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Transfinitist mathematics

Assumption of infinity:

▶ Numbers
▶ Enumerations
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Consistent Ultrafinitist Logic



Syntax



Sizes

Size variables: v ∈ V
Positive naturals: i ∈ N \ {0}



Cost polynomials

n ≥ 1

Polynomials: ρ ::= v
∣∣i ∣∣ρ + ρ

∣∣ρ ∗ ρ
∣∣ρρ

∣∣ iter(ρ, ρ, v)
∣∣ρJv/ρK

Data size bounds: α ::= ρ
Computation bounds: β ::= ρ

Iterated function composition: iter(ρ1, ρ2, v) Function ρ1 with a bound variable v is
iterated ρ2 times.



Types

Type or term variables: x ∈ X
Types: τ ::= v

∣∣τ ∧ τ
∣∣τ ∨ τ

∣∣∀xv : τ →α
β τ

∣∣⊥∣∣ ◦
Environments: Γ ::= v1 : τ1

β1 , ..., τn
βn

Judgements: J ::= Γ ⊢α
β E : τ

xv - term variable x with its size bound by size variable v

Notation ∀xv : A =⇒ α(v)
β(v)B binds proof variable x with type of A, and then bound in

polynomials α(v) for complexity and β(v) for depth of the normalized term.



Proof terms

Terms: E ::= v
∣∣λv .E

∣∣inr (E )
∣∣inl(E )

∣∣(E , E )
∣∣ ()∣∣ case E of inl(v) → E ;

inr (v) → E ;

βi is an upper bound on depth of term proving Ai .



Judgements

Type or term variables: x ∈ X
Types: τ ::= v

∣∣τ ∧ τ
∣∣τ ∨ τ

∣∣∀xv : τ →α
β τ

∣∣⊥∣∣ ◦
Environments: Γ ::= v1 : τ1

β1 , ..., τn
βn

Judgements: J ::= Γ ⊢α
β E : τ

▶ xv - variable its size bound variable
▶ αi is an upper bound on computation steps needed to evaluate Ai .
▶ βi is an upper bound on depth of term proving Ai .



Rules



Variables

Γ ⊢α
β yβ : A v ∈ V

Γ, xβ : A ⊢1
β x : A

var



Unit type

Γ ⊢1
β () : ◦

unit



Subsumption

Γ ⊢α1
β1

e : A α1 ≤ α2 β1 ≤ β2

Γ ⊢α2
β2

e : A subsume
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Positive polynomials for easy bounds

x , y , e, f , g , h ≥ 1

a, b ≥ 0

(1) a ∗ x e + b ∗ x f ≤ (a + b) ∗ x f

(2) a ∗ x e ∗ yg ≤ a ∗ x f ∗ yh

(3) iter(e, g , x) ≤ iter(f , h, x)
(4) iter(a ∗ x , e, x) = ae ∗ x
(5) iter(x + a, e, x) = x + a ∗ e
(6) iter(x e , g , x) = x eg



Conjunction

Γ ⊢α1
β1

a1 : A1 Γ ⊢α2
β2

a2 : A2

Γ ⊢α1+α2
max (β1,β2)+1 (a1, a2) : A1 ∧ A2 pair

Γ ⊢α
β+1 e : A1 ∧ A2 i ∈ {1, 2}

Γ ⊢α+1
β prji e : Ai prji



Alternative

Γ ⊢α
β e : Ai i ∈ {l , r}

Γ ⊢α+1
β+1 ini(e) : A1 ∨ A2 inj

Γ ⊢α∨
β∨+1 a : A1 ∨ A2 Γ, x : A1

β∨ ⊢α1
β1

b : B Γ, y : A2
β∨ ⊢α2

β2
c : B

Γ ⊢α∨+max(α1,α2)+1
max(β1,β2) case a of inl(x) → b;

inr (y) → c; : B
case



Abstraction and application

Γ, xv : A ⊢α(v)
β(v) e : B

Γ ⊢α(1)+1
β(1)+1 λx .e : ∀av : A→α(v)

β(v)B
abs

Γ ⊢α1
β1

e : ∀a : Av →α2(v)
β2(v)B Γ ⊢α3

β3
a : A

Γ ⊢α1+α2(β3)+α3
β2(β3) e a : B

app

Please note that notation ∀xv : A →α(v)
β(v) B has a size variable v declared as a depth of

term variable x , and then bound in polynomials α(v) and β(v)

The notation α(1) is a shortcut for αJ1/vK in the rules abs and app.



Recursion

Γ ⊢α1
β1

f : Av →α2(v1)
β2(v2)A Γ ⊢α3

β3
k : B Γ ⊢α4

β4
a : A

Γ ⊢α1+α3+iter(α2,β3,v1)Jβ4/v1K+α4+1
β1Jiter(β2,β3,v2)Jβ4/v2K/vK rec(f , k, a) : B

rec

rec(f , k, a) iterates function f at k times over a.



Consistency



Consistency

▶ Every rule beside subsume and rec is present in intuitionistic logic.

▶ rec fka can be understood as k unfoldings of app: f (f (..(a)))
▶ Hence consistency by embedding in IL: all instance of the statements can be
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Emulation completeness

Theorem
Assume a time complexity c(x) for program (or proof) s that can be encoded as CUFL
bounds. Iff we can emulate (encode evaluation) of f (x) with an overhead e for each
step, then we can prove that complexity of evaluating s is e ∗ c(x) + cc(x).

Post-Turing machine step can be easily emulated in log2(|Σ|).



Proof of emulation completeness



Proof of emulation completeness

Proof.
Assuming that e(f ) is function emulation in CUFL, we can write proof expression
iter(e(f ), e(c), x). This expression evaluated encoded s and has exactly the assumed
complexity



Meta-reasoning



Meta-reasoning
We can encode bounds as terms:

Varβ = Natβ

Boundβ+1 = Var ∨ Natβ ∨ ◦ ∨(Boundβ, Boundβ)
∨ (Boundβ, Boundβ)
∨ (Boundβ, Boundβ) ∨ (Boundβ, (Boundβ, Var))
∨ (Boundβ, (Var, Boundβ))

JvK = inl(inl(inl(B (v))))
JiK = inl(inl(inr (i)))
J()K = inl(inl(inr (())))
Jρ1 + ρ2K = inl(inr (inr ((Jρ1K, Jρ2K))))
Jρ1 ∗ ρ2K = inr (inl(inl((Jρ1K, Jρ2K))))
Jρρ2

1 K = inr (inl(inr ((Jρ1K, Jρ2K))))
Jiter(ρ1, ρ2, v)K = inr (inr (inl((Jρ1K, (Jρ2K,B (v))))))
Jρ1 Jρ/vKK = inr (inr (inr ((Jρ1K, (Jρ2K,B (v))))))
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Meta-reasoning 2

We can also encode types:

JA ∨ BK = inl(inl((JAK, JBK)))
JA ∧ BK = inl(inr ((JAK, JBK)))
J∀xv : A →α

β BK = inr (inl((λx : A.JBK, (λv : Natv .JαK, λv : Natv .JβK))))
J◦K = inr (inr (()))
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Meta-reasoning 3

Finally we can encode the proof terms:

Jxv K = inl(inl(inl(inl((B (x), v)))))
Jsubsume(A, B)K = inl(inl(inl(inr ((JBKBound, JAK)))))
JunitK = inl(inl(inr (inl(()))))
Jinl(A)K = inl(inl(inr (inr (A))))
Jinr (A)K = inl(inr (inl(inl(A))))
Jprj lAK = inl(inr (inl(inr (A))))
Jprj r AK = inl(inr (inr (inl(A))))
J(A, B)K = inl(inr (inr (inr ((JAK, (interpB, , ))))))
Japp(A, B)K = inr (inl(inl(inl((JAK, JBK)))))
Jabs λxv .AK = inr (inl(inl(inr (((B (x),B (v)), JAK)))))
JrecK = inr (inl(inr (inl(((JAK, JBK),B (v))))))
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Meta-reasoning 4

Theorem
Emulation completeness of ULF can be proven in itself.

The naive interpreter can be improved by applying CPS transformation, O(lg(|v |))
dictionary lookups, and higher-order abstract syntax to avoid traversing entire term on
substitution.
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