Unranking of Reduced Ordered Binary Decision Diagrams

arXiv:2211.04938

Antoine Genitrini[†]

with Julien Clément*

Workshop Computational Logic and Applications

January 13, 2023

[†]LIP6 @ Sorbonne University

*GREYC @ Normandie University

Let f be a Boolean function in k variables.

A *Binary Decision Diagram* is a compact representation of *f* allowing to evaluate it efficiently.

It is based on some divide-and-conquer principle.

[Wegener00]: Branching Programs and Binary Decision Diagrams [Knuth11]: The Art of Computer Programming (vol.4)

We are interested in Reduced Ordered Binary Decision Diagrams, denoted ROBDDs. We take a point of view of a combinatorialist.

Shannon effect: ROBDD's size distribution

Motivations: Building ROBDDs of small size

Motivations: Building ROBDDs of small sizes

Motivations: Building ROBDDs of small sizes

Specific functions with small ROBDDs (in *k* variables):

	ℓ th	resho	old fi	uncti	ons:	$7 \leq$	$k \leq 1$	12;	$1 \leq k$	$\ell \leq k$		
- addition in <i>k</i> bits,		14	17	18	17	14						
- read-once fcts,				22	22							
- symmetric fcts:	11		23		27		23		11			
	12				32	32				12		
$O(k^2)$.	13	22		34	37	38	37	34		22	13	
	14	24	32		42	44	44	42		32	24	14

Why does the enumeration be difficult?

Why does the enumeration be difficult?

• Combinatorial preliminaries

Outline of the talk

- Combinatorial preliminaries
- Iterative counting

Outline of the talk

- Combinatorial preliminaries
- Iterative counting
- Unranking a ROBDD

Combinatorial preliminaries

Focus on DAGs \approx ROBDDs

Concepts:

- low/high child
- size
- layers
- constraints:
 - useful node property
 - descendants unicity in a given layer
 - acyclicity
 - accessibility
- profile [1, 2, 3, 3, 3, 1, 2]
- reverse postorder traversal

Multientry ROBDD

Concepts:

- removing upper layers multientry ROBDD
 - keeping destination of red edges as a multiset {3, 4, 4, 7, 10, 11, 11}

Spine of a ROBDD

Concepts:

- the spine of a ROBDD spanning tree given by a depth-first search
 - $\bullet \ \Rightarrow {\sf tree} \ {\sf edges}$

Spine of a ROBDD

Concepts:

the spine of a ROBDD

spanning tree given by a depth-first search

- $\bullet \ \Rightarrow {\sf tree \ edges}$
- non-tree edges

Iterative counting

In my CLA'20 talk [Latin'20]: recursive counting

In my CLA'20 talk [Latin'20]: recursive counting

The time complexity (in the number of arithmetic operations) for partitioning the Boolean functions in k variables according to their ROBDD size is

 $\Omega(M_k^{1.5 \cdot \log M_k}),$

where M_k if the largest ROBDD on k variables.

$$(M_k)_{k=1,\ldots,12} = (3, 5, 7, 11, 19, 31, 47, 79, 143, 271, 511, 767)$$

We have $\frac{2^k}{k} \le M_k \le 2 \cdot \frac{2^k}{k}$ as k tends to infinity.

In practice, we computed the partition for k = 8 in about 2 hours on a personal computer with a python implementation and for k = 9, in several days using a fast computer with a C++ implementation.

Today: iterative counting

through inclusion-exclusion principle

Today: iterative counting

through inclusion-exclusion principle

- 7 incoming edges
- 3 nodes
- 9 outgoing edges

Today: iterative counting

through inclusion-exclusion principle

The time complexity (in the number of arithmetic operations) for partitioning the Boolean functions in k variables according to their ROBDD size is

 $O(M_k^4 \cdot \log M_k),$

where M_k if the largest ROBDD on k variables.

 $(M_k)_{k=1,\ldots,12} = (3, 5, 7, 11, 19, 31, 47, 79, 143, 271, 511, 767).$

We have $M_k \approx 2^k/k$ as k tends to infinity.

In practice, we compute the partition for k = 12, thus for the 2⁴⁰⁹⁶ functions in about 6 hours on a computer with > 200GB of RAM.

cf. https://github.com/agenitrini/BDDgen

Unranking a ROBDD

- Defining a total order over the structures (same number of Boolean variables and same size).
- 2. Constructing the structure only by using its rank.

- $\Rightarrow~$ This allows to build structures of a given size.
- $\Rightarrow\,$ This leads trivially to a uniform (by size) random sampler.

Inputs: rank r, size s, number of variables ${\tt k}$

1. Select the profile;

Done by iteratively computing the number of nodes by layer.

Inputs: rank r, size s, number of variables k

- 1. Select the profile;
- 2. Build the spine;

Reverse postorder traversal gives information about non-tree edges.

Inputs: rank r, size s, number of variables k

- 1. Select the profile;
- 2. Build the spine;
- 3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

Inputs: rank r, size s, number of variables k

- 1. Select the profile;
- 2. Build the spine;
- 3. Build the ROBDD;

The unranking algorithm with inputs r, n, k satisfies:
O(k² n⁵) time complexity and O(n²) extra space for identifying the profile;
O(k² n³) time complexity to generate the ROBDD with a given profile.

Inputs: rank r, size s, number of variables k

- 1. Select the profile;
- 2. Build the spine;
- 3. Build the ROBDD;

The unranking algorithm with inputs r, n, k satisfies:
O(k² n⁵) time complexity and O(n²) extra space for identifying the profile;
O(k² n³) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2.

Same size as Majority with 15 variables.

Same spine as Majority with 15 variables.

ROBDD gallery: same spine as Majority with 35 variables

Conclusion and future work

- Our combinatorial approach adapts very well.
 - subclasses of functions: ex. only with essential variables
 - other classes of BDDs (with other constraint rules)
 - OBDDs
 - Quasi-reduced BDDs
 - Zero-supressed BDDs
- In the future:
 - Combinatorial characterization of the class of spines?
 - Can we improve the time complexity for the counting/unranking methods?