Bijections between planar maps and planar linear normal λ-terms with connectivity condition

Wenjie Fang
LIGM, Université Gustave Eiffel arXiv:2202.03542

12 January 2023, CLA 2023, LIX, École polytechnique

λ-terms, according to a combinatorialist

λ-term: unary-binary tree (skeleton) + variable-abstraction map
Linear λ-term: the variable-abstraction map being bijective (so closed)

$$
t=\lambda u \cdot \lambda v \cdot u(\lambda w \cdot \lambda x \cdot \lambda z \cdot v(w(x(\lambda y \cdot y))) z(\lambda k \cdot k))
$$

Some special properties

- closed: the variable-abstraction map is complete
- unitless: no closed sub-term
- normal: no β-reduction, i.e., avoiding

- (RL-)planar: right-to-left variable-abstraction map Example: $t=\lambda u \cdot \lambda v \cdot u(\lambda w \cdot \lambda x \cdot \lambda z \cdot v(w(x(\lambda y \cdot y))) z(\lambda k . k))$

All can be translated combinatorially to trees!
Linear + planar : unique choice, so just unary-binary tree!

Known enumerations

λ-terms	Maps	OEIS
linear	general cubic	A062980
planar	planar cubic	A002005
unitless	bridgeless cubic	A267827
unitless planar	bridgeless planar cubic	A000309
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	bridgeless planar	A000260

Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, LICS 2018
A lot of people and work: Zeilberger, Bodini, Gardy, Jacquot, Giorgetti, Courtiel, Yeats, ...

What is a map?

Combinatorial map: drawing of graphs on a surface

sphere/planar $(g=0)$

torus $(g=1)$

We only consider rooted map, i.e., with a marked corner.
Notions in graph theory: planar, cubic, bridgeless, loopless, bipartite, ...

Connectivity condition

Noam Zeilberger and Jason Reed (CLA 2019)

How about connectivity of the diagram on planar linear normal terms?
k-connected: breaking $k-1$ edges does not split the graph

- 1-connected: all (connected by their skeleton)
- 2-connected: unitless (bridge \Leftrightarrow closed sub-term)
- 3-connected: ???

Conjecture (Zeilberger-Reed, 2019)

The number of 3 -connected planar linear normal λ-terms with $n+2$ variables is

$$
\frac{2^{n}}{(n+1)(n+2)}\binom{2 n+1}{n}
$$

which also counts bipartite planar maps with n edges (A000257).

Our contribution (1)

Katarzyna Grygiel and Guan-Ru Yu (CLA 2020): combinatorial characterization of 3-connected terms, partial bijective results

Theorem (Fang, 2023+)

There is a direct bijection between 3-connected planar linear normal λ-terms with $n+2$ variables and bipartite planar maps with n edges.

What we do using bijections:

- Transfer of statistics (also about applications in λ-terms)
- Generating functions and probabilistic results also for free!

Proposition (F. 2023+, from known results on maps)

Let $X_{n}=\#$ initial abstractions of a uniformly random 3-connected planar linear normal λ-term. When $n \rightarrow \infty$,

$$
\mathbb{P}\left[X_{n}=k\right] \rightarrow \frac{k-1}{3}\binom{2 k-2}{k-1}\left(\frac{3}{16}\right)^{k-1}
$$

Our contribution (2)

Theorem (Fang, 2023+)

There is a direct bijection from planar linear normal λ-terms to planar maps. Furthermore, when restricted to unitless terms, the bijection leads to loopless planar maps.

λ-terms	Maps	OEIS
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	loopless planar	A000260

Known recursive bijection in (Zeilberger and Giorgetti, 2015) via LR-planar terms

From λ-terms to unary-binary trees

Linear planar λ-terms \Leftrightarrow unary-binary trees (with conditions)
Three statistics for a unary-binary tree S :

- unary (S) : number of unary nodes (abstractions)
- leaf (S) : number of leaves (variables)
- $\operatorname{excess}(S)$: leaf (S) - unary (S) (free variables)

Properties of linear planar λ-terms \Leftrightarrow properties on skeletons
S_{u} : sub-tree of S induced by u

- Linear (or closed) $\Leftrightarrow \operatorname{excess}(S)=0$
- Normal \Leftrightarrow Left child of a binary node is never unary
- 1-connected $\Leftrightarrow \operatorname{excess}\left(S_{u}\right) \geq 0$ for all u
- 2-connected $\Leftrightarrow \operatorname{excess}\left(S_{u}\right)>0$ for all u non-root

Characterization of 3 -connectedness (1)

Proposition (Grygiel and Yu, CLA 2020)

Let S be the skeleton of a 3-connected planar linear λ-term, then the left child of the first binary node is a leaf.

Reduced skeleton: the right sub-tree of the first binary node

Characterization of 3-connectedness (2)

Proposition (Proposed by Grygiel and Yu, CLA 2020)

S is the reduced skeleton of a 3-connected planar linear normal λ-term iff

- (Normality) The left child of a binary node in S is never unary;
- (3-connectedness) For every binary node u with v its right child, excess $\left(S_{v}\right)$ is strictly larger than the number of consecutive unary nodes above u.

Clearly necessary, but also sufficient!

Degree trees

Degree tree: a plane tree T with a labeling ℓ on nodes with

- u is a leaf $\Rightarrow \ell(u)=0$;
- u has children $v_{1}, \ldots v_{k} \Rightarrow s(u)-\ell\left(v_{1}\right) \leq \ell(u) \leq s(u)$, where

$$
s(u)=k+\sum_{i=1}^{k} \ell\left(v_{i}\right) .
$$

Contribution of each child : 1 (itself) $+\ell\left(v_{i}\right)$ (its sub-tree)
Except for the first child: from 1 to its due contribution.

Edge labeling ℓ_{Λ} : the subtracted contribution
ℓ and ℓ_{Λ} interchangeable!

First bijection (1/2): 3-connected terms \Leftrightarrow degree trees

- Unary nodes on right child \Leftrightarrow Subtraction on left child
- Leftmost leaf \Leftrightarrow Contribution 1

0000000

First bijection (2/2): degree trees \Leftrightarrow bipartite planar maps

Existing direct bijection (F., 2021), using an exploration
Also related to Chapoton's new intervals in the Tamari lattice
Some statistics correspondences:

- Unary chains of length $k \Leftrightarrow$ edge label $k \Leftrightarrow$ faces of degree $2 k$
- Initial unary chain \Leftrightarrow root label \Leftrightarrow degree of root face

Connected terms and trees

Recall the conditions:

- 1-connected $\Leftrightarrow \operatorname{excess}\left(S_{u}\right) \geq 0$ for all u
- 2-connected $\Leftrightarrow \operatorname{excess}\left(S_{u}\right)>0$ for all u non-root
v-trees: a plane tree T with a labeling ℓ on nodes with
- Leaves $u \Rightarrow \ell(u) \in\{0,1\}$;
- Non-root u with children $v_{1}, \ldots, v_{k} \Rightarrow 0 \leq \ell(u) \leq 1+\sum_{i=1}^{k} \ell\left(v_{i}\right)$

Second bijection (1/2)

Excess of the right child! $0 \Leftrightarrow$ closed sub-term

Second bijection (2/2)

Direct bijection $=$ "de-recusifyng" a new recursive decomposition outv \mathcal{U} : \#vertices on outer face -1

Loop \Leftrightarrow component with 1 outer node \Leftrightarrow label 0 in tree
Natural specialization to loopless planar maps \Leftrightarrow unitless terms!

Recapitulation

λ-terms	Maps	OEIS
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	loopless planar	A000260
β-normal 3-connected planar	bipartite planar	A000257

First bijection (direct) for 3-connected planar normal terms and bipartite planar maps

New bijection (direct) for general planar normal terms and planar maps, naturally restricted to 2 -connected terms and loopless planar maps

Not the same bijection... But in the same spirit.
Higher connectivity? Other enumeration consequences?

Recapitulation

λ-terms	Maps	OEIS
β-normal linear $/ \sim$	general	A000698
β-normal planar	planar	A000168
β-normal unitless linear $/ \sim$	bridgeless	A000699
β-normal unitless planar	loopless planar	A000260
β-normal 3-connected planar	bipartite planar	A000257

First bijection (direct) for 3-connected planar normal terms and bipartite planar maps

New bijection (direct) for general planar normal terms and planar maps, naturally restricted to 2 -connected terms and loopless planar maps

Not the same bijection... But in the same spirit.
Higher connectivity? Other enumeration consequences?
Thank you for listening!

