Unranking of Reduced Ordered Binary Decision Diagrams

arXiv:2211.04938

Antoine Genitrinif with Julien Clément*

Workshop Computational Logic and Applications

January 13, 2023

fLIP6 @ Sorbonne University *GREYC @ Normandie University

Binary Decision Diagram

Let f be a Boolean function in k variables. T4
g
A Binary Decision Diagram is a compact representation of f r3 T3
allowing to evaluate it efficiently. l : \
v o g
. o0 . T2 962h 2
It is based on some divide-and-conquer principle. .'\ . 5

[Wegener00]: Branching Programs and Binary Decision Diagrams |
[Knuth1l]: The Art of Computer Programming (vol.4) 5

We are interested in Reduced Ordered Binary Decision Diagrams, denoted ROBDDs.
We take a point of view of a combinatorialist.

Shannon effect: ROBDD's size distribution

~ 10154 ~ 10308 ~ 10616 ~ 101233 3

0 100 200 300 400 500 600 700 800
variables H ‘ ‘ 9 ‘ 10 ‘ 11 ‘ 12 ‘
functions 5512 51024 52048 4096

Motivations: Building ROBDDs of small size

O Gn0 oo

Ig0C U0 DO O DO

=3 Lk T
N S

Motivations: Building ROBDDs of small sizes

4000 P
- 008
-
3500 7
s
3000 -
,/ 0.06
o
p
2500
,/l
2000 004
1500 //
/
1000 ,v‘/ 0.02
500 A
o J 0.00
6 160 260 300 60 560 a0 760 a0

Motivations: Building ROBDDs of small sizes

4000 o
0.08 Gi)
3500 [€DEED)
@ @ @
3000
006
olololo)
LD ololololo)
pd olololololo
2000 sos
G () () () () (D
100 & & & & ®

Specific functions with small ROBDDs (in k variables):

¢ threshold functions: 7 < kK <12; 1</ < k
- addition in k bits, 17

- read-once fcts, 22

- symmetric fcts:

0(k?).

Why does the enumeration be difficult?

Why does the enumeration be difficult?

Outline of the talk
Combinatorial preliminaries

Outline of the talk

Combinatorial preliminaries

Iterative counting

Outline of the talk

Combinatorial preliminaries

Iterative counting

Unranking a ROBDD

, O
mmw
o\ STTTUE-00D TP OOIDHD

0 —
| RONCER O ROIOR0I0r=;)
BI0

Combinatorial preliminaries

Focus on DAGs ~ ROBDDs

Concepts:
e low/high child
e size
e layers

e constraints:

e useful node property

descendants unicity in a given layer
e acyclicity
e accessibility

e profile [1,2,3,3,3,1,2]

e reverse postorder traversal

Multientry ROBDD

Concepts:
e removing upper layers multientry ROBDD

e keeping destination of red edges
as a multiset {3,4,4,7,10,11, 11}

Spine of a ROBDD

Concepts:
e the spine of a ROBDD
spanning tree given by a depth-first search

o = tree edges

10

Spine of a ROBDD

@

Concepts:
e the spine of a ROBDD
spanning tree given by a depth-first search

o = tree edges

e non-tree edges

10

Iterative counting

Recursive versus iterative counting

In my CLA'20 talk [Latin'20]: recursive counting

11

Recursive versus iterative counting

In my CLA'20 talk [Latin'20]: recursive counting

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

Q(Mi.5-|0g I\/Ik)7

where M if the largest ROBDD on k variables.

(M) ket....12 = (3,5,7,11,19,31,47,79, 143,271, 511, 767).
k k

2 2 .
We have - <M <2 - as k tends to infinity.

In practice, we computed the partition for k = 8 in about 2 hours on a personal
computer with a python implementation
and for k =9, in several days using a fast computer with a C++ implementation. 1

Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle

11

Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle

e 7 incoming edges
e 3 nodes

e 9 outgoing edges

11

Recursive versus iterative counting

Today: iterative counting

through inclusion-exclusion principle

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

O(Mﬁ -log Mk):

where M if the largest ROBDD on k variables.

(M)ker....12 = (3,5,7,11, 19, 31, 47,79, 143, 271, 511, 767).
We have M ~ 2k /k as k tends to infinity.

In practice, we compute the partition for k = 12, thus for the 2409 functions in about 6

hours on a computer with > 200GB of RAM.

11
cf. https://github.com/agenitrini/BDDgen

https://github.com/agenitrini/BDDgen

Unranking a ROBDD

The Unranking method for combinatorial structures

1. Defining a total order over the structures
(same number of Boolean variables and same size).

2. Constructing the structure only by using its rank.

= This allows to build structures of a given size.

= This leads trivially to a uniform (by size) random sampler.

12

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
Done by iteratively computing the number of nodes by layer.

i3

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;

2. Build the spine;
Reverse postorder traversal gives information about non-tree edges.

i3

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
2. Build the spine;

3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

i3

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
2. Build the spine;

3. Build the ROBDD;

The unranking algorithm with inputs r, n, k satisfies:

O(k? n®) time complexity and O(n?) extra space for identifying the profile;

O(k? n®) time complexity to generate the ROBDD with a given profile.

i3

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
2. Build the spine;

3. Build the ROBDD;

The unranking algorithm with inputs r, n, k satisfies:

O(k? n®) time complexity and O(n?) extra space for identifying the profile;

O(k? n®) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2. "

ROBDD gallery: Majority with 15 variables

ROBDD gallery: Majority with 15 variables

Same size as Majority with 15 variables.

14

ROBDD gallery: Majority with 15 variables

Same profile as Majority with 15 variables.

ROBDD gallery: Majority with 15 variables

Same spine as Majority with 15 variables.

ROBDD gallery: same spine as Majority with 35 variables

15

Conclusion and future work

— Our combinatorial approach adapts very well.

e subclasses of functions: ex. only with essential variables
e other classes of BDDs (with other constraint rules)

e OBDDs
e Quasi-reduced BDDs
e Zero-supressed BDDs

— In the future:

e Combinatorial characterization of the class of spines?

e Can we improve the time complexity for the counting/unranking methods?

16

	Combinatorial preliminaries
	

	Iterative counting
	

	Unranking a ROBDD
	

