Consistent ultrafinitist logic CLA2023 presentation

Michał J. Gajda https://www.migamake.com

2023-01-13

Background

Transfinitist mathematics

- Transfinitist mathematics
- Finitism

- Transfinitist mathematics
- Finitism
- Ultrafinitism

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
 - Ultrafinitist Logic syntax

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
 - Ultrafinitist Logic syntax
 - Simplifying positive polynomials

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
 - Ultrafinitist Logic syntax
 - Simplifying positive polynomials
 - CLF inference rules

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
 - Ultrafinitist Logic syntax
 - Simplifying positive polynomials
 - CLF inference rules
- Consequences

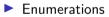
- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
 - Ultrafinitist Logic syntax
 - Simplifying positive polynomials
 - CLF inference rules
- Consequences
 - redefining expressivity

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
 - Ultrafinitist Logic syntax
 - Simplifying positive polynomials
 - CLF inference rules
- Consequences
 - redefining expressivity
 - redefining decidability

- Transfinitist mathematics
- Finitism
- Ultrafinitism
- Ultraconstructivism
- Logic
 - Ultrafinitist Logic syntax
 - Simplifying positive polynomials
 - CLF inference rules
- Consequences
 - redefining expressivity
 - redefining decidability
 - philosophy of inference

Transfinitist mathematics

Assumption of infinity:



Finitism

Finitism

Finite proofsFinite descriptions of proofs

Finitism

- ► Finite proofs
- Finite descriptions of proofs
- Examination of infinite proofs is unfeasible

Physical limits

Figure 1: Observable universe in log scale

Feasible numbers (Sazonov 1995)

Feasible numbers (Sazonov 1995)

Limit of observable universe (Lloyd 2002)

- Feasible numbers (Sazonov 1995)
- Limit of observable universe (Lloyd 2002)
- Physical limits of accuracy (Gisin 2019)

- Feasible numbers (Sazonov 1995)
- Limit of observable universe (Lloyd 2002)
- Physical limits of accuracy (Gisin 2019)
- Limit of computational density (Krauss and Starkman 2004)

- Feasible numbers (Sazonov 1995)
- Limit of observable universe (Lloyd 2002)
- Physical limits of accuracy (Gisin 2019)
- Limit of computational density (Krauss and Starkman 2004)
- Gorelik-Bremermann limit (Gorelik 2010)

"no satisfactory developments exist" (Troelstra 1988)

"no satisfactory developments exist" (Troelstra 1988)
 Bounded Arithmetic (Krajicek 1995)

- "no satisfactory developments exist" (Troelstra 1988)
- Bounded Arithmetic (Krajicek 1995)
- Primitive Recursive Functions are not all finitist functions (Schirn and Niebergall 2005)

- "no satisfactory developments exist" (Troelstra 1988)
- Bounded Arithmetic (Krajicek 1995)
- Primitive Recursive Functions are not all finitist functions (Schirn and Niebergall 2005)
- naive finitism logic as inconsistent (Dummett 1975; Magidor 2007)

Proposed: ultraconstructivism

consider only constructive developments

Proposed: ultraconstructivism

consider only constructive developmentscarry explicit computational bounds

Proposed: ultraconstructivism

- consider only constructive developments
- carry explicit computational bounds
- check that proof exists within those bounds

Consistent Ultrafinitist Logic

Syntax

Sizes

Size variables: $v \in V$ Positive naturals: $i \in \mathbb{N} \setminus \{0\}$

Cost polynomials

 $n \ge 1$

Polynomials:
$$\rho$$
::= $v |i|\rho + \rho |\rho * \rho |\rho^{\rho}| iter(\rho, \rho, v) |\rho[[v/\rho]]$ Data size bounds: α ::= ρ Computation bounds: β ::= ρ

Iterated function composition: $iter(\rho_1, \rho_2, v)$ Function ρ_1 with a bound variable v is iterated ρ_2 times.

Types

 x_v - term variable x with its size bound by size variable v

Notation $\forall x_v : A \implies \frac{\alpha(v)}{\beta(v)}B$ binds proof variable x with type of A, and then bound in polynomials $\alpha(v)$ for complexity and $\beta(v)$ for depth of the normalized term.

Proof terms

Terms:
$$E$$
 ::= $v|\lambda v.E|in_r(E)|in_l(E)|(E,E)|()$
 $| case E of in_l(v) \rightarrow E;$
 $in_r(v) \rightarrow E;$

 β_i is an upper bound on depth of term proving A^i .

Judgements

- x_v variable its size bound variable
- α_i is an upper bound on computation steps needed to evaluate A^i .
- β_i is an upper bound on depth of term proving A^i .

Rules

Variables

$$rac{{\mathsf{\Gamma}} dash_eta^lpha \; y_eta: {\mathsf{A}} \quad {\mathsf{v}} \in {V}}{{\mathsf{\Gamma}}, x_eta: {\mathsf{A}} dash_eta^{-1} x: {\mathsf{A}}} \; \; {\mathsf{var}}$$

Unit type

$$rac{\Gamma dash_{eta}^{1}}{\Gamma dash_{eta}^{1}}$$
 () : \circ

Subsumption

$$\frac{\Gamma \vdash_{\beta_1}^{\alpha_1} e : A \quad \alpha_1 \leq \alpha_2 \qquad \beta_1 \leq \beta_2}{\Gamma \vdash_{\beta_2}^{\alpha_2} e : A} \text{ subsume}$$

Positive polynomials for easy bounds

Positive polynomials for easy bounds

$$x, y, e, f, g, h \ge 1$$

 $a, b \ge 0$

Conjunction

$$\frac{\Gamma \vdash_{\beta_1}^{\alpha_1} a^1 : A^1 \quad \Gamma \vdash_{\beta_2}^{\alpha_2} a^2 : A^2}{\Gamma \vdash_{\max(\beta_1,\beta_2)+1}^{\alpha_1+\alpha_2} (a^1,a^2) : A^1 \wedge A^2} pair$$

$$\frac{\Gamma \vdash^{\alpha}_{\beta+1} e: \mathcal{A}^1 \land \mathcal{A}^2 \quad i \in \{1,2\}}{\Gamma \vdash^{\alpha+1}_{\beta} prj_i \ e: \mathcal{A}^i} \ prj_i$$

Alternative

$$\frac{\Gamma \vdash^{\alpha}_{\beta} e : A^{i} \quad i \in \{I, r\}}{\Gamma \vdash^{\alpha+1}_{\beta+1} in_{i}(e) : A^{1} \lor A^{2}} inj$$

$$\frac{\Gamma \vdash_{\beta_{\vee}+1}^{\alpha_{\vee}} a: A^{1} \lor A^{2} \qquad \Gamma, x: A^{1}_{\beta_{\vee}} \vdash_{\beta_{1}}^{\alpha_{1}} b: B \qquad \Gamma, y: A^{2}_{\beta_{\vee}} \vdash_{\beta_{2}}^{\alpha_{2}} c: B}{\Gamma \vdash_{\max(\beta_{1},\beta_{2})}^{\alpha_{\vee}+\max(\alpha_{1},\alpha_{2})+1} case \ a \ of \qquad \underset{in_{I}(y) \qquad \rightarrow \qquad c;}{in_{r}(y) \qquad \rightarrow \qquad c;} : B$$

Abstraction and application

$$\frac{\Gamma, x_{\nu} : A \vdash_{\beta(\nu)}^{\alpha(\nu)} e : B}{\Gamma \vdash_{\beta(1)+1}^{\alpha(1)+1} \lambda x.e : \forall a_{\nu} : A \rightarrow_{\beta(\nu)}^{\alpha(\nu)} B} abs$$

$$\frac{\Gamma \vdash_{\beta_1}^{\alpha_1} e : \forall a : A_v \rightarrow_{\beta_2(v)}^{\alpha_2(v)} B \quad \Gamma \vdash_{\beta_3}^{\alpha_3} a : A}{\Gamma \vdash_{\beta_2(\beta_3)}^{\alpha_1 + \alpha_2(\beta_3) + \alpha_3} e \ a : B} \ app$$

Please note that notation $\forall x_{v} : A \rightarrow_{\beta(v)}^{\alpha(v)} B$ has a size variable v declared as a depth of term variable x, and then bound in polynomials $\alpha(v)$ and $\beta(v)$

The notation $\alpha(1)$ is a shortcut for $\alpha[[1/v]]$ in the rules *abs* and *app*.

Recursion

$$\frac{\Gamma \vdash_{\beta_1}^{\alpha_1} f : A_{\mathsf{v}} \rightarrow_{\beta_2(\mathsf{v}_2)}^{\alpha_2(\mathsf{v}_1)} A \quad \Gamma \vdash_{\beta_3}^{\alpha_3} k : B \quad \Gamma \vdash_{\beta_4}^{\alpha_4} a : A}{\Gamma \vdash_{\beta_1 [[iter(\beta_2, \beta_3, \mathsf{v}_2)][\beta_4/\mathsf{v}_2]]/\mathsf{v}]]} \operatorname{rec}(f, k, a) : B} \operatorname{rec}$$

rec(f, k, a) iterates function f at k times over a.

Consistency

Every rule beside *subsume* and *rec* is present in intuitionistic logic.

Consistency

Every rule beside *subsume* and *rec* is present in intuitionistic logic.
 rec fka can be understood as *k* unfoldings of *app*: f(f(..(a)))

Consistency

- Every rule beside *subsume* and *rec* is present in intuitionistic logic.
- ▶ rec fka can be understood as k unfoldings of app: f(f(..(a)))
- Hence consistency by embedding in IL: all *instance* of the statements can be reduced to finite IL proofs

Can express bounded loop programs (Meyer and Ritchie 1967)

- Can express bounded loop programs (Meyer and Ritchie 1967)
- Loop programs are primitive-recursive-complete

- Can express bounded loop programs (Meyer and Ritchie 1967)
- Loop programs are primitive-recursive-complete
- Bounds computable in advance at least primitive recursive

- Can express bounded loop programs (Meyer and Ritchie 1967)
- Loop programs are primitive-recursive-complete
- Bounds computable in advance at least primitive recursive
- Bounded Post-Turing machine

Emulation completeness

Emulation completeness

Theorem

Assume a time complexity c(x) for program (or proof) s that can be encoded as CUFL bounds. Iff we can emulate (encode evaluation) of f(x) with an overhead e for each step, then we can prove that complexity of evaluating s is e * c(x) + cc(x).

Post-Turing machine step can be easily emulated in $log^2(|\Sigma|)$.

Proof of emulation completeness

Proof of emulation completeness

Proof.

Assuming that e(f) is function emulation in CUFL, we can write proof expression iter(e(f), e(c), x). This expression evaluated encoded s and has exactly the assumed complexity

We can encode bounds as terms:

Var_{eta}	=	Nat_eta
$Bound_{\beta+1}$	=	$\operatorname{Var} \bigvee \operatorname{Nat}_{\beta} \lor \circ \lor (\operatorname{Bound}_{\beta}, \operatorname{Bound}_{\beta})$
, · ·	\vee	(Bound _{β} , Bound _{β})
	\vee	$(Bound_{\beta}, Bound_{\beta}) \lor (Bound_{\beta}, (Bound_{\beta}, Var))$
	\vee	$(Bound_{\beta}, (Var, Bound_{\beta}))$
[[v]]	=	$in_l(in_l(in_l(\mathbb{B}(v))))$
[<i>i</i>]	=	$in_l(in_l(in_r(i)))$
$\llbracket()\rrbracket$	=	$in_l(in_l(in_r(())))$
$\llbracket \rho_1 + \rho_2 \rrbracket$	=	$in_{I}(in_{r}(in_{r}([[\rho_{1}]], [[\rho_{2}]]))))$
$\llbracket \rho_1 * \rho_2 \rrbracket$	=	$in_r(in_l(([[\rho_1]], [[\rho_2]]))))$
$[\![\rho_1^{\rho_2}]\!]$	=	$in_r(in_l(in_r(([\![ho_1]\!], [\![ho_2]\!]))))$
$\llbracket iter(ho_1, ho_2, \mathbf{v}) \rrbracket$	=	$in_r(in_l((\llbracket ho_1 \rrbracket, (\llbracket ho_2 \rrbracket, \mathbb{B}(v))))))$
$\llbracket \rho_1 \llbracket \rho/v \rrbracket \rrbracket$	=	$in_r(in_r((\llbracket \rho_1 \rrbracket, (\llbracket \rho_2 \rrbracket, \mathbb{B}(v))))))$

We can also encode types:

$$\begin{split} \llbracket A \lor B \rrbracket &= in_l(in_l((\llbracket A \rrbracket, \llbracket B \rrbracket))) \\ \llbracket A \land B \rrbracket &= in_l(in_r((\llbracket A \rrbracket, \llbracket B \rrbracket))) \\ \llbracket \forall x_v : A \to_{\beta}^{\alpha} B \rrbracket &= in_r(in_l((\lambda x : A . \llbracket B \rrbracket, (\lambda v : \operatorname{Nat}_v . \llbracket \alpha \rrbracket, \lambda v : \operatorname{Nat}_v . \llbracket \beta \rrbracket))) \\ \llbracket \circ \rrbracket &= in_r(in_r(())) \end{split}$$

Finally we can encode the proof terms:

$\llbracket x_{v} \rrbracket$	=	$in_l(in_l(in_l(in_l((\mathbb{B}(x), v)))))$
[subsume(A, B)]	=	$in_l(in_l(in_l(in_r((\llbracket B \rrbracket_{Bound}, \llbracket A \rrbracket)))))$
[[unit]]	=	$in_{l}(in_{l}(in_{r}(in_{l}(()))))$
$\llbracket in_I(A) \rrbracket$	=	$in_l(in_l(in_r(in_r(A))))$
$\llbracket in_r(A) \rrbracket$	=	$in_l(in_r(in_l(in_l(A))))$
[[<i>prj</i> ₁ <i>A</i>]]	=	$in_l(in_r(in_l(in_r(A))))$
[[prj _r A]]	=	$in_l(in_r(in_r(in_l(A))))$
$\llbracket (A,B) \rrbracket$	=	$in_{I}(in_{r}(in_{r}((\llbracket A \rrbracket, (interp B, ,))))))$
$\llbracket app(A,B) \rrbracket$	=	$in_r(in_l(in_l(in_l(([A], [B])))))$
$\llbracket abs \lambda x_v. A \rrbracket$	=	$in_r(in_l(in_l(in_r(((\mathbb{B}(x),\mathbb{B}(v)), [A])))))$
[[<i>rec</i>]]	=	$in_r(in_l(in_r(in_l((\llbracket A \rrbracket, \llbracket B \rrbracket), \mathbb{B}(v))))))$

Theorem

Emulation completeness of ULF can be proven in itself.

The naive interpreter can be improved by applying CPS transformation, $O(\lg(|v|))$ dictionary lookups, and higher-order abstract syntax to avoid traversing entire term on substitution.

Problems stated

 $1. \ \mbox{First}$ we need to compute bound is within our limit

- 1. First we need to compute bound is within our limit
- 2. Then we are guaranteed that we have an answer within given time.

- 1. First we need to compute bound is within our limit
- 2. Then we are guaranteed that we have an answer within given time.
- 3. We may likewise bound computation of bounds.

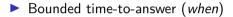
use convergent series instead of reals (Zeilberger 2010)

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series
- avoids implicit infinities in statement of the problem

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series
- avoids implicit infinities in statement of the problem
- ▶ for example: every statement about **all** natural numbers is statement about infinity

- use convergent series instead of reals (Zeilberger 2010)
- statements about finite descriptions instead of infinite series
- avoids implicit infinities in statement of the problem
- ▶ for example: every statement about **all** natural numbers is statement about infinity
- avoid transfinite ordinals



Bounded time-to-answer (*when*)
 Redefines logical expressivity

- Bounded time-to-answer (when)
- Redefines logical expressivity
- Redefines decidability (what and when)

- Bounded time-to-answer (when)
- Redefines logical expressivity
- Redefines decidability (what and when)
- Only computable functions

- Bounded time-to-answer (when)
- Redefines logical expressivity
- Redefines decidability (what and when)
- Only computable functions
- Avoids semidecidability paradox

List paradoxes reverted

- List paradoxes reverted
- ► Theorem prover

- List paradoxes reverted
- ► Theorem prover
- Amortized cost 1

Ultrafinitism is consistent

Ultrafinitism is consistent

Consistency by embedding in intuitionistic logic

- Ultrafinitism is consistent
- Consistency by embedding in intuitionistic logic
- Ultrafinitism expresses arithmetic

- Ultrafinitism is consistent
- Consistency by embedding in intuitionistic logic
- Ultrafinitism expresses arithmetic
- Bounded time-to-answer

- Ultrafinitism is consistent
- Consistency by embedding in intuitionistic logic
- Ultrafinitism expresses arithmetic
- Bounded time-to-answer
- Semidecidability as paradox

References

References I

- Dummett, Michael. 1975. "Wang's Paradox." *Synthese* 30 (3/4): 301–24. http://www.jstor.org/stable/20115034.
- Gisin, Nicolas. 2019. "Indeterminism in Physics, Classical Chaos and Bohmian Mechanics. Are Real Numbers Really Real?" https://arxiv.org/abs/1803.06824.
 Gorelik, Gennady. 2010. "Bremermann's Limit and cGh-Physics." https://arxiv.org/abs/0910.3424.
- Krajicek, Jan. 1995. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia of Mathematics and Its Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511529948.
- Krauss, Lawrence, and Glenn Starkman. 2004. "Universal Limits on Computation," May. Lloyd, Seth. 2002. "Computational Capacity of the Universe." *Physical Review Letters* 88 23: 237901.
- Magidor, Ofra. 2007. "Strict Finitism Refuted?" *Proceedings of the Aristotelian Society* 107 (1pt3): 403–11. https://doi.org/10.1111/j.1467-9264.2007.00230.x.

References II

- Meyer, Albert R., and Dennis M. Ritchie. 1967. "The Complexity of Loop Programs." In Proceedings of the 1967 22nd National Conference, 465–69. ACM '67. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/800196.806014.
- Sazonov, Vladimir Yu. 1995. "On Feasible Numbers." In *Logic and Computational Complexity*, edited by Daniel Leivant, 30–51. Berlin, Heidelberg: Springer Berlin Heidelberg.
- Schirn, Matthias, and Karl-Georg Niebergall. 2005. "Finitism = PRA? On a Thesis of w. W. Tait." *Reports on Mathematical Logic*, January.
- Troelstra, A. S. 1988. *Constructivism in Mathematics: An Introduction*. Elsevier. https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundationsof-mathematics/vol/121/suppl/C.
- Zeilberger, Doron. 2010. "Opinion 108: ...the Feeling Is Mutual: I Feel Sorry for Infinitarian Hugh Woodin for Feeling Sorry for Finitists Like Myself! (And the "Lowly" Finite Is MUCH More Beautiful Than Any "Infinite")." 2010. https://sites.math.rutgers.edu/~zeilberg/Opinion108.html.