
Unranking of Reduced Ordered Binary Decision Diagrams

arXiv:2211.04938

Antoine Genitrini† with Julien Clément∗

Workshop Computational Logic and Applications

January 13, 2023

†LIP6 @ Sorbonne University ∗GREYC @ Normandie University



Binary Decision Diagram

Let f be a Boolean function in k variables.

A Binary Decision Diagram is a compact representation of f
allowing to evaluate it efficiently.

It is based on some divide-and-conquer principle.

[Wegener00]: Branching Programs and Binary Decision Diagrams
[Knuth11]: The Art of Computer Programming (vol.4)
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We are interested in Reduced Ordered Binary Decision Diagrams, denoted ROBDDs.
We take a point of view of a combinatorialist.
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Shannon effect: ROBDD’s size distribution

# variables 7 8 9 10 11 12

# functions 227
= 2128 2256 2512 21024 22048 24096

≈ 1038 ≈ 1077 ≈ 10154 ≈ 10308 ≈ 10616 ≈ 101233 3



Motivations: Building ROBDDs of small size
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Specific functions with small ROBDDs (in k variables):

- addition in k bits,
- read-once fcts,
- symmetric fcts:
O(k2).

ℓ threshold functions: 7 ≤ k ≤ 12; 1 ≤ ℓ ≤ k
9 14 17 18 17 14 9
10 16 20 22 22 20 16 10
11 18 23 26 27 26 23 18 11
12 20 26 30 32 32 30 26 20 12
13 22 29 34 37 38 37 34 29 22 13
14 24 32 38 42 44 44 42 38 32 24 14
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Why does the enumeration be difficult?
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Outline of the talk

• Combinatorial preliminaries
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Combinatorial preliminaries



Focus on DAGs ≈ ROBDDs
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Concepts:

• low/high child

• size

• layers

• constraints:
• useful node property
• descendants unicity in a given layer
• acyclicity
• accessibility

• profile [1, 2, 3, 3, 3, 1, 2]

• reverse postorder traversal
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Multientry ROBDD
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Concepts:

• removing upper layers multientry ROBDD
• keeping destination of red edges

as a multiset {3, 4, 4, 7, 10, 11, 11}
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Spine of a ROBDD
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Concepts:

• the spine of a ROBDD
spanning tree given by a depth-first search
• ⇒ tree edges
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Spine of a ROBDD
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Concepts:

• the spine of a ROBDD
spanning tree given by a depth-first search
• ⇒ tree edges
• non-tree edges
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Iterative counting



Recursive versus iterative counting

In my CLA’20 talk [Latin’20]: recursive counting
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Recursive versus iterative counting

In my CLA’20 talk [Latin’20]: recursive counting

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

Ω(M1.5·logMk
k ),

where Mk if the largest ROBDD on k variables.

(Mk)k=1,...,12 = (3, 5, 7, 11, 19, 31, 47, 79, 143, 271, 511, 767).

We have
2k

k
≤ Mk ≤ 2 · 2k

k
as k tends to infinity.

In practice, we computed the partition for k = 8 in about 2 hours on a personal
computer with a python implementation
and for k = 9, in several days using a fast computer with a C++ implementation. 11



Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle
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Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle
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• 7 incoming edges

• 3 nodes

• 9 outgoing edges
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Recursive versus iterative counting

Today: iterative counting
through inclusion-exclusion principle

The time complexity (in the number of arithmetic operations) for partitioning the
Boolean functions in k variables according to their ROBDD size is

O(M4
k · logMk),

where Mk if the largest ROBDD on k variables.

(Mk)k=1,...,12 = (3, 5, 7, 11, 19, 31, 47, 79, 143, 271, 511, 767).

We have Mk ≈ 2k/k as k tends to infinity.

In practice, we compute the partition for k = 12, thus for the 24096 functions in about 6
hours on a computer with > 200GB of RAM.

cf. https://github.com/agenitrini/BDDgen
11
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Unranking a ROBDD



The Unranking method for combinatorial structures

1. Defining a total order over the structures
(same number of Boolean variables and same size).

2. Constructing the structure only by using its rank.

⇒ This allows to build structures of a given size.

⇒ This leads trivially to a uniform (by size) random sampler.
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The Unranking algorithm

Inputs: rank r, size s, number of variables k

1. Select the profile;
Done by iteratively computing the number of nodes by layer.

2. Build the spine;

Reverse postorder traversal gives information about non-tree edges.

3. Build the ROBDD;

Inorder traversal allows to decide the destination of non-tree edges.

The unranking algorithm with inputs r , n, k satisfies:

• O(k2 n5) time complexity and O(n2) extra space for identifying the profile;

• O(k2 n3) time complexity to generate the ROBDD with a given profile.

We can shortcut Step 1, or Step 1 and 2.
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ROBDD gallery: Majority with 15 variables

Same size as Majority with 15 variables.
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ROBDD gallery: Majority with 15 variables

Same profile as Majority with 15 variables.
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ROBDD gallery: Majority with 15 variables

Same spine as Majority with 15 variables.
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ROBDD gallery: same spine as Majority with 35 variables
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Conclusion and future work

– Our combinatorial approach adapts very well.

• subclasses of functions: ex. only with essential variables

• other classes of BDDs (with other constraint rules)
• OBDDs
• Quasi-reduced BDDs
• Zero-supressed BDDs

– In the future:

• Combinatorial characterization of the class of spines?

• Can we improve the time complexity for the counting/unranking methods?
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