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1 Introduction

Three decades ago a data structure emerged under the name of Binary Decision Diagrams (or BDDs) [1].
They deserve to represent Boolean functions, thus are central in computer science. Their algorithm paradigm
gives great advantages: it is based on a divide-and-conquer approach combined with a compaction process.
Their benefits compared to other Boolean representations are so obvious that several dozens of variants BDDs
have been developed in recent years. In his monograph [20], Wegener presents several ones like ROBDDs [2],
OKFBDDs [6], QOBDDs [19], ZBDDs [15], and others. While most of these data structures are used in the
context of verification [20], they also appear, for example, in the context of cryptography [12] or knowledge
compilation [5]. Also, the size of the structure, depending on the compaction of a decision tree, allows
to improve classification in the context of machine learning [16]. Some specific BDDs are also relevant to
strategies for the resolution of combinatorial problems, cf [11, vol. 4], like the classical satisfiability count
problem.

The classical way to represent the different diagrams consists in their embedding as directed acyclic
graphs (or DAGs). In the following we are interested in the original form of structures that are ROBDDs,
for Reduced Ordered Binary Decision Diagrams. One of their fundamental properties relies on the single
representative for each Boolean function (of a given number of Boolean variables). In his book [11] Knuth
recalls and proves several combinatorial results for ROBDDs. He is, for example, interested in the profile of
a typical ROBDD, or in the way to combine two structures to represent a more complex Boolean function.
However, thirty years after the takeoff of BDDS, what appears somewhat unbelievable is that the results
about the distribution of the Boolean functions according to their ROBDD size are still staggering. Another
difficult question is about the distribution of the functions according to their DAG profile. The main problem
to get improvements in these directions is that no recursive characterization was expected to describe the
structure of ROBDDs, as opposed, for instance, to the recursive decomposition of binary trees which is the
core approach in their combinatorial studies (profile, width, depth). Here we have no local-constraint for the
decomposition of ROBDDs.

2 Related Work and disruption induced by our approach

An important step in the comprehension of the distribution of the Boolean functions according to their ROBDD

size has been achieved by Wegener [19]. He proved the weak Shannon effect: almost all functions have the
same ROBDD size up to a factor of 1 + o(1) when the number of variables k tends to infinity. Later Gröpl et
al. [9] improved the result by exhibiting when the strong Shannon effect takes place or not, according to the
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values of k. The strong Shannon effect states that almost all functions have the same ROBDD size as the largest
ROBDDs up to a factor of 1 + o(1) as k tends to infinity. We observe these facts in Figure 1 by observing the
blue curve representing the (probability) distribution of Boolean functions with 12 variables according to
their ROBDD size. In fact, as it is generally the case in the context of Boolean functions, asymptotical results
can be observed for quite small values of k. A consequence of these first analyses is that picking (uniformly
at random) a Boolean function whose ROBDD is small is not an easy task, although in practice ROBDDs are
usually not of exponential size.

In [17], the authors study, experimentally, numerically, and theoretically, ROBDD sizes when the number
k of variables is increasing. However their main approach relies on an exhaustive enumeration of the decision
trees of all Boolean functions, that are in a second step compressed into ROBDDs. The doubly exponential
growth of Boolean functions in k variables, equal to 22

k
, gives only access to the first values for k = 1, . . . , 4.

Then the authors extrapolate the distributions by sampling.
Later Julien Clément and I [4] obtain similar combinatorial results. Thanks to a new approach based on a

partial recursive decomposition, we manage to go farther. In fact they partition the ROBDDs according to their
profile yielding a much more efficient counting algorithm although using a lot of space due to memoization
techniques (storing intermediate results). We obtain exact distributions of the size of ROBDDs up to k = 9,
thus partitioning the set of 2512 Boolean functions into ROBDDs of sizes ranging from 3 to 143.

Figure 1: The distribution of functions of 12 variables

In this paper, we improve drastically the
latter approach so that all the extrapolated re-
sults presented in [17] for Boolean functions
up to 12 variables are now fully and exactly
described. Using a personal computer, in
a couple of hours we obtain an exhaustive
enumeration of the ROBDDs representing
functions up to 12 variables.

Indeed we partition the 24096 Boolean
functions according to their ROBDDs size. In
Figure 1 the exact distribution is depicted in
two ways of presentation: a red point (x, y)
states that 2y functions have a ROBDD size
x, in logarithmic scale; the blue curve is the
probability distribution.

Observing such curves from k = 1 to
k = 12, we notice the exponential growth of the largest ROBDDs when the number k of variables increases.
Indeed we define Mk to be the size of the largest ROBDDs with k variables. The sequence starts as
(Mk)k=1,...,12 = (3, 5, 7, 11, 19, 31, 47, 79, 143, 271, 511, 767).

Since each of these values corresponds to the length of the associated distribution support, it is natural to
analyze the complexity of the algorithms computing the distribution of the size of ROBDDs with at most k
variables according to Mk. We note that Mk behaves like 2k/k as k tends to infinity. In this context, we obtain
that essentially Newton and Verna’s approach [17] is of order Ω(MMk

k ), i.e. that their algorithm is of near
factorial complexity. Our first algorithmic approach from [4] is essentially of complexity Ω(M

3/2·logMk

k ).
Although we manage to obtain results for bigger k, our first algorithm is not of polynomial complexity in Mk.
Here we describe an algorithm that calculates the exact distribution in time complexity O(M4

k · logMk). To
our knowledge, this is the first polynomial complexity algorithm computing the distribution of the ROBDD

size of Boolean functions.
Our combinatorial approach, as by-products, gives an exhaustive generation algorithm and thus a uniform

random sampler for ROBDDs of a given size. Several practical applications derive from these generation
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algorithms, in particular in the context of random testing of structural and algorithmic program properties.
In [7] the authors execute tests for an algorithm taking as entry a ROBDD. It is based on the famous and
widely used QuickCheck software [3]. This later aims at designing tests for program properties by using
as an entry a random generator and building test cases for test suites. Using a uniform sampler, the goal is
to derive statistical testing: since the underlying distribution of the samples is uniform, it allows to extract
statistics thanks to the tests like in [10]. Another application is exhaustive testing for small structures, like
the studies in [13, 14], that can be driven with QuickCheck or with other tools like Korat for Java. Finally
another direction for testing is to bias the uniform complete distribution in order to focus on special corner
cases. We are able to uniformly sample in polynomial time and space ROBDDs of a given size, or a given
profile. Especially for small sizes of structures, while it is unlikely to sample them using the global uniform
sampler, we aim, e.g. at constructing particular ROBDDs for instance sharing the same profile as the one of
symmetric functions (known to have small ROBDDs, cf. [11])). Since we do not need to compute the full
distribution, we can sample such structures for much larger values of k.

3 Sampling algorithms

The ranking/unranking techniques for objects of a combinatorial class C of size N consists in building a
bijection between any c ∈ C and an integer (its rank) in the interval [0 . . N − 1]. This leads trivially to a
uniform sampling algorithm by drawing uniformly first a rank and then building the corresponding object.
Our unranking algorithm consists in three phases:
Step 1. Given a rank R, the unranking algorithm will first select the profile (i.e. the node distribution in each

level of the final ROBDD). This is done by iteratively computing the number of nodes in each layer,
starting from layer k down to layer 1.

Step 2. Once the profile is fixed, the edge structure of the ROBDD is built in a reverse postorder process. The
goal is to build the spine3 and, along the way, to gather information (a relative rank) for the other
edges.

Step 3. Finally an inorder traversal of the spine is needed, such that, for every edges that does not belong to
the spine, we identify its absolute destination, that is a precise node. We use the fact that with an
inorder traversal, we are able to identify the set of nodes, called pool, to which such edges can point
knowing only a rank within this set.

Theorem 1 (Unranking algorithm for ROBDDs). The unranking algorithm for a ROBDD with profile p of
size n with at most k variables has

• O(k2 n5) time complexity and uses O(n2) extra space for identifying the profile;
• O(k2 n3) time complexity to generate the ROBDD with fixed profile p.

The detailed preprint of these results is presented in https://arxiv.org/abs/2211.04938.
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