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What is concurrency?
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task 3
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Time

One computation unit shared by several processes:

→ Possible dependencies between processes
→ Scheduling
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Why is it difficult?

You would like to check that all possible schedulings are
correct.

“all schedulings” → Combinatorics!

• Many possible schedulings: combinatorial explosion
• Can we (efficiently) count them?
• Can we (efficiently) sample among them?
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Why is it difficult? (2)

Negative result (Brightwell & Winkler ’91)
Counting the linear extensions of a partial order is a
#-P complete problem.

I.e. it is as hard as counting the number of solutions in SAT.

So we cannot count efficiently… in the general case.
But we can have some restrictions on the programs.
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The long-term project

“Quantitative and algorithmic aspects of concurrency”

> Olivier Bodini, Matthieu Dien, Antoine Genitrini, MP,
Frédéric Peschanski, …

> Identify fundamental components of concurrency and
interpret them as combinatorial objects

> Algorithmic solutions for the counting and sampling
problems

> Analytical results (when possible)
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Outline

A class of concurrent programs

Algorithmic aspects

Conclusion and perspective



Fork-Join parallelism

Parallel composition

P Q
task 1 task 2 task 3 ∥ task 1 task 2

↓
task 1 task 1 task 2 task 3 task 2

Execution = any interleaving
of an execution of P and an

execution of Q.

Sequential composition

P Q
task 1 task 2 task 3 ; task 1 task 2

↓
task 1 task 2 task 3 task 1 task 2

Execution = an execution of P
followed by an execution of Q.
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Non-determinism and loops

Non-deterministic choice

P Q
task 1 task 2 task 3 + task 1 task 2

↓
task 1 task 2 task 3

or
task 1 task 2

Execution = an execution of P
or an execution of Q.

Loop

( task 1 task 2 )⋆

↓

or
task 1 task 2

or
task 1 task 2 task 1 task 2

. . .

Execution = sequence of
executions of Q
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Non-deterministic Fork-Join programs (NFJ)

P,Q ::= P ∥ Q (parallel composition)
| P;Q (sequential composition)
| P+ Q (non-deterministic choice)
| P⋆ (loop)
| a (atomic action)
| 0 (empty program)
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Combinatorial interpretation

Define the executions of P as a combinatorial class JPK:
J0K = EJaK = Z

JP;QK = JPK × JQK •JP ∥ QK = JPK ⋆ JQK •JP+ QK = JPK + JQK

△!

JP⋆K = SEQ (JPK)

△!

JP+ QK̸=0 = JPK̸=0 + JQK̸=0 •JP⋆K = SEQ (JPK̸=0) •

• Labelled and
unlabelled operators
in the same grammar;

△! JPK, JQK might contain
the empty execution;

• JPK̸=0 = non-empty
executions of P.
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Counting executions

Algorithm: P prev. slide−→ JPK symbolic method−→ GF [zn]−→ count

COUNT(0) = 1
COUNT(a) = z

COUNT(P ∥ Q) = p(z)⊚ q(z)

•

COUNT(P;Q) = p(z) · q(z)
COUNT(P+ Q) = p(z) + q(z)− p(0)q(0)

COUNT(P⋆) = (1− (p(z)− p(0)))−1

All operation are
taken mod zn+1

p(z) = COUNT(P)
q(z) = COUNT(Q)

• p(z)⊚ q(z) = L (B (p(z)) · B (q(z)))
where L

(∑
n
an
n! z

n) = ∑
n anzn and B (

∑
n anzn) =

∑
n
an
n! z

n
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Counting executions — complexity

Theorem
The counting algorithm performs O(|P|M(n)) arithmetic
operations on big integers.

The coefficients of the polynomial have O(n lnn) bits.

• |P| is the syntactic size of P.
• M(n) is the cost of the multiplication of two polynomials
of degree n.

=⇒ O(|P|M(n)M(n lnn)) bit-complexity.
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Random sampling of executions

Algorithm: P prev. slides−→ JPK recursive method−→
[FZC′93]

uniform execution

Rule:

1 ·0 ·
(3
0
)
+ 2 · 2 ·

(3
1
)
+4 · 1 ·

(3
2
)
+8 ·0 ·

(3
3
)
= 24 · (0+ 1/2+ 1/2+0)

0 · 1+ 2 · 1 = 2 · (0+ 1)

1+ 1 = 2 · (1/2+ 1/2)

0 + 1 + 1 = 2
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Random sampling of executions

Pn = Q0Rn + Q1Rn−1 + Q2Rn−2 + · · ·+ QnR0

How to draw k ∈ J0;nK with probability QkRn−k/Pn?

Solution 1:

Draw x ∼ UNIF(J0;PnJ) and take the minimum k such that
x < Q0Rn + Q1Rn−1 + · · ·+ QkRn−k.

Solution 2 (boustrophedonic alg., [FZC’93,Molinero’05]):

Draw x ∼ UNIF(J0;PnJ) and take the minimum k such that
x < Q0Rn + QnR0 + Q1Rn−1 + Qn−1R1 + Q2Rn−2 + . . . (k terms).
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Random sampling of executions — complexity

Theorem [FZC’93,Molinero’05]
The recursive method with solution 2 has complexity O(n lnn).

Theorem [Molinero’05]
The recursive method has complexity O(n) on recursion-free
specifications.

△! The constant hidden in the O depends on the specifi-
cation!

13/15



Random sampling of executions — complexity

Theorem [FZC’93,Molinero’05]
The recursive method with solution 2 has complexity O(n lnn).

Theorem [Molinero’05]
The recursive method has complexity O(n) on recursion-free
specifications.

△! The constant hidden in the O depends on the specifi-
cation!

13/15



Random sampling of executions — complexity

Theorem [FZC’93,Molinero’05]
The recursive method with solution 2 has complexity O(n lnn).

Theorem (updated)
The recursive method has complexity O(h · n) on
recursion-free specification, where h is the number of nested
operators of the spec.

△! The constant hidden in the O depends on the specifi-
cation!
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Random sampling of executions — complexity

Theorem
Random sampling of executions has
complexity O(n ·min(h(P), lnn)) where h denotes the “height”
of P i.e. its maximum number of nested constructors.
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Conclusion

Take away:

• Specifications can be used as first-class objects

Future work:

• Generalize the model
• Analytic properties of the OGF of JPK?
• Statistical model-checking
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Thanks for your attention
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