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Binary Decision Diagram

Let f be a Boolean function in k variables. T4
g
A Binary Decision Diagram is a compact representation of f r3 T3
allowing to evaluate it efficiently. l : \
v o g
. o0 . T2 962h 2
It is based on some divide-and-conquer principle. .'\ . 5

[Wegener00]: Branching Programs and Binary Decision Diagrams |
[Knuth1l]: The Art of Computer Programming (vol.4) 5

We are interested in Reduced Ordered Binary Decision Diagrams, denoted ROBDDs.
We take a point of view of a combinatorialist.



Shannon effect: ROBDD's size distribution
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Motivations: Building ROBDDs of small size
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Motivations: Building ROBDDs of small sizes
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Motivations: Building ROBDDs of small sizes
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Specific functions with small ROBDDs (in k variables):

¢ threshold functions: 7 < kK <12; 1</ < k
- addition in k bits, 17

- read-once fcts, 22

- symmetric fcts:

0(k?).




Why does the enumeration be difficult?
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Combinatorial preliminaries




Focus on DAGs ~ ROBDDs

Concepts:
e low/high child
e size
e layers

e constraints:

e useful node property

descendants unicity in a given layer
e acyclicity
e accessibility

e profile [1,2,3,3,3,1,2]

e reverse postorder traversal




Multientry ROBDD

Concepts:
e removing upper layers multientry ROBDD

e keeping destination of red edges
as a multiset {3,4,4,7,10,11, 11}




Spine of a ROBDD

Concepts:
e the spine of a ROBDD
spanning tree given by a depth-first search

o = tree edges
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Spine of a ROBDD

@

Concepts:
e the spine of a ROBDD
spanning tree given by a depth-first search

o = tree edges

e non-tree edges
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Iterative counting




Recursive versus iterative counting

In my CLA'20 talk [Latin'20]: recursive counting
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Recursive versus iterative counting

In my CLA'20 talk [Latin'20]: recursive counting

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

Q(Mi.5-|0g I\/Ik)7

where M if the largest ROBDD on k variables.

(M) ket....12 = (3,5,7,11,19,31,47,79, 143,271, 511, 767).
k k

2 2 .
We have - <M <2 - as k tends to infinity.

In practice, we computed the partition for k = 8 in about 2 hours on a personal
computer with a python implementation
and for k =9, in several days using a fast computer with a C++ implementation. 1



Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle
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Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle

e 7 incoming edges
e 3 nodes

e 9 outgoing edges
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Recursive versus iterative counting

Today: iterative counting

through inclusion-exclusion principle

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

O(Mﬁ -log Mk):

where M if the largest ROBDD on k variables.

(M)ker....12 = (3,5,7,11, 19, 31, 47,79, 143, 271, 511, 767).
We have M ~ 2k /k as k tends to infinity.

In practice, we compute the partition for k = 12, thus for the 2409 functions in about 6

hours on a computer with > 200GB of RAM.

11
cf. https://github.com/agenitrini/BDDgen


https://github.com/agenitrini/BDDgen

Unranking a ROBDD




The Unranking method for combinatorial structures

1. Defining a total order over the structures
(same number of Boolean variables and same size).

2. Constructing the structure only by using its rank.

= This allows to build structures of a given size.

= This leads trivially to a uniform (by size) random sampler.
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The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
Done by iteratively computing the number of nodes by layer.

i3



The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;

2. Build the spine;
Reverse postorder traversal gives information about non-tree edges.

i3



The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
2. Build the spine;

3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

i3



The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
2. Build the spine;

3. Build the ROBDD;

The unranking algorithm with inputs r, n, k satisfies:

O(k? n®) time complexity and O(n?) extra space for identifying the profile;

O(k? n®) time complexity to generate the ROBDD with a given profile.

i3



The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
2. Build the spine;

3. Build the ROBDD;

The unranking algorithm with inputs r, n, k satisfies:

O(k? n®) time complexity and O(n?) extra space for identifying the profile;

O(k? n®) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2. "



ROBDD gallery: Majority with 15 variables




ROBDD gallery: Majority with 15 variables

Same size as Majority with 15 variables.
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ROBDD gallery: Majority with 15 variables

Same profile as Majority with 15 variables.




ROBDD gallery: Majority with 15 variables

Same spine as Majority with 15 variables.




ROBDD gallery: same spine as Majority with 35 variables
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Conclusion and future work

— Our combinatorial approach adapts very well.

e subclasses of functions: ex. only with essential variables
e other classes of BDDs (with other constraint rules)

e OBDDs
e Quasi-reduced BDDs
e Zero-supressed BDDs

— In the future:

e Combinatorial characterization of the class of spines?

e Can we improve the time complexity for the counting/unranking methods?
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