Consistent ultrafinitist logic

CLA2023 presentation

Michał J. Gajda https://www.migamake.com

2023-01-13

Plan

Background

Plan

- Background
- Transfinitist mathematics

Plan

- Background
- Transfinitist mathematics
- Finitism

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
- Ultrafinitist Logic syntax

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
- Ultrafinitist Logic syntax
- Simplifying positive polynomials

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
- Ultrafinitist Logic syntax
- Simplifying positive polynomials
- CLF inference rules

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
- Ultrafinitist Logic syntax
- Simplifying positive polynomials
- CLF inference rules
- Consequences

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
- Ultrafinitist Logic syntax
- Simplifying positive polynomials
- CLF inference rules
- Consequences
- redefining expressivity

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
- Ultrafinitist Logic syntax
- Simplifying positive polynomials
- CLF inference rules
- Consequences
- redefining expressivity
- redefining decidability

Plan

- Background
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
- Ultrafinitist Logic syntax
- Simplifying positive polynomials
- CLF inference rules
- Consequences
- redefining expressivity
- redefining decidability
- philosophy of inference

Background

Transfinitist mathematics

Assumption of infinity:

- Numbers
- Enumerations

Finitism

- Finite proofs

Finitism

- Finite proofs
- Finite descriptions of proofs

Finitism

- Finite proofs
- Finite descriptions of proofs
- Examination of infinite proofs is unfeasible

Physical limits

Figure 1: Observable universe in \log scale

Ultrafinitism

- Feasible numbers (Sazonov 1995)

Ultrafinitism

- Feasible numbers (Sazonov 1995)
- Limit of observable universe (Lloyd 2002)

Ultrafinitism

- Feasible numbers (Sazonov 1995)
- Limit of observable universe (Lloyd 2002)
- Physical limits of accuracy (Gisin 2019)

Ultrafinitism

- Feasible numbers (Sazonov 1995)
- Limit of observable universe (Lloyd 2002)
- Physical limits of accuracy (Gisin 2019)
- Limit of computational density (Krauss and Starkman 2004)

Ultrafinitism

- Feasible numbers (Sazonov 1995)
- Limit of observable universe (Lloyd 2002)
- Physical limits of accuracy (Gisin 2019)
- Limit of computational density (Krauss and Starkman 2004)
- Gorelik-Bremermann limit (Gorelik 2010)

Bumpy road to ultrafinitism

- "no satisfactory developments exist" (Troelstra 1988)

Bumpy road to ultrafinitism

- "no satisfactory developments exist" (Troelstra 1988)
- Bounded Arithmetic (Krajicek 1995)

Bumpy road to ultrafinitism

- "no satisfactory developments exist" (Troelstra 1988)
- Bounded Arithmetic (Krajicek 1995)
- Primitive Recursive Functions are not all finitist functions (Schirn and Niebergall 2005)

Bumpy road to ultrafinitism

- "no satisfactory developments exist" (Troelstra 1988)
- Bounded Arithmetic (Krajicek 1995)
- Primitive Recursive Functions are not all finitist functions (Schirn and Niebergall 2005)
- naive finitism logic as inconsistent (Dummett 1975; Magidor 2007)

Proposed: ultraconstructivism

- consider only constructive developments

Proposed: ultraconstructivism

- consider only constructive developments
- carry explicit computational bounds

Proposed: ultraconstructivism

- consider only constructive developments
- carry explicit computational bounds
- check that proof exists within those bounds

Consistent Ultrafinitist Logic

Syntax

Sizes

$\begin{array}{ll}\text { Size variables: } & v \in V \\ \text { Positive naturals: } & i \in \mathbb{N} \backslash\{0\}\end{array}$

Cost polynomials

$$
n \geq 1
$$

Polynomials:
Data size bounds:

$$
\begin{array}{rll}
\rho & ::= & v|i| \rho+\rho|\rho * \rho| \rho^{\rho}|\operatorname{iter}(\rho, \rho, v)| \rho \llbracket v / \rho \rrbracket \\
\alpha & ::= & \rho
\end{array}
$$

$$
\text { Computation bounds: } \beta::=\rho
$$

Iterated function composition: iter $\left(\rho_{1}, \rho_{2}, v\right)$ Function ρ_{1} with a bound variable v is iterated ρ_{2} times.

Types

$\begin{array}{lll}\text { Type or term variables: } & x & \in \\ \text { Types: } & \tau::=v|\tau \wedge \tau| \tau \vee \tau\left|\forall x_{v}: \tau \rightarrow{ }_{\beta}^{\alpha} \tau\right| \perp \mid \circ \\ \text { Environments: } & \Gamma::=v_{1}: \tau_{\beta_{1}}^{1}, \ldots, \tau_{\beta_{n}}^{n} \\ \text { Judgements: } & J::=\Gamma \vdash_{\beta}^{\alpha} E: \tau\end{array}$
x_{v} - term variable x with its size bound by size variable v
Notation $\forall x_{v}: A \Longrightarrow{ }_{\beta(v)}^{\alpha(v)} B$ binds proof variable x with type of A, and then bound in polynomials $\alpha(v)$ for complexity and $\beta(v)$ for depth of the normalized term.

Proof terms

Terms: $\quad E \quad::=v|\lambda v \cdot E| i n_{r}(E)\left|i n_{l}(E)\right|(E, E) \mid()$

$$
\text { case } E \text { of } \begin{aligned}
i n_{1}(v) & \rightarrow E ; \\
i n_{r}(v) & \rightarrow E ;
\end{aligned}
$$

β_{i} is an upper bound on depth of term proving A^{i}.

Judgements

$$
\begin{array}{ll}
\text { Type or term variables: } & x \in X \\
\text { Types: } & \tau::=\vee|\tau \wedge \tau| \tau \vee \tau\left|\forall x_{v}: \tau \rightarrow{ }_{\beta}^{\alpha} \tau\right| \perp \mid \circ \\
\text { Environments: } & \Gamma::=v_{1}: \tau_{\beta_{1}}^{1}, \ldots, \tau^{n} \beta_{n} \\
\text { Judgements: } & J::=\left\ulcorner\vdash_{\beta}^{\alpha} E: \tau\right.
\end{array}
$$

- x_{v} - variable its size bound variable
- α_{i} is an upper bound on computation steps needed to evaluate A^{i}.
- β_{i} is an upper bound on depth of term proving A^{i}.

Rules

Variables

$$
\frac{\Gamma \vdash \vdash_{\beta}^{\alpha} y_{\beta}: A \quad v \in V}{\Gamma, x_{\beta}: A \vdash{ }_{\beta}^{1} x: A} \operatorname{var}
$$

Unit type

$$
\overline{\Gamma \vdash_{\beta}^{1}(): 0} \text { unit }
$$

Subsumption

$$
\frac{\Gamma \vdash_{\beta_{1}}^{\alpha_{1}} e: A \quad \alpha_{1} \leq \alpha_{2} \quad \beta_{1} \leq \beta_{2}}{\Gamma \vdash_{\beta_{2}}^{\alpha_{2}} e: A} \text { subsume }
$$

Positive polynomials for easy bounds

Positive polynomials for easy bounds

$$
\begin{gathered}
x, y, e, f, g, h \geq 1 \\
a, b \geq 0
\end{gathered}
$$

(1) $a * x^{e}+b * x^{f} \leq(a+b) * x^{f}$
(2) $a * x^{e} * y^{g} \leq a * x^{f} * y^{h}$
(3) $\operatorname{iter}(e, g, x) \leq \operatorname{iter}(f, h, x)$
(4) $\operatorname{iter}(a * x, e, x)=a^{e} * x$
(5) $\operatorname{iter}(x+a, e, x)=x+a * e$
(6) $\quad \operatorname{iter}\left(x^{e}, g, x\right)=x^{e^{g}}$

Conjunction

$$
\begin{gathered}
\Gamma \vdash_{\beta_{1}}^{\alpha_{1}} a^{1}: A^{1} \quad \Gamma \vdash_{\beta_{2}}^{\alpha_{2}} a^{2}: A^{2} \\
\left.\Gamma \vdash_{\max }^{\alpha_{1}+\alpha_{2}}, \beta_{2}\right)+1 \\
\left(a^{1}, a^{2}\right): A^{1} \wedge A^{2} \\
\text { pair } \\
\frac{\Gamma \vdash_{\beta+1}^{\alpha} e: A^{1} \wedge A^{2} \quad i \in\{1,2\}}{\Gamma \vdash_{j}^{\alpha+1} p r j_{i} e: A^{i}} p r j_{i}
\end{gathered}
$$

Alternative

$$
\frac{\Gamma \vdash_{\beta}^{\alpha} e: A^{i} \quad i \in\{I, r\}}{\Gamma \vdash_{\beta+1}^{\alpha+1} i n_{i}(e): A^{1} \vee A^{2}} i n j
$$

$$
\frac{\Gamma \vdash_{\beta_{\vee}+1}^{\alpha_{\vee}} a: A^{1} \vee A^{2} \quad \Gamma, x: A_{\beta_{\vee}}^{1} \vdash_{\beta_{1}}^{\alpha_{1}} b: B \quad \Gamma, y: A_{\beta_{\vee}}^{2} \vdash_{\beta_{2}}^{\alpha_{2}} c: B}{\Gamma \vdash_{\max \left(\beta_{1}, \beta_{2}\right)}^{\left.\alpha, \alpha_{1}\right)+\alpha_{2}\left(\alpha_{1}\right)} \text { case a of } \begin{array}{l}
\operatorname{in}_{l}(x) \\
i n_{r}(y)
\end{array} \rightarrow b ;: B} \text { case }
$$

Abstraction and application

$$
\begin{gathered}
\frac{\Gamma, x_{v}: A \vdash_{\beta(v)}^{\alpha(v)} e: B}{\Gamma \vdash_{\beta(1)+1}^{\alpha(1)+1} \lambda x . e: \forall a_{v}: A \rightarrow{ }_{\beta(v)}^{\alpha(v)} B} a b s \\
\frac{\Gamma \vdash_{\beta_{1}}^{\alpha_{1}} e: \forall a: A_{v} \rightarrow_{\beta_{2}(v)}^{\alpha_{2}(v)} B \Gamma \vdash_{\beta_{3}}^{\alpha_{3}} a: A}{\Gamma \vdash_{\beta_{2}\left(\beta_{3}\right)}^{\alpha_{1}+\alpha_{2}\left(\beta_{3}\right)+\alpha_{3}} e a: B} a p p
\end{gathered}
$$

Please note that notation $\forall x_{v}: A \rightarrow_{\beta(v)}^{\alpha(v)} B$ has a size variable v declared as a depth of term variable x, and then bound in polynomials $\alpha(v)$ and $\beta(v)$

The notation $\alpha(1)$ is a shortcut for $\alpha \llbracket 1 / v \rrbracket$ in the rules abs and app.

Recursion

$$
\frac{\Gamma \vdash_{\beta_{1}}^{\alpha_{1}} f: A_{v} \rightarrow{ }_{\beta_{2}\left(v_{2}\right)}^{\alpha_{2}\left(v_{1}\right)} A \Gamma \vdash_{\beta_{3}}^{\alpha_{3}} k: B \quad \Gamma \vdash_{\beta_{4}}^{\alpha_{4}} a: A}{\Gamma \vdash_{\left.\beta_{1} \llbracket i t e r\left(\beta_{2}, \beta_{3}, v_{2}\right) \llbracket \beta_{3} / v_{2}\right) \rrbracket /[\rrbracket}^{\alpha_{1}+\alpha_{3}+\operatorname{lit}\left(v_{1} \rrbracket+\alpha_{4}+1\right.} \operatorname{rec}(f, k, a): B} r e c
$$

$\operatorname{rec}(f, k, a)$ iterates function f at k times over a.

Consistency

Consistency

- Every rule beside subsume and rec is present in intuitionistic logic.

Consistency

- Every rule beside subsume and rec is present in intuitionistic logic.
- rec $f k$ a can be understood as k unfoldings of app: $f(f(. .(a)))$

Consistency

- Every rule beside subsume and rec is present in intuitionistic logic.
- rec $f k a$ can be understood as k unfoldings of app: $f(f(. .(a)))$
- Hence consistency by embedding in IL: all instance of the statements can be reduced to finite IL proofs

Expressivity

Expressivity

- Can express bounded loop programs (Meyer and Ritchie 1967)

Expressivity

- Can express bounded loop programs (Meyer and Ritchie 1967)
- Loop programs are primitive-recursive-complete

Expressivity

- Can express bounded loop programs (Meyer and Ritchie 1967)
- Loop programs are primitive-recursive-complete
- Bounds computable in advance - at least primitive recursive

Expressivity

- Can express bounded loop programs (Meyer and Ritchie 1967)
- Loop programs are primitive-recursive-complete
- Bounds computable in advance - at least primitive recursive
- Bounded Post-Turing machine

Emulation completeness

Emulation completeness

Theorem

Assume a time complexity $c(x)$ for program (or proof) s that can be encoded as CUFL bounds. Iff we can emulate (encode evaluation) of $f(x)$ with an overhead e for each step, then we can prove that complexity of evaluating s is $e * c(x)+c c(x)$.

Post-Turing machine step can be easily emulated in $\log ^{2}(|\Sigma|)$.

Proof of emulation completeness

Proof of emulation completeness

Proof.

Assuming that $e(f)$ is function emulation in CUFL, we can write proof expression $\operatorname{iter}(e(f), e(c), x)$. This expression evaluated encoded s and has exactly the assumed complexity

Meta-reasoning

Meta-reasoning

We can encode bounds as terms:

$$
\begin{aligned}
& \operatorname{Var}_{\beta} \quad=\operatorname{Nat}_{\beta} \\
& \text { Bound }_{\beta+1} \quad=\quad \text { Var } \vee \operatorname{Nat}_{\beta} \vee \circ \vee\left(\text { Bound }_{\beta}, \text { Bound }_{\beta}\right) \\
& \vee\left(\text { Bound }_{\beta}, \text { Bound }_{\beta}\right) \\
& \vee\left(\text { Bound }_{\beta}, \text { Bound }_{\beta}\right) \vee\left(\text { Bound }_{\beta},\left(\text { Bound }_{\beta}, \text { Var }\right)\right) \\
& \vee\left(\text { Bound }_{\beta},\left(\text { Var, Bound }{ }_{\beta}\right)\right) \\
& \llbracket v \rrbracket \quad=i n_{l}\left(i n_{l}\left(i n_{l}(\mathbb{B}(v))\right)\right) \\
& \llbracket i \rrbracket \quad=i n_{l}\left(i n_{l}\left(i n_{r}(i)\right)\right) \\
& \llbracket() \rrbracket \quad=i n_{l}\left(i n_{l}\left(i n_{r}(())\right)\right) \\
& \llbracket \rho_{1}+\rho_{2} \rrbracket \quad=\quad i n_{l}\left(\operatorname{in}_{r}\left(i n_{r}\left(\left(\llbracket \rho_{1} \rrbracket, \llbracket \rho_{2} \rrbracket\right)\right)\right)\right) \\
& \llbracket \rho_{1} * \rho_{2} \rrbracket \quad=\quad \operatorname{in}_{r}\left(i n_{l}\left(i n_{l}\left(\left(\llbracket \rho_{1} \rrbracket, \llbracket \rho_{2} \rrbracket\right)\right)\right)\right) \\
& \llbracket \rho_{1}^{\rho_{2} \rrbracket} \quad=\operatorname{in}_{r}\left(i n_{l}\left(i n_{r}\left(\left(\llbracket \rho_{1} \rrbracket, \llbracket \rho_{2} \rrbracket\right)\right)\right)\right) \\
& \llbracket \operatorname{iter}\left(\rho_{1}, \rho_{2}, v\right) \rrbracket=i n_{r}\left(\operatorname{in}_{r}\left(i n_{l}\left(\left(\llbracket \rho_{1} \rrbracket,\left(\llbracket \rho_{2} \rrbracket, \mathbb{B}(v)\right)\right)\right)\right)\right) \\
& \llbracket \rho_{1} \llbracket \rho / v \rrbracket \rrbracket=\operatorname{in}_{r}\left(\operatorname{in}_{r}\left(i n_{r}\left(\left(\llbracket \rho_{1} \rrbracket,\left(\llbracket \rho_{2} \rrbracket, \mathbb{B}(v)\right)\right)\right)\right)\right)
\end{aligned}
$$

Meta-reasoning 2

Meta-reasoning 2

We can also encode types:

$$
\begin{array}{ll}
\llbracket A \vee B \rrbracket & =\operatorname{in}_{l}\left(i i_{l}((\llbracket A \rrbracket, \llbracket B \rrbracket))\right) \\
\llbracket A \wedge B \rrbracket & =i i_{l}\left(i n_{r}((\llbracket A \rrbracket, \llbracket B \rrbracket))\right) \\
\llbracket \forall x_{v}: A \rightarrow{ }_{\beta}^{\alpha} B \rrbracket & =\operatorname{in}_{r}\left(i_{1}\left(\left(\lambda x: A \cdot \llbracket B \rrbracket,\left(\lambda v: \operatorname{Nat}_{v} \cdot \llbracket \alpha \rrbracket, \lambda v: \operatorname{Nat}_{v} \cdot \llbracket \beta \rrbracket\right)\right)\right)\right) \\
\llbracket \circ \rrbracket & =\operatorname{in}_{r}\left(i n_{r}(())\right)
\end{array}
$$

Meta-reasoning 3

Meta-reasoning 3

Finally we can encode the proof terms:

$$
\begin{aligned}
& \llbracket x_{v} \rrbracket \quad=i n_{l}\left(i n_{l}\left(i n_{l}\left(i n_{l}((\mathbb{B}(x), v))\right)\right)\right) \\
& \llbracket \operatorname{subsume}(A, B) \rrbracket=i n_{l}\left(i n_{l}\left(i n_{l}\left(i n_{r}\left(\left(\llbracket B \rrbracket_{\text {Bound }}, \llbracket A \rrbracket\right)\right)\right)\right)\right) \\
& \llbracket u n i t \rrbracket \quad=i n_{l}\left(i n_{l}\left(i n_{r}\left(i n_{l}(())\right)\right)\right) \\
& \llbracket i n_{l}(A) \rrbracket \quad=i n_{l}\left(i n_{l}\left(i n_{r}\left(i n_{r}(A)\right)\right)\right) \\
& \llbracket i n_{r}(A) \rrbracket \quad=i n_{l}\left(i n_{r}\left(i n_{l}\left(i n_{l}(A)\right)\right)\right) \\
& \llbracket p r j_{l} A \rrbracket \quad=i n_{l}\left(i n_{r}\left(i n_{l}\left(i n_{r}(A)\right)\right)\right) \\
& \llbracket p r j_{r} A \rrbracket \quad=i n_{l}\left(i n_{r}\left(i n_{r}\left(i n_{l}(A)\right)\right)\right) \\
& \llbracket(A, B) \rrbracket \quad=\quad i n_{l}\left(i n_{r}\left(i n_{r}\left(i n_{r}((\llbracket A \rrbracket,(\operatorname{interpB},,)))\right)\right)\right) \\
& \llbracket a p p(A, B) \rrbracket \quad=\quad i n_{r}\left(i n_{l}\left(i n_{l}\left(i n_{l}((\llbracket A \rrbracket, \llbracket B \rrbracket))\right)\right)\right) \\
& \llbracket a b s \lambda x_{v} \cdot A \rrbracket \quad=\quad \operatorname{in}_{r}\left(i i_{l}\left(i n_{l}\left(i n_{r}(((\mathbb{B}(x), \mathbb{B}(v)), \llbracket A \rrbracket))\right)\right)\right) \\
& \llbracket r e c \rrbracket \quad=\quad i n_{r}\left(i n_{l}\left(i n_{r}\left(i n_{l}(((\llbracket A \rrbracket, \llbracket B \rrbracket), \mathbb{B}(v)))\right)\right)\right)
\end{aligned}
$$

Meta-reasoning 4

Meta-reasoning 4

Theorem

Emulation completeness of ULF can be proven in itself.
The naive interpreter can be improved by applying CPS transformation, $O(\lg (|v|))$ dictionary lookups, and higher-order abstract syntax to avoid traversing entire term on substitution.

Problems stated

Problems stated

1. First we need to compute bound is within our limit

Problems stated

1. First we need to compute bound is within our limit
2. Then we are guaranteed that we have an answer within given time.

Problems stated

1. First we need to compute bound is within our limit
2. Then we are guaranteed that we have an answer within given time.
3. We may likewise bound computation of bounds.

Avoiding infinities

Avoiding infinities

- use convergent series instead of reals (Zeilberger 2010)

Avoiding infinities

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series

Avoiding infinities

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series
- avoids implicit infinities in statement of the problem

Avoiding infinities

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series
- avoids implicit infinities in statement of the problem
- for example: every statement about all natural numbers is statement about infinity

Avoiding infinities

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series
- avoids implicit infinities in statement of the problem
- for example: every statement about all natural numbers is statement about infinity
- avoid transfinite ordinals

Consequences

Consequences

- Bounded time-to-answer (when)

Consequences

- Bounded time-to-answer (when)
- Redefines logical expressivity

Consequences

- Bounded time-to-answer (when)
- Redefines logical expressivity
- Redefines decidability (what and when)

Consequences

- Bounded time-to-answer (when)
- Redefines logical expressivity
- Redefines decidability (what and when)
- Only computable functions

Consequences

- Bounded time-to-answer (when)
- Redefines logical expressivity
- Redefines decidability (what and when)
- Only computable functions
- Avoids semidecidability paradox

Future work

Future work

- List paradoxes reverted

Future work

- List paradoxes reverted
- Theorem prover

Future work

- List paradoxes reverted
- Theorem prover
- Amortized cost 1

Conclusion

Conclusion

- Ultrafinitism is consistent

Conclusion

- Ultrafinitism is consistent
- Consistency by embedding in intuitionistic logic

Conclusion

- Ultrafinitism is consistent
- Consistency by embedding in intuitionistic logic
- Ultrafinitism expresses arithmetic

Conclusion

- Ultrafinitism is consistent
- Consistency by embedding in intuitionistic logic
- Ultrafinitism expresses arithmetic
- Bounded time-to-answer

Conclusion

- Ultrafinitism is consistent
- Consistency by embedding in intuitionistic logic
- Ultrafinitism expresses arithmetic
- Bounded time-to-answer
- Semidecidability as paradox

References

References I

Dummett, Michael. 1975. "Wang's Paradox." Synthese 30 (3/4): 301-24. http://www.jstor.org/stable/20115034.
Gisin, Nicolas. 2019. "Indeterminism in Physics, Classical Chaos and Bohmian Mechanics. Are Real Numbers Really Real?" https://arxiv.org/abs/1803.06824.
Gorelik, Gennady. 2010. "Bremermann's Limit and cGh-Physics." https://arxiv.org/abs/0910.3424.
Krajicek, Jan. 1995. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia of Mathematics and Its Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511529948.
Krauss, Lawrence, and Glenn Starkman. 2004. "Universal Limits on Computation," May. Lloyd, Seth. 2002. "Computational Capacity of the Universe." Physical Review Letters 88 23: 237901.
Magidor, Ofra. 2007. "Strict Finitism Refuted?" Proceedings of the Aristotelian Society 107 (1pt3): 403-11. https://doi.org/10.1111/j.1467-9264.2007.00230.x.

References II

Meyer, Albert R., and Dennis M. Ritchie. 1967. "The Complexity of Loop Programs." In Proceedings of the 1967 22nd National Conference, 465-69. ACM '67. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/800196.806014.
Sazonov, Vladimir Yu. 1995. "On Feasible Numbers." In Logic and Computational Complexity, edited by Daniel Leivant, 30-51. Berlin, Heidelberg: Springer Berlin Heidelberg.
Schirn, Matthias, and Karl-Georg Niebergall. 2005. "Finitism = PRA? On a Thesis of w. W. Tait." Reports on Mathematical Logic, January.

Troelstra, A. S. 1988. Constructivism in Mathematics: An Introduction. Elsevier. https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/121/suppl/C.
Zeilberger, Doron. 2010. "Opinion 108: ...the Feeling Is Mutual: I Feel Sorry for Infinitarian Hugh Woodin for Feeling Sorry for Finitists Like Myself! (And the "Lowly" Finite Is MUCH More Beautiful Than Any "Infinite")." 2010. https://sites.math.rutgers.edu/~zeilberg/Opinion108.html.

