
Unranking of Reduced Ordered Binary Decision Diagrams

arXiv:2211.04938

Antoine Genitrini† with Julien Clément∗

Workshop Computational Logic and Applications

January 13, 2023

†LIP6 @ Sorbonne University ∗GREYC @ Normandie University

Binary Decision Diagram

Let f be a Boolean function in k variables.

A Binary Decision Diagram is a compact representation of f
allowing to evaluate it efficiently.

It is based on some divide-and-conquer principle.

[Wegener00]: Branching Programs and Binary Decision Diagrams
[Knuth11]: The Art of Computer Programming (vol.4)

True False

x2

x1

x3

x2 x2

x1

x4

x3

We are interested in Reduced Ordered Binary Decision Diagrams, denoted ROBDDs.
We take a point of view of a combinatorialist.

2

Shannon effect: ROBDD’s size distribution

variables 7 8 9 10 11 12

functions 227
= 2128 2256 2512 21024 22048 24096

≈ 1038 ≈ 1077 ≈ 10154 ≈ 10308 ≈ 10616 ≈ 101233 3

Motivations: Building ROBDDs of small size

X_8

X_7 X_7

X_6 X_6 X_6 X_6

X_5 X_5X_5 X_5

X_4 X_4 X_4 X_4

False

X_2

X_3 X_3

X_1

True

X_2 X_2 X_2

X_3 X_3 X_3

X_2

X_1

X_2 X_2

X_4 X_4 X_4 X_4

X_3 X_3X_3 X_3

X_4

X_5 X_5 X_5

X_3 X_3

X_4 X_4

X_2

X_3 X_3X_3 X_3

X_4 X_4X_4 X_4

X_3 X_3 X_3X_3 X_3 X_3

Specific functions with small ROBDDs (in k variables):

- addition in k bits,
- read-once fcts,
- symmetric fcts:
O(k2).

ℓ threshold functions: 7 ≤ k ≤ 12; 1 ≤ ℓ ≤ k
9 14 17 18 17 14 9
10 16 20 22 22 20 16 10
11 18 23 26 27 26 23 18 11
12 20 26 30 32 32 30 26 20 12
13 22 29 34 37 38 37 34 29 22 13
14 24 32 38 42 44 44 42 38 32 24 14

4

Motivations: Building ROBDDs of small sizes

Specific functions with small ROBDDs (in k variables):

- addition in k bits,
- read-once fcts,
- symmetric fcts:
O(k2).

ℓ threshold functions: 7 ≤ k ≤ 12; 1 ≤ ℓ ≤ k
9 14 17 18 17 14 9
10 16 20 22 22 20 16 10
11 18 23 26 27 26 23 18 11
12 20 26 30 32 32 30 26 20 12
13 22 29 34 37 38 37 34 29 22 13
14 24 32 38 42 44 44 42 38 32 24 14

4

Motivations: Building ROBDDs of small sizes

Specific functions with small ROBDDs (in k variables):

- addition in k bits,
- read-once fcts,
- symmetric fcts:
O(k2).

ℓ threshold functions: 7 ≤ k ≤ 12; 1 ≤ ℓ ≤ k
9 14 17 18 17 14 9
10 16 20 22 22 20 16 10
11 18 23 26 27 26 23 18 11
12 20 26 30 32 32 30 26 20 12
13 22 29 34 37 38 37 34 29 22 13
14 24 32 38 42 44 44 42 38 32 24 14 4

Why does the enumeration be difficult?

X_9

X_8 X_8

X_7

X_5

X_7 X_7

X_5 X_5

X_2 X_2

X_4 X_4

FalseTrue

X_1

X_6

X_5X_5

X_4 X_4

X_3X_3

5

Why does the enumeration be difficult?

X_9

X_8 X_8

X_7

X_5

X_7

X_5X_5

X_6

X_2 X_2

X_5

X_4 X_4 X_4

FalseTrue

X_4

X_3

X_1

X_7

X_5

X_3

6

Outline of the talk

• Combinatorial preliminaries

⊥

12

11

7

9

5

0

1

6

10

⊤

8

2

4 3

7

Outline of the talk

• Combinatorial preliminaries

• Iterative counting

True False

x2

x1

x3

x2 x2

x1

x4

x3

7

Outline of the talk

• Combinatorial preliminaries

• Iterative counting

• Unranking a ROBDD

X_8

X_7 X_7

X_6 X_6 X_6 X_6

X_5 X_5X_5 X_5

X_4 X_4 X_4 X_4

False

X_2

X_3 X_3

X_1

True

X_2 X_2 X_2

X_3 X_3 X_3

X_2

X_1

X_2 X_2

X_4 X_4 X_4 X_4

X_3 X_3X_3 X_3

X_4

X_5 X_5 X_5

X_3 X_3

X_4 X_4

X_2

X_3 X_3X_3 X_3

X_4 X_4X_4 X_4

X_3 X_3 X_3X_3 X_3 X_3

7

Combinatorial preliminaries

Focus on DAGs ≈ ROBDDs

⊥

12

11

7

9

5

0

1

6

10

⊤

8

2

4 3

Concepts:

• low/high child

• size

• layers

• constraints:
• useful node property
• descendants unicity in a given layer
• acyclicity
• accessibility

• profile [1, 2, 3, 3, 3, 1, 2]

• reverse postorder traversal

8

Multientry ROBDD

⊥

12

11

7

9

5

0

1

6

10

⊤

8

2

4 3

Concepts:

• removing upper layers multientry ROBDD
• keeping destination of red edges

as a multiset {3, 4, 4, 7, 10, 11, 11}

9

Spine of a ROBDD

12

11

7

9

5

0

1

6

10 8

2

4 3

Concepts:

• the spine of a ROBDD
spanning tree given by a depth-first search
• ⇒ tree edges

10

Spine of a ROBDD

⊥

12

11

7

9

5

0

1

6

10

⊤

8

2

4 3

Concepts:

• the spine of a ROBDD
spanning tree given by a depth-first search
• ⇒ tree edges
• non-tree edges

10

Iterative counting

Recursive versus iterative counting

In my CLA’20 talk [Latin’20]: recursive counting

X_9

X_8 X_8

X_7

X_5

X_7

X_5X_5

X_6

X_2 X_2

X_5

X_4 X_4 X_4

FalseTrue

X_4

X_3

X_1

X_7

X_5

X_3

11

Recursive versus iterative counting

In my CLA’20 talk [Latin’20]: recursive counting

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

Ω(M1.5·logMk
k),

where Mk if the largest ROBDD on k variables.

(Mk)k=1,...,12 = (3, 5, 7, 11, 19, 31, 47, 79, 143, 271, 511, 767).

We have
2k

k
≤ Mk ≤ 2 · 2k

k
as k tends to infinity.

In practice, we computed the partition for k = 8 in about 2 hours on a personal
computer with a python implementation
and for k = 9, in several days using a fast computer with a C++ implementation. 11

Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle

⊥

12

11

7

9

5

0

1

6

10

⊤

8

2

4 3

11

Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle

⊥

12

11

7

9

5

0

1

6

10

⊤

8

2

4 3

• 7 incoming edges

• 3 nodes

• 9 outgoing edges

11

Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

O(M4
k · logMk),

where Mk if the largest ROBDD on k variables.

(Mk)k=1,...,12 = (3, 5, 7, 11, 19, 31, 47, 79, 143, 271, 511, 767).

We have Mk ≈ 2k/k as k tends to infinity.

In practice, we compute the partition for k = 12, thus for the 24096 functions in about 6
hours on a computer with > 200GB of RAM.

cf. https://github.com/agenitrini/BDDgen
11

https://github.com/agenitrini/BDDgen

Unranking a ROBDD

The Unranking method for combinatorial structures

1. Defining a total order over the structures
(same number of Boolean variables and same size).

2. Constructing the structure only by using its rank.

⇒ This allows to build structures of a given size.

⇒ This leads trivially to a uniform (by size) random sampler.

12

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
Done by iteratively computing the number of nodes by layer.

2. Build the spine;

Reverse postorder traversal gives information about non-tree edges.

3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

The unranking algorithm with inputs r , n, k satisfies:

• O(k2 n5) time complexity and O(n2) extra space for identifying the profile;

• O(k2 n3) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2.

13

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;

Done by iteratively computing the number of nodes by layer.

2. Build the spine;
Reverse postorder traversal gives information about non-tree edges.

3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

The unranking algorithm with inputs r , n, k satisfies:

• O(k2 n5) time complexity and O(n2) extra space for identifying the profile;

• O(k2 n3) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2.

13

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;

Done by iteratively computing the number of nodes by layer.

2. Build the spine;

Reverse postorder traversal gives information about non-tree edges.

3. Build the ROBDD;
Inorder traversal allows to decide the destination of non-tree edges.

The unranking algorithm with inputs r , n, k satisfies:

• O(k2 n5) time complexity and O(n2) extra space for identifying the profile;

• O(k2 n3) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2.

13

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;

Done by iteratively computing the number of nodes by layer.

2. Build the spine;

Reverse postorder traversal gives information about non-tree edges.

3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

The unranking algorithm with inputs r , n, k satisfies:

• O(k2 n5) time complexity and O(n2) extra space for identifying the profile;

• O(k2 n3) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2.

13

The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;

Done by iteratively computing the number of nodes by layer.

2. Build the spine;

Reverse postorder traversal gives information about non-tree edges.

3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

The unranking algorithm with inputs r , n, k satisfies:

• O(k2 n5) time complexity and O(n2) extra space for identifying the profile;

• O(k2 n3) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2.
13

ROBDD gallery: Majority with 15 variables

Same size as Majority with 15 variables.

⊥

63

62

61

59

55

52

58

39

24

56

38

37

36

21

0

1

22

57

43

49

60

⊤

54

51

48

53

30

44

35

50

45

33

42

47

41

46

26

29

31

40

28

34

25

23

12

20

32

17

18

7

5

16

27 19

2

13

14

15

11

8

9

10

3

6 4

14

ROBDD gallery: Majority with 15 variables

Same size as Majority with 15 variables.

⊥

63

62

61

59

55

52

58

39

24

56

38

37

36

21

0

1

22

57

43

49

60

⊤

54

51

48

53

30

44

35

50

45

33

42

47

41

46

26

29

31

40

28

34

25

23

12

20

32

17

18

7

5

16

27 19

2

13

14

15

11

8

9

10

3

6 4

14

ROBDD gallery: Majority with 15 variables

Same profile as Majority with 15 variables.

⊥

63

62

57

61

60

59

46

52

37

51

50

49

31

19

0

1

20

32

⊤

54

48

55

58

24

56

36

53

45

27

42

47

33

21

38

43

44

39

34

35

40

29

41 18

30

22

28

2

6

11

25

12

26

14

23

16

17

15

9

13

7

10

8

3

5

4

14

ROBDD gallery: Majority with 15 variables

Same spine as Majority with 15 variables.

14

ROBDD gallery: same spine as Majority with 35 variables

15

Conclusion and future work

– Our combinatorial approach adapts very well.

• subclasses of functions: ex. only with essential variables

• other classes of BDDs (with other constraint rules)
• OBDDs
• Quasi-reduced BDDs
• Zero-supressed BDDs

– In the future:

• Combinatorial characterization of the class of spines?

• Can we improve the time complexity for the counting/unranking methods?

16

	Combinatorial preliminaries
	

	Iterative counting
	

	Unranking a ROBDD
	

