
Training Neural Networks as Theorem Provers via the
Curry-Howard Isomorphism

Paul Tarau and Valeria de Paiva

October, 2020

University of North Texas / Topos Institute

ICLP’2020

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 1 / 26



Overview

THE PROBLEM:
can we train neural networks to work as close-to-perfect theorem
provers on an interesting enough logic?

OUR SOLUTION:
we focus on a simple enough, but interesting logic: Implicational
Propositional Intuitionistic Linear Logic (IPILL from now on)
we need to derive an efficient algorithm requiring a low polynomial
effort per generated theorem and its proof term
⇒ we rely on the Curry-Howard isomorphism ⇒ we can focus on
generating simply typed linear lambda terms in normal form

THE OUTCOMES:
an implicational intuitionistic logic prover specialized to IPILL formulas
a dataset for training neural networks
very high success rate with seq2seq LSTM neural networks

an open problem: can these techniques extend to harder logics?

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 2 / 26



The Implicational Fragment of Propositional Intuitionistic
Linear Logic (IPILL)

Linear Logic provides the ability to constrain/control the use of
formulas available as premises in a proof
while propositional intuitionistic linear logic is already Turing
complete, its implicational fragment is decidable
⇒ polynomial algorithms for generating its theorems are useful:

when turned into test sets, combining tautologies and their proof terms
can be useful for testing correctness and scalability of linear logic
theorem provers
when turned into datasets, they can be used for training deep learning
networks focusing on neuro-symbolic computations, among which
theorem proving is a prototypical example

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 3 / 26



Formulas depicted as trees, together with their proof terms

formula: -o

-o

1-o

10

0

λX .λY .(Y X ) l

l

a

XY

Y

X

formula: -o

-o

00

-o

00

λX .X l

XX

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 4 / 26



The Curry Howard Isomorphism

of particular interest in the correspondence between computations
and proofs is the Curry-Howard isomorphism
in its simplest form, it connects the implicational fragment of
propositional intuitionistic logic IIPC with types in the simply typed
lambda calculus
a low polynomial type inference algorithm associates a type (when it
exists) to a lambda term
harder, (PSPACE-complete) algorithms associate inhabitants to a
given type expression with the resulting lambda term (typically in
normal form) serving as a witness for the existence of a proof for the
corresponding tautology in implicational propositional intuitionistic
logic
⇒ can we use combinatorial generation of lambda terms + type
inference (easy) to “solve” some type inhabitation problems (hard)?

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 5 / 26



Deriving the formula generators (see ICLP’20 paper)

1 IPILL formulas (fairly simple Prolog code), built as:
binary trees of size N, counted by Catalan numbers Catalan(N)
labeled with variables derived from set partitions counted by
Bell(N +1) (see A289679 in OEIS)

2 linear lambda terms (proof terms for the IPILL formulas)
linear skeleton Motzkin trees (binary-unary trees with constraints
enforcing one-to-one mapping from variables to their lambda binders)

3 closed linear lambda terms
4 closed linear lambda terms in normal form
5 after a chain of refinements, we derive a compact and efficient

generator for pairs of Linear Lambda Terms in Normal Form and their
types (which always exist as they are all typable!) see next slide!

6 it generates in a few hours 7,566,084,686 terms together with their
corresponding types, seen as theorems in IPILL via the Curry-Howard
isomorphism (A062980 sequence in OEIS)

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 6 / 26



The Linear Lambda Term in Typed Normal Form Generator

linear_typed_normal_form(N,E,T):-succ(N,N1),
linear_typed_normal_form(E,T,N,0,N1,0,[]).

linear_typed_normal_form(l(X,E),(S ’-o’ T),A1,A2,L1,L3,Vs):-
pred(L1,L2), % defined as L1>0,L2 is L1-1
linear_typed_normal_form(E,T,A1,A2,L2,L3,[V:S|Vs]),
check_binding(V,X).

linear_typed_normal_form(E,T,A1,A2,L1,L3,Vs):-
linear_neutral_term(E,T,A1,A2,L1,L3,Vs).

linear_neutral_term(X,T,A,A,L,L,Vs):-
member(V:TT,Vs),bind_once(V,X),T=TT.

linear_neutral_term(a(E,F),T,A1,A4,L1,L3,Vs):-pred(A1,A2),
linear_neutral_term(E,(S ’-o’ T),A2,A3,L1,L2,Vs),
linear_typed_normal_form(F,S,A3,A4,L2,L3,Vs).

bind_once(V,X):-var(V),V=v(X).
check_binding(V,X):-nonvar(V),V=v(X).

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 7 / 26



A Normal Form and its Corresponding Linear Type (I).

term: λX .λY .(Y X ) l

l

a

XY

Y

X

its linear type: -o

-o

Y-o

YX

X

Note that all linear lambda terms are typable!

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 8 / 26



A Normal Form and its Corresponding Linear Type (II).
λX .(((X λY .Y ) λZ .Z ) λU.U)

l

a

l

UU

a

l

ZZ

a

l

YY

X

X

-o

U-o

-o

-o

U-o

ZZ

-o

YY

-o

XX

Note the symmetries between linear terms and their types!

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 9 / 26



An Eureka Moment

it looks like we see some interesting symmetries in the pictures!
there are exactly two occurrences of each variable both in the theorems
and their proof terms of which they are the principal types
theorems and their proof terms have the same size, counted as number
of internal nodes

thus, we can solve the problem of generating all IPILL tautologies
size N
IF
the predicate linear_typed_normal_form implements a
generator of their proof-terms of size N

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 10 / 26



Theorems for Free: the Size Preserving Bijection

the GOOD NEWS: there’s a size-preserving bijection between linear
lambda terms in normal form and their principal types!
a proof follows immediately from a paper by Noam Zeilberger who
attributes this observation to Grigori Mints
the bijection is proven by exhibiting a reversible transformation of
oriented edges in the tree describing the linear lambda term in normal
form, into corresponding oriented edges in the tree describing the
linear implicational formula, acting as its principal type
⇒ we have obtained a generator for all theorems of implicational
linear intuitionistic propositional logic of a given size, as measured by
the number of lollipops, without having to prove theorems!
this is a “Goldilocks” situation that points out the very special case
that implicational formulas have in linear logic and equivalently, linear
types have in type theory!

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 11 / 26



The Datasets

the dataset containing generated theorems and their proof-terms in
prefix form (as well as their LaTeX tree representations marked as
Prolog “%” comments) is available at
http://www.cse.unt.edu/~tarau/datasets/lltaut/

it can be used for correctness, performance and scalability testing of
linear logic theorem provers
the <formula, proof-term> pairs in the dataset are usable to
test deep-learning systems on theorem proving tasks
also, formulas with non-theorems added for IPILL

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 12 / 26

http://www.cse.unt.edu/~tarau/datasets/lltaut/


Examples of Data records

prefix encoding: lollipop=0, application=0, lambda=1, variables as
uppercase letters, “:” as separator between formulas and proof terms

Provable formulas with their proof terms (for IPILL)
0AA:1AA
0A00ABB:1A1B0BA
00AB0AB:1A1B0AB
0A00AB00BCC:1A1B1C0C0BA
00000AAB00C0BD0CD00EEFF:1A00A1B1C1D00CD0B1EE1FF

Provable formulas with their proof terms and “?” if proof failed
0A0B0000A0C0B0DE0C0DEFF:1A1B1C0C1D1E1F0000DAEBF
0A0B0000A0C0B0DE0C0DFGH:?
0A0B0000A0B0C0DE0D0CEFF:1A1B1C0C1D1E1F0000DABFE
0A0B0000A0B0C0DE0D0CFGG:?

similar formulas for IPC, also on normal forms in prefix

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 13 / 26



How can Neural Networks help with Theorem Proving?

more generally, we search for good frameworks for neuro-symbolic
computing
theorem provers are computation-intensive search algorithms
Turing-complete (e.g., PLL, FOL), PSPACE-complete (e.g., IPC)
there are two ways neural networks can help:

fine-tuning the search, by helping with the right choice at choice points
used via an interface to solve low-level “perception”-intensive tasks
(e.g., working on learnable ground facts labeled with probabilities –
DeepProbLog).

is there a third way: can they simply replace the symbolic theorem
prover given a large enough training dataset?

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 14 / 26



Machine Learning (ML) with Deep Neural Networks (NNs)

the key ML concepts to watch for:
“honesty”: split the dataset into: training, validation and
(independent) test sets
things to avoid:

overfitting (works on training, fails on validation and testing data)
unlikely to work well on random (high Kolmogorov complexity) data

the key NN general concepts to watch for:
NNs are trainable universal approximators for a given function
Lt+1 = σ(A∗Lt +b) where Lt is a layer at step t, A is a matrix
containing trainable parameters, b is a bias vector and σ is a non-linear
function (logistic sigmoid, tanh, RELU(x)=max(0,x), etc.)
differentiable functions, gradients computed on backpropagation
an intuition behind why deep NNs are needed: each layer abstracts
away statistically relevant patterns that are fed to the next layer
often, to ensure generalization, information is deliberately lost

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 15 / 26



Training the Neural Networks as Theorem Provers via the
Curry-Howard Isomorphism

formulas/types and proofs/lambda terms are both trees
⇒ we can represent them as prefix strings
⇒ for IPILL we can even find a size definition to give the same size
on both sides:

for lambda terms: leaves=0, lambda nodes=1, applications=1
for -o formulas: leaves=0, lollipops = 1

what type of neural networks to use?
with trees as prefix string: ⇒ “seq2seq” recurrent NNs
LSTM (long short term memory) NNs : good to handle long distance
dependencies in the prefix forms

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 16 / 26



seq2seq Neural Networks

sequence as input, train to guess sequence as output
used originally for translation of natural languages, with training on
large parallel corpora
notable variants: transformers, trained to predict masked words in a
sentence as well as predict next sentence in a text
unsupervised - just feeding them very large text data
examples: BERT, GPT-3 - impressive performance on several NLP
tasks (e.g., GPT-3 generating fake news)
newer variants, possibly more in interesting: tree2tree, dag2dag and
several types of graph neural networks (e.g., convolutional,
attention, spectral, torch geometric)

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 17 / 26



LSTM seq2seq Neural Networks

recurrent neural networks keep track of dependencies within sequences
feedback from values at time t is fed into computations at time t +1
long short-term memory (LSTM) is a recurrent neural network (RNN)
architecture
it can not only process single data points (such as images), but also
entire sequences of data (such as text, speech or video)
LSTM NNs have feedback connections ⇒ LSTM avoids vanishing or
exploding gradient problems by also feeding unchanged values to the
next layer
a shortcoming: limited parallelism ⇒ usually slower than
convolutional NNs, less GPU/TPU friendly

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 18 / 26



Evaluating the Performance of our Neural Networks as
Theorem Provers

in fact, our seq2seq LSTM recurrent neural network trained on
encodings of theorems and their proof-terms performs unusually well
the experiments with training the neural networks using the IPILL and
IIPC theorem dataset are available at:
https://github.com/ptarau/neuralgs

the < formula, proof term > generators are available at:
https://github.com/ptarau/TypesAndProofs

the generated datasets are available at:
http://www.cse.unt.edu/~tarau/datasets/

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 19 / 26

https://github.com/ptarau/neuralgs
https://github.com/ptarau/TypesAndProofs
http://www.cse.unt.edu/~tarau/datasets/


Accuracy of the LSTM seq2seq neural network on our
formula/proof term dataset for IPILL

0 20 40 60 80 100
Epochs

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

accuracy
val_accuracy

Figure: Accuracy curve for 100 epochs

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 20 / 26



Loss curve of the LSTM seq2seq neural network on our
formula/proof term dataset for IPILL

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5
lo

ss

loss
val_loss

Figure: Loss curve for 100 epochs

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 21 / 26



Accuracy for IPILL + unprovable formulas

0 20 40 60 80 100
Epochs

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ac
cu

ra
cy

accuracy
val_accuracy

Figure: Accuracy curve for 100 epochs

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 22 / 26



Loss for IPILL + unprovable formulas

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

lo
ss

loss
val_loss

Figure: Loss curve for 100 epochs

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 23 / 26



Accuracy for IIPC

0 20 40 60 80 100
Epochs

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

accuracy
val_accuracy

Figure: Accuracy curve for 100 epochs

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 24 / 26



Loss for IIPC

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

loss
val_loss

Figure: Loss curve for 100 epochs

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 25 / 26



Conclusions

we have obtained a generator for all IPILL or IIPC theorems of a
given size, without needing a theorem prover by combining a
generator for their proof terms and a type inference algorithm
we sketched their use as a dataset for training neural networks,
turning them into reliable theorem provers, for the harder inverse
problem: given a formula in IPILL, find a proof term for it
the dataset is at
http://www.cse.unt.edu/~tarau/datasets/

it now contains also a training set for implicational propositional
intuitionistic logic
open problems, future work:

can this be extended to full fragments of IPC or LL?
would the same success rate apply to large, random generated
formulas?
how would the NNs perform on larger, human-made formulas?

Paul Tarau and Valeria de Paiva On Neural Networks as Theorem Provers October, 2020 26 / 26

http://www.cse.unt.edu/~tarau/datasets/

