Introduction	Characterization	First bijection	Second bijection	Conclusion
0000000	000	000		O

Bijections between planar maps and planar linear normal λ -terms with connectivity condition

Wenjie Fang LIGM, Université Gustave Eiffel arXiv:2202.03542

12 January 2023, CLA 2023, LIX, École polytechnique

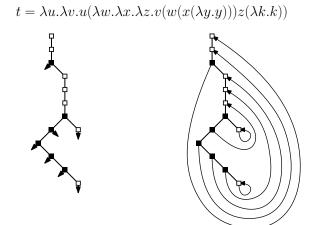
Introduction
Characterization
First bijection
Second bijection
Conclusion

● 00 0 0 0 0
0 0 0
0 0 0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
<td

λ -terms, according to a combinatorialist

 λ -term: unary-binary tree (skeleton) + variable-abstraction map

Linear λ -term: the variable-abstraction map being bijective (so closed)



- closed: the variable-abstraction map is complete
- unitless: no closed sub-term
- normal: no β -reduction, *i.e.*, avoiding
- (RL-)planar: right-to-left variable-abstraction map Example: $t = \lambda u.\lambda v.u(\lambda w.\lambda x.\lambda z.v(w(x(\lambda y.y)))z(\lambda k.k))$

All can be translated combinatorially to trees!

Linear + planar : unique choice, so just unary-binary tree!

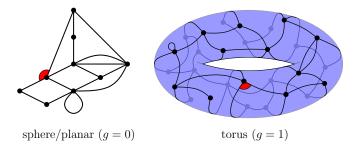
Introduction	Characterization	First bijection	Second bijection	Conclusion O
Known en	umerations			

λ -terms	Maps	OEIS
linear	general cubic	A062980
planar	planar cubic	A002005
unitless	bridgeless cubic	A267827
unitless planar	bridgeless planar cubic	A000309
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	bridgeless planar	A000260

Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, LICS 2018

A lot of people and work: Zeilberger, Bodini, Gardy, Jacquot, Giorgetti, Courtiel, Yeats, ...

Combinatorial map: drawing of graphs on a surface



We only consider rooted map, *i.e.*, with a marked corner.

Notions in graph theory: planar, cubic, bridgeless, loopless, bipartite, ...

Introduction	Characterization	First bijection	Second bijection	Conclusion O
Connectivity	condition			

Noam Zeilberger and Jason Reed (CLA 2019)

How about connectivity of the diagram on planar linear normal terms?

k-connected: breaking k-1 edges does not split the graph

- 1-connected: all (connected by their skeleton)
- 2-connected: unitless (bridge ⇔ closed sub-term)
- 3-connected: ???

Conjecture (Zeilberger-Reed, 2019)

The number of 3-connected planar linear normal $\lambda\text{-terms}$ with n+2 variables is

$$\frac{2^n}{(n+1)(n+2)}\binom{2n+1}{n}$$

which also counts bipartite planar maps with n edges (A000257).

Introduction

Characterization

First bijection

Second bijection

Conclusion

Our contribution (1)

Katarzyna Grygiel and Guan-Ru Yu (CLA 2020): combinatorial characterization of 3-connected terms, partial bijective results

Theorem (Fang, 2023+)

There is a direct bijection between 3-connected planar linear normal λ -terms with n + 2 variables and bipartite planar maps with n edges.

What we do using bijections:

- Transfer of statistics (also about applications in λ -terms)
- Generating functions and probabilistic results also for free!

Proposition (F. 2023+, from known results on maps)

Let $X_n = \#$ initial abstractions of a uniformly random 3-connected planar linear normal λ -term. When $n \to \infty$,

$$\mathbb{P}[X_n = k] \to \frac{k-1}{3} \binom{2k-2}{k-1} \left(\frac{3}{16}\right)^{k-1}$$

Introduction	Characterization	First bijection	Second bijection	Conclusion O
Our contri	bution (2)			

Theorem (Fang, 2023+)

There is a direct bijection from planar linear normal λ -terms to planar maps. Furthermore, when restricted to unitless terms, the bijection leads to loopless planar maps.

λ -terms	Maps	OEIS
β-normal linear/~	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear/~	bridgeless	A000699
β-normal unitless planar	loopless planar	A000260

Known recursive bijection in (Zeilberger and Giorgetti, 2015) via LR-planar terms

Introduction 0000000	Characterization	First bijection	Second bijection	Conclusion
From λ -	terms to unary	-binary trees		

Linear planar λ -terms \Leftrightarrow unary-binary trees (with conditions)

Three statistics for a unary-binary tree S:

- unary(S): number of unary nodes (abstractions)
- leaf(S): number of leaves (variables)
- excess(S): leaf(S) unary(S) (free variables)

Properties of linear planar λ -terms \Leftrightarrow properties on skeletons

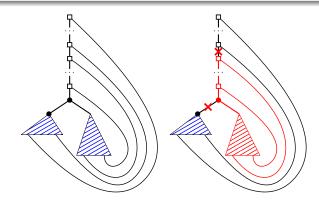
 $S_u: \mathsf{sub-tree} \text{ of } S \text{ induced by } u$

- Linear (or closed) \Leftrightarrow excess(S) = 0
- Normal ⇔ Left child of a binary node is never unary
- 1-connected $\Leftrightarrow \operatorname{excess}(S_u) \ge 0$ for all u
- 2-connected $\Leftrightarrow \operatorname{excess}(S_u) > 0$ for all u non-root

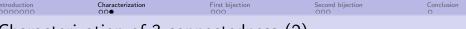
Characterization of 3-connectedness (1)

Proposition (Grygiel and Yu, CLA 2020)

Let S be the skeleton of a 3-connected planar linear λ -term, then the left child of the first binary node is a leaf.



Reduced skeleton: the right sub-tree of the first binary node

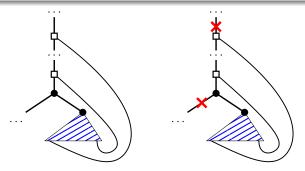


Characterization of 3-connectedness (2)

Proposition (Proposed by Grygiel and Yu, CLA 2020)

S is the reduced skeleton of a 3-connected planar linear normal λ -term iff

- (Normality) The left child of a binary node in S is never unary;
- (3-connectedness) For every binary node u with v its right child, excess (S_v) is strictly larger than the number of consecutive unary nodes above u.



Clearly necessary, but also sufficient!

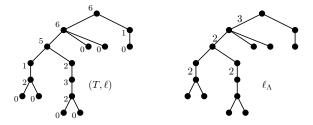
Introduction 0000000	Characterization	First bijection ●○○	Second bijection	Conclusion O
Degree tree	S			

Degree tree: a plane tree T with a labeling ℓ on nodes with

- u is a leaf $\Rightarrow \ell(u) = 0$;
- u has children $v_1, \ldots v_k \Rightarrow s(u) \ell(v_1) \le \ell(u) \le s(u)$, where $s(u) = k + \sum_{i=1}^k \ell(v_i)$.

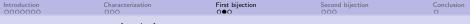
Contribution of each child : 1 (itself) + $\ell(v_i)$ (its sub-tree)

Except for the first child: from 1 to its due contribution.

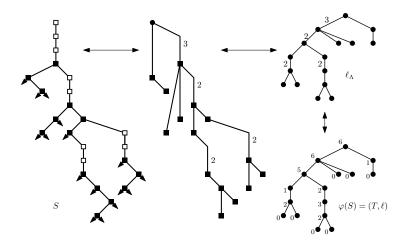


Edge labeling $\ell_{\Lambda}:$ the subtracted contribution

 ℓ and ℓ_Λ interchangeable!

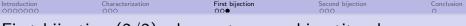


First bijection (1/2): 3-connected terms \Leftrightarrow degree trees

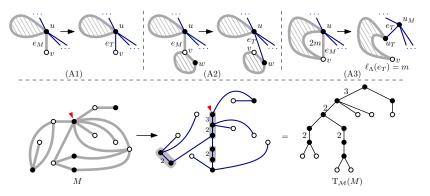


● Unary nodes on right child ⇔ Subtraction on left child

• Leftmost leaf \Leftrightarrow Contribution 1



First bijection (2/2): degree trees \Leftrightarrow bipartite planar maps



Existing direct bijection (F., 2021), using an exploration

Also related to Chapoton's new intervals in the Tamari lattice Some statistics correspondences:

- Unary chains of length $k \Leftrightarrow$ edge label $k \Leftrightarrow$ faces of degree 2k
- Initial unary chain ⇔ root label ⇔ degree of root face

Introduction 0000000	Characterization	First bijection	Second bijection ●○○	Conclusion O
Connected	terms and tree	S		

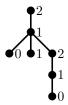
Recall the conditions:

- 1-connected $\Leftrightarrow \operatorname{excess}(S_u) \ge 0$ for all u
- 2-connected $\Leftrightarrow \operatorname{excess}(S_u) > 0$ for all u non-root

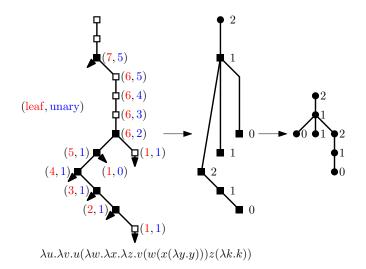
v-trees: a plane tree T with a labeling ℓ on nodes with

• Leaves $u \Rightarrow \ell(u) \in \{0, 1\};$

• Non-root u with children $v_1, \ldots, v_k \Rightarrow 0 \le \ell(u) \le 1 + \sum_{i=1}^k \ell(v_i)$

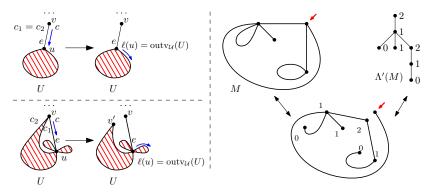


Introduction 0000000	Characterization	First bijection	Second bijection ೧●೧	Conclusion O
Second b	bijection $(1/2)$			



Excess of the **right child**! $0 \Leftrightarrow$ closed sub-term

Direct bijection = "de-recusifyng" a new recursive decomposition outv_U: #vertices on outer face -1



Introduction			econd bijection	Conclusion
Recapit	ulation			
	λ -terms	Maps	OEIS	
	β -normal linear/ \sim	general	A000698	
	β -normal planar	planar	A000168	
	eta -normal unitless linear/ \sim	bridgeless	A000699	
	β -normal unitless planar	loopless plana	r A000260	
	β -normal 3-connected plan	nar bipartite plana	ar A000257	

First bijection (direct) for 3-connected planar normal terms and bipartite planar maps

New bijection (direct) for general planar normal terms and planar maps, naturally restricted to 2-connected terms and loopless planar maps

Not the same bijection... But in the same spirit.

Higher connectivity? Other enumeration consequences?

Introduction 0000000			Second bijection	Conclusion
Recapit	ulation			
	λ -terms	Maps	OEIS	
	β -normal linear/ \sim	general	A000698	
	β -normal planar	planar	A000168	
	eta -normal unitless linear/ \sim	bridgeless	A000699	
	eta-normal unitless planar	loopless plana	r A000260	
	β -normal 3-connected plan	nar bipartite plan	ar A000257	

First bijection (direct) for 3-connected planar normal terms and bipartite planar maps

New bijection (direct) for general planar normal terms and planar maps, naturally restricted to 2-connected terms and loopless planar maps

Not the same bijection... But in the same spirit.

Higher connectivity? Other enumeration consequences?

Thank you for listening!