$
- **Turing bird**: $\mathbf{U} \mathbf{x}_1 \mathbf{x}_2 \rightarrow \mathbf{x}_2(\mathbf{x}_1 \mathbf{x}_1 \mathbf{x}_2)$
- $\bullet \ \textbf{Cardinal}: \textbf{C} \ \textbf{x}_1 \textbf{x}_2 \textbf{x}_3 \rightarrow \textbf{x}_1 \textbf{x}_3 \textbf{x}_2$
- $\blacksquare \ \textbf{Vireo}: \mathbf{V} x_1 x_2 x_3 \rightarrow x_3 x_1 x_2$
- **Bluebird**: $\mathbf{B} \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \rightarrow \mathbf{x}_1(\mathbf{x}_2 \mathbf{x}_3)$
- **Starling:** $\mathbf{S} \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \rightarrow \mathbf{x}_1 \mathbf{x}_3 (\mathbf{x}_2 \mathbf{x}_3)$
- $\blacksquare Jay: J x_1 x_2 x_3 x_4 \rightarrow x_1 x_2 (x_1 x_4 x_3)$

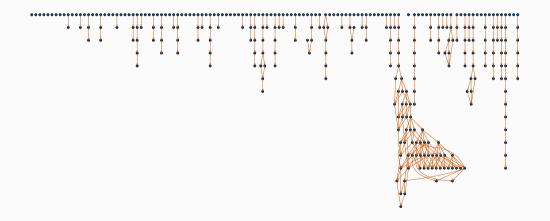
Rewrite graph of L

In the CLS containing only the **Lark L**, the rewrite graphs of closed terms of degrees up to 5 and up to 4 rewrite steps have the shape



Rewrite graph of S

In the CLS containing only the **Starling S**, the rewrite graphs of closed terms of degrees up to 6 and up to 11 rewrite steps have the shape



Usual questions

Let \mathcal{C} be a CLS.

- Word problem -

Is there an algorithm to decide, given two terms t and t' of C, if t \equiv t'? See [Baader, Nipkow, 1998], [Statman, 2000].

- Yes for the CLS on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
- Yes for the CLS on W [Sprenger, Wymann-Böni, 1993].
- Yes for the CLS on M₁ [Sprenger, Wymann-Böni, 1993].
- Open for the CLS on **S** [**RTA Problem #97**, 1975].

- Strong normalization problem -

Is there an algorithm to decide, given a term \mathfrak{t} of \mathcal{C} , if all rewrite sequences from \mathfrak{t} are finite?

- Yes for the CLS on **S** [Waldmann, 2000].
- Yes for the CLS on J [Probst, Studer, 2000].

Order theoretical questions

A <u>lattice</u> is a partial order (poset) wherein each pair $\{x, x'\}$ of elements has a greatest lower bound $x \wedge x'$ and a least upper bound $x \vee x'$.

Let ${\mathcal C}$ be a CLS. A $\mathfrak G\text{-term}\mathfrak t$ has

- 1. the poset property if $(\mathfrak{t}^*, \preccurlyeq)$ is a **poset**;
- 2. the <u>lattice property</u> if $(\mathfrak{t}^*, \preccurlyeq)$, is a **lattice**.

This CLS has the <u>poset</u> (resp. <u>lattice</u>) <u>property</u> if all terms of C have the poset (resp. lattice) property.

- Poset and lattice properties -

Is there an algorithm to decide, given a term \mathfrak{t} of \mathcal{C} , if \mathfrak{t} has the poset (resp. lattice) property?

Given a term t of C, perform a **combinatorial study** of $(\mathfrak{t}^*,\preccurlyeq)$ as the enumeration of its elements and intervals.

- A new source of posets -

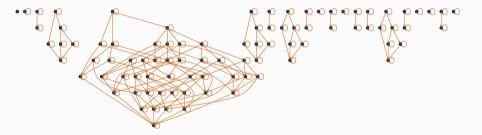
Use combinatory logic as a source to **build original posets**.

2. Mockingbird lattices

The Mockingbird system

The Mockingbird system is the CLS C containing only the Mockingbird M. Recall that M satisfies $Mx_1 \to x_1x_1$.

The **rewrite graphs** of closed terms of C of degrees up to 4 have the shape



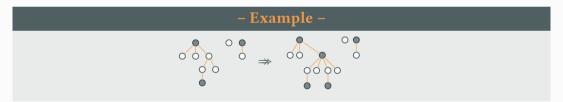
- Proposition [G., 2022] -

The CLS C has the **poset property** and each \equiv -equivalence class of C is **finite** and contains a **greatest** and a **least** element.

Duplicative forests

A <u>duplicative forest</u> is a **forest of planar rooted trees** where nodes are either black \bullet or white \circ . Let \mathcal{D}^{F} be the set of the duplicative forests and \mathcal{D}^{T} be the set of the duplicative trees.

Let \Rightarrow be the binary relation on \mathcal{D}^F such that for any $\mathfrak{f}, \mathfrak{f}' \in \mathcal{D}^F$, we have $\mathfrak{f} \Rightarrow \mathfrak{f}'$ if \mathfrak{f}' is obtained by blackening a white node of \mathfrak{f} and then by **duplicating** its sequence of descendants.



The reflexive and transitive closure \ll of \Rightarrow is a **partial order relation**.

For any $\mathfrak{f} \in \mathcal{D}^F$, let $\mathfrak{f}^* := \{\mathfrak{f}' \in \mathcal{D}^F : \mathfrak{f} \ll \mathfrak{f}'\}.$

Lattice of duplicative forests

Let \wedge and \vee be the two binary, commutative, and associative partial operations on \mathcal{D}^F defined recursively, for any $\ell \ge 0$, $\mathfrak{f}_1, \ldots, \mathfrak{f}_\ell \in \mathcal{D}^T$, $\mathfrak{f}'_1, \ldots, \mathfrak{f}'_\ell \in \mathcal{D}^T$, and $\mathfrak{f}, \mathfrak{f}', \mathfrak{f}'' \in \mathcal{D}^F$, by

$$\begin{split} \mathfrak{f}_{1} \dots \mathfrak{f}_{\ell} \wedge \mathfrak{f}'_{1} \dots \mathfrak{f}'_{\ell} &:= (\mathfrak{f}_{1} \wedge \mathfrak{f}'_{1}) \dots (\mathfrak{f}_{\ell} \wedge \mathfrak{f}'_{\ell}), \\ \mathfrak{o}(\mathfrak{f}) \wedge \mathfrak{o}(\mathfrak{f}') &:= \mathfrak{o}(\mathfrak{f} \wedge \mathfrak{f}'), \qquad \mathfrak{\bullet}(\mathfrak{f}) \wedge \mathfrak{\bullet}(\mathfrak{f}') &:= \mathfrak{o}(\mathfrak{f} \wedge \mathfrak{f}'), \\ \mathfrak{o}(\mathfrak{f}) \wedge \mathfrak{o}(\mathfrak{f}' \mathfrak{f}'') &:= \mathfrak{o}(\mathfrak{f} \wedge \mathfrak{f}' \wedge \mathfrak{f}''), \\ \mathfrak{f}_{1} \dots \mathfrak{f}_{\ell} \vee \mathfrak{f}'_{1} \dots \mathfrak{f}'_{\ell} &:= (\mathfrak{f}_{1} \vee \mathfrak{f}'_{1}) \dots (\mathfrak{f}_{\ell} \vee \mathfrak{f}'_{\ell}), \\ \mathfrak{o}(\mathfrak{f}) \vee \mathfrak{o}(\mathfrak{f}') &:= \mathfrak{o}(\mathfrak{f} \vee \mathfrak{f}'), \qquad \mathfrak{\bullet}(\mathfrak{f}) \vee \mathfrak{o}(\mathfrak{f}') &:= \mathfrak{o}(\mathfrak{f} \vee \mathfrak{f}'), \\ \mathfrak{o}(\mathfrak{f}) \vee \mathfrak{o}(\mathfrak{f}' f''') &:= \mathfrak{o}(\mathfrak{f} \vee \mathfrak{f}') (\mathfrak{f} \vee \mathfrak{f}'')). \end{split}$$

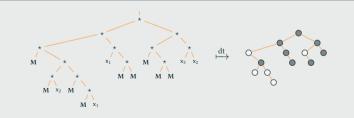
- Proposition [G., 2022] -

Given a duplicative forest $\mathfrak{f},$ the poset (\mathfrak{f}^*,\ll) is a **lattice** for the operations \wedge and $\vee.$

This can be proved by structural induction on duplicative forests.

From Mockingbird terms to duplicative trees

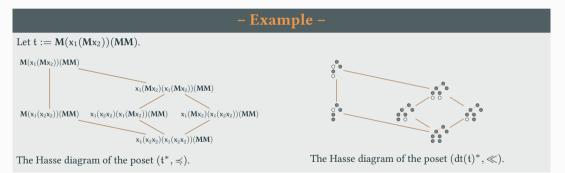
Let $dt : \mathfrak{T}(\mathfrak{G}) \to \mathcal{D}^T$ be the map defined recursively, for any $\mathbf{x}_i \in \mathbb{X}$ and $\mathfrak{t}, \mathfrak{t}' \in \mathfrak{T}(\mathfrak{G})$, by $dt(\mathbf{x}_i) := \epsilon$, $dt(\mathbf{M}) := \epsilon$, $dt(\mathfrak{t} \star \mathfrak{t}') := \begin{cases} \mathsf{o}(dt(\mathfrak{t}')) & \text{if } \mathfrak{t} = \mathbf{M} \text{ and } \mathfrak{t}' \neq \mathbf{M}, \\ \bullet(dt(\mathfrak{t}) dt(\mathfrak{t}')) & \text{otherwise.} \end{cases}$ - Example –



Poset isomorphism

- Proposition [G., 2022] -

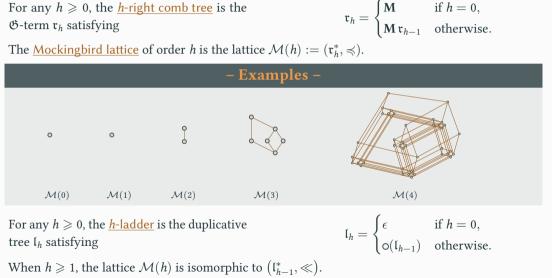
For any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, the **posets** $(\mathfrak{t}^*, \preccurlyeq)$ and $(dt(\mathfrak{t})^*, \ll)$ are **isomorphic** and dt is such an isomorphism.



- Theorem [G., 2022] -

For any $\mathfrak{t} \in \mathfrak{T}(\mathfrak{G})$, the poset $(\mathfrak{t}^*, \preccurlyeq)$ is a **finite lattice**.

Mockingbird lattices



3. Enumerative properties

Number of elements

Let \boxtimes be the **Hadamard product** of generating series. It satisfies, for two generating series $A_1 = \sum_{h \in \mathbb{N}} a_1(h) z^h$ and $A_2 = \sum_{h \in \mathbb{N}} a_2(n) z^h$,

$$\left(\sum_{h\in\mathbb{N}}a_1(h)z^h
ight)\boxtimes\left(\sum_{h\in\mathbb{N}}a_2(h)z^h
ight)=\sum_{h\in\mathbb{N}}a_1(h)a_2(h)z^h.$$

- **Proposition** [G., 2022] -

The generating series $A = \sum_{h \in \mathbb{N}} a(h) z^h$ of the **cardinalities** of (\mathfrak{l}_h^*, \ll) , $h \ge 0$, satisfies

 $A = 1 + zA + z(A \boxtimes A).$

The coefficients a(h), $h \ge 0$, satisfy a(0) = 1 and for any $h \ge 1$,

$$a(h) = a(h-1) + a(h-1)^2.$$

The sequence $(a(h))_{h \ge 0}$ starts by 1, 2, 6, 42, 1806, 3263442, 10650056950806 (Sequence **A007018**).

Number of intervals

- **Proposition** [G., 2022] -

The generating series $A = \sum_{h \in \mathbb{N}} a(h)z^h$ of the **numbers of intervals** of (l_h^*, \ll) , $h \ge 0$ is the series A_1 , where for any $k \ge 1$, the series A_k satisfies

$$A_k = 1 + z(A_k \boxtimes A_k) + z \sum_{0 \leqslant i \leqslant k} {k \choose i} A_{k+i}.$$

The coefficients $a_k(h)$, $h \ge 0$, satisfy $a_k(0) = 1$ and for any $h \ge 1$,

$$a_k(h)=a_k(h-1)^2+\sum_{0\leqslant i\leqslant k}\binom{k}{i}a_{k+i}(h-1).$$

The sequence $(a_1(h))_{h \ge 0}$ starts by

1, 3, 17, 371, 144513, 20932611523, 438176621806663544657.

Number of minimal and maximal elements

A term t of C is <u>minimal</u> (resp. <u>maximal</u> if $\mathfrak{t}' \preccurlyeq \mathfrak{t}$ (resp. $\mathfrak{t} \preccurlyeq \mathfrak{t}'$) implies $\mathfrak{t} = \mathfrak{t}'$.

- **Proposition** [G., 2022] -

The generating series A of the **minimal elements** of C enumerated w.r.t. their degrees satisfies

 $A = 1 + z + zA^{2} - z(A[z := z^{2}]).$

The first numbers are 1, 1, 2, 4, 12, 34, 108, 344 (Sequence A343663 – semi-identity binary trees).

- Proposition [G., 2022] -

The generating series A of the **maximal elements** of C enumerated w.r.t. their degrees satisfies

 $A = 1 + z - zA + zA^2.$

The first numbers are 1, 1, 1, 2, 4, 9, 21, 51 (Sequence A001006 – Motzkin numbers).

Conclusion and perspectives

We have studied a very simple CLS, the Mockingbird system, having nevertheless some **rich combinatorics**:

- its rewrite graphs are Hasse diagrams of posets;
- all intervals of these posets are lattices;
- these lattices are not graded, not self-dual, and not semidistributive;
- enumerative data is accessible but nontrivial.

Some questions and projects:

- 1. study, under an order theoretic point of view, some other CLS built from some basic combinators of the Enchanted forest of combinator birds;
- provide necessary and/or sufficient conditions for a CLS to have the poset or the lattice property;
- 3. realize some well-known posets (like Tamari lattices, Stanley lattices, or Kreweras lattices) as intervals of posets built from specific CLSs.