Statistical Analysis of Non-Deterministic Fork-Join Processes

Martin Pépin
Joint work with Antoine Genitrini \& Frédéric Peschanski
Accepted for publication at ICTAC'20
October 13, 2020
Sorbonne Université - LIP6 - Paris

What is concurrency?

One computation unit shared by several processes:
\rightarrow Possible dependencies between processes
\rightarrow Scheduling

Why is it difficult?

You would like to check that all possible schedulings are correct.

Why is it difficult?

You would like to check that all possible schedulings are correct.
"all schedulings" \rightarrow Combinatorics!

- Many possible schedulings: combinatorial explosion

Why is it difficult?

You would like to check that all possible schedulings are correct.
"all schedulings" \rightarrow Combinatorics!

- Many possible schedulings: combinatorial explosion
- Can we (efficiently) count them?
- Can we (efficiently) sample among them?

Why is it difficult? (2)

Negative result (Brightwell \& Winkler '91)
Counting the linear extensions of a partial order is a \#-P complete problem.
I.e. it is as hard as counting the number of solutions in SAT.

Why is it difficult? (2)

> Negative result (Brightwell \& Winkler '91)
> Counting the linear extensions of a partial order is a \#-P complete problem.
I.e. it is as hard as counting the number of solutions in SAT.

So we cannot count efficiently... in the general case. But we can have some restrictions on the programs.

The long-term project

"Quantitative and algorithmic aspects of concurrency"

> Olivier Bodini, Matthieu Dien, Antoine Genitrini, MP, Frédéric Peschanski, ...
> Identify fundamental components of concurrency and interpret them as combinatorial objects
> Algorithmic solutions for the counting and sampling problems
> Analytical results (when possible)

Outline

A class of concurrent programs

Algorithmic aspects

Conclusion and perspective

Fork-Join parallelism

Parallel composition

Sequential composition

Execution = any interleaving of an execution of P and an execution of Q.

Execution $=$ an execution of P followed by an execution of Q.

Non-determinism and loops

Non-deterministic choice

Execution $=$ an execution of P or an execution of Q.

Loop

Execution $=$ sequence of executions of Q

Non-deterministic Fork-Join programs (NFJ)

$$
\begin{array}{rlll}
P, Q: & := & P \| Q & \\
& \text { (parallel composition) } \\
& P ; Q & & \text { (sequential composition) } \\
& P+Q & \text { (non-deterministic choice) } \\
& P^{\star} & & \text { (loop) } \\
& a & & \text { (atomic action) } \\
& 0 & & \text { (empty program) }
\end{array}
$$

Combinatorial interpretation

Define the executions of P as a combinatorial class $\llbracket P \rrbracket$:

$$
\begin{aligned}
& \llbracket 0 \rrbracket=\mathcal{E} \\
& \llbracket a \rrbracket=\mathcal{Z}
\end{aligned}
$$

Combinatorial interpretation

Define the executions of P as a combinatorial class $\llbracket P \rrbracket$:

$$
\begin{aligned}
\llbracket 0 \rrbracket & =\mathcal{E} \\
\llbracket a \rrbracket & =\mathcal{Z} \\
\llbracket P ; Q \rrbracket & =\llbracket P \rrbracket \times \llbracket Q \rrbracket \\
\llbracket P \| Q \rrbracket & =\llbracket P \rrbracket \star \llbracket Q \rrbracket
\end{aligned}
$$

- Labelled and
unlabelled operators in the same grammar;

Combinatorial interpretation

Define the executions of P as a combinatorial class $\llbracket P \rrbracket$:

$$
\begin{aligned}
\llbracket 0 \rrbracket & =\mathcal{E} \\
\llbracket Q \rrbracket & =\mathcal{Z} \\
\llbracket P ; Q \rrbracket & =\llbracket P \rrbracket \times \llbracket Q \rrbracket \\
\llbracket P \| Q \rrbracket & =\llbracket P \rrbracket \star \llbracket Q \rrbracket \\
\mathbb{P}+Q \rrbracket & =\llbracket P \rrbracket+\llbracket Q \rrbracket
\end{aligned}
$$

- Labelled and
unlabelled operators in the same grammar;

Combinatorial interpretation

Define the executions of P as a combinatorial class $\llbracket P \rrbracket$:

$$
\begin{aligned}
\llbracket 0 \rrbracket & =\mathcal{E} \\
\llbracket a \rrbracket & =\mathcal{Z} \\
\llbracket P ; Q \rrbracket & =\llbracket P \rrbracket \times \llbracket Q \rrbracket \\
\llbracket P \| Q \rrbracket & =\llbracket P \rrbracket \star \llbracket Q \rrbracket \\
\llbracket P+Q \rrbracket & =\llbracket P \rrbracket+\llbracket Q \rrbracket \\
\llbracket P^{\star} \rrbracket & =\operatorname{SEQ}(\llbracket P \rrbracket)
\end{aligned}
$$

- Labelled and
unlabelled operators in the same grammar;

Combinatorial interpretation

Define the executions of P as a combinatorial class $\llbracket P \rrbracket$:

$$
\begin{aligned}
\llbracket 0 \rrbracket & =\mathcal{E} \\
\llbracket a \rrbracket & =\mathcal{Z} \\
\llbracket P ; Q \rrbracket & =\llbracket P \rrbracket \times \llbracket Q \rrbracket \\
\llbracket P \| Q \rrbracket & =\llbracket P \rrbracket \star \llbracket Q \rrbracket \\
\llbracket P+Q \rrbracket & =\llbracket P \rrbracket+\llbracket Q \rrbracket \\
\llbracket P^{\star} \rrbracket & =\operatorname{SEQ}(\llbracket P \rrbracket)
\end{aligned}
$$

- Labelled and unlabelled operators in the same grammar;
$\triangle \llbracket P \rrbracket, \llbracket Q \rrbracket$ might contain the empty execution;

Combinatorial interpretation

Define the executions of P as a combinatorial class $\llbracket P \rrbracket$:

$$
\begin{aligned}
\llbracket 0 \rrbracket & =\mathcal{E} \\
\llbracket a \rrbracket & =\mathcal{Z} \\
\llbracket P ; Q \rrbracket & =\llbracket P \rrbracket \times \llbracket Q \rrbracket \\
\llbracket P \| Q \rrbracket & =\llbracket P \rrbracket \star \llbracket Q \rrbracket \\
\mathbb{P} \mid Q \rrbracket & =\llbracket P \rrbracket+\llbracket Q \rrbracket \\
\llbracket P^{\star} \rrbracket & =\operatorname{SEQ}(\llbracket P \rrbracket) \\
\llbracket P+Q \rrbracket_{\neq 0} & =\llbracket P \rrbracket_{\neq 0}+\llbracket Q Q_{\neq 0} \\
\llbracket P^{\star} \rrbracket & =\operatorname{SEQ}\left(\llbracket P \rrbracket_{\neq 0}\right)
\end{aligned}
$$

- Labelled and unlabelled operators in the same grammar;
$\triangle \llbracket P \rrbracket, \llbracket Q \rrbracket$ might contain the empty execution;
- $\llbracket P \rrbracket_{\neq 0}=$ non-empty executions of P.

Outline

A class of concurrent programs

Algorithmic aspects

Conclusion and perspective

Counting executions

Algorithm: $P \xrightarrow{\text { prev. slide }} \llbracket P \rrbracket \xrightarrow{\text { symbolic method }} G F \xrightarrow{\left[z^{n}\right]}$ count

Counting executions

Algorithm: $P \xrightarrow{\text { prev. slide }} \llbracket P \rrbracket \xrightarrow{\text { symbolic method }} G F \xrightarrow{\left[z^{n}\right]}$ count

$$
\begin{aligned}
\operatorname{Count}(0) & =1 \\
\operatorname{count}(a) & =z \\
\operatorname{count}(P \| Q) & =p(z) \odot q(z) \\
\operatorname{count}(P ; Q) & =p(z) \cdot q(z) \\
\operatorname{Count}(P+Q) & =p(z)+q(z)-p(0) q(0) \\
\operatorname{count}\left(P^{\star}\right) & =(1-(p(z)-p(0)))^{-1}
\end{aligned}
$$

All operation are taken $\bmod z^{n+1}$
$p(z)=\operatorname{COUNT}(P)$ $q(z)=\operatorname{COUNT}(Q)$

Counting executions

Algorithm: $P \xrightarrow{\text { prev. slide }} \llbracket P \rrbracket \xrightarrow{\text { symbolic method }} G F \xrightarrow{\left[z^{n}\right]}$ count

$$
\begin{aligned}
\operatorname{Count}(0) & =1 \\
\operatorname{count}(a) & =z \\
\operatorname{count}(P \| Q) & =p(z) \odot q(z) \bullet \\
\operatorname{count}(P ; Q) & =p(z) \cdot q(z) \\
\operatorname{Count}(P+Q) & =p(z)+q(z)-p(0) q(0) \\
\operatorname{count}\left(P^{\star}\right) & =(1-(p(z)-p(0)))^{-1}
\end{aligned}
$$

All operation are taken $\bmod z^{n+1}$

$$
\begin{aligned}
& p(z)=\operatorname{count}(P) \\
& q(z)=\operatorname{count}(Q)
\end{aligned}
$$

- $p(z) \odot q(z)=\mathcal{L}(\mathcal{B}(p(z)) \cdot \mathcal{B}(q(z)))$
where $\mathcal{L}\left(\sum_{n} \frac{a_{n}}{n!} z^{n}\right)=\sum_{n} a_{n} z^{n}$ and $\mathcal{B}\left(\sum_{n} a_{n} z^{n}\right)=\sum_{n} \frac{a_{n}}{n!} z^{n}$

Counting executions - complexity

Theorem

The counting algorithm performs $O(|P| M(n))$ arithmetic operations on big integers.

The coefficients of the polynomial have $O(n \ln n)$ bits.

- $|P|$ is the syntactic size of P.
- $M(n)$ is the cost of the multiplication of two polynomials of degree n.

Counting executions - complexity

Theorem

The counting algorithm performs $O(|P| M(n))$ arithmetic operations on big integers.

The coefficients of the polynomial have $O(n \ln n)$ bits.

- $|P|$ is the syntactic size of P.
- $M(n)$ is the cost of the multiplication of two polynomials of degree n.
$\Longrightarrow O(|P| M(n) M(n \ln n))$ bit-complexity.

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \xrightarrow{\left[F Z C^{\prime} 93\right]}$ recursive method uniform execution

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \xrightarrow{\text { recursive method }}$ [FZC'93] uniform execution

$$
\operatorname{SAMPLE}\left((a+b)^{\star} \|(c+(d ; e)+(f ; g)), 3\right)
$$

Rule:

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\text { [FZC'93] }}{\text { recursive method }}$ uniform execution

$$
\operatorname{SAMPLE}\left((a+b)^{\star} \|(c+(d ; e)+(f ; g)), 3\right)
$$

Rule:

$$
P_{n}=Q_{0} R_{0}\binom{n}{0}+Q_{1} R_{n-1}\binom{n}{1}+Q_{2} R_{n-2}\binom{n}{2}+\cdots
$$

Pick $k \in \llbracket 0 ; n \rrbracket$ with probability $Q_{k} R_{n-k}\binom{n}{k} / P_{n}$
$1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \xrightarrow{\text { recursive method }}$ [FZC'93] uniform execution
$\operatorname{SHUFFLE}\left(\operatorname{SAMPLE}\left((a+b)^{\star}, 1\right), \operatorname{SAMPLE}((c+(d ; e)+(f ; g)), 2)\right)$

Rule:
$1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\text { [FZC'93] }}{\text { recursive method }}$ uniform execution
$\operatorname{SHUFFLE}\left(\operatorname{SAMPLE}\left((a+b)^{\star}, 1\right), \ldots\right)$

Rule. $\quad P^{\star} \rightarrow 0+P ; P^{\star}$
$1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\substack{ \\\left[F Z C^{\prime} 93\right]}}{\text { recursive method }}$ uniform execution

$$
\operatorname{SHUFFLE}\left(\operatorname{SAMPLE}\left(0+(a+b) ;(a+b)^{\star}, 1\right), \ldots\right)
$$

Rule: $\quad P^{\star} \rightarrow 0+P ; P^{\star}$

$$
1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)
$$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\substack{\text { recursive method } \\ \text { [FZC] }}}{\text { reniform execution }}$
$\operatorname{SHUFFLE}\left(\operatorname{SAMPLE}\left((a+b) ;(a+b)^{\star}, 1\right), \ldots\right)$

Rule:
$1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\text { [FZC'93] }}{\text { recursive method }}$ uniform execution

SHUFFLE(SAMPLE $\left.\left((a+b) ;(a+b)^{\star}, 1\right), \ldots\right)$

Rule:

$$
P_{n}=Q_{0} R_{0}+Q_{1} R_{n-1}+Q_{2} R_{n-2}+\cdots
$$

Pick $k \in \llbracket 0 ; n \rrbracket$ with probability $Q_{k} R_{n-k} / P_{n}$
$1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)$
$0 \cdot 1+2 \cdot 1=2 \cdot(0+1)$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \xrightarrow{\left[F Z C^{\prime} 93\right]}$ uniform execution

$$
\operatorname{SHUFFLE}(\operatorname{SAMPLE}(a+b, 1), \ldots)
$$

Rule:

$$
\begin{aligned}
& 1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0) \\
& 0 \cdot 1+2 \cdot 1=2 \cdot(0+1)
\end{aligned}
$$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\text { [FZC'93] }}{\text { recursive method }}$ uniform execution

$$
\operatorname{SHUFFLE}(\operatorname{SAMPLE}(a+b, 1), \ldots)
$$

Rule:

$$
P_{n}=Q_{n}+R_{n}
$$

Choose Q with probability Q_{n} / P_{n}
$1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)$
$0 \cdot 1+2 \cdot 1=2 \cdot(0+1)$
$1+1=2 \cdot(1 / 2+1 / 2)$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \xrightarrow{\text { recursive method }} \underset{\left[F Z C^{\prime} 93\right]}{ }$ uniform execution
$\operatorname{SHUFFLE}(a, \ldots)$

Rule:
$1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0)$
$0 \cdot 1+2 \cdot 1=2 \cdot(0+1)$
$1+1=2 \cdot(1 / 2+1 / 2)$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\text { [FZC'93] }}{\text { recursive method }}$ uniform execution

$$
\operatorname{sHUFFLE}(a, \operatorname{SAMPLE}((c+(d ; e)+(f ; g)), 2))
$$

Rule:

$$
\begin{aligned}
& 1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0) \\
& 0 \cdot 1+2 \cdot 1=2 \cdot(0+1) \\
& 1+1=2 \cdot(1 / 2+1 / 2)
\end{aligned}
$$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\left[F Z C^{\prime} 93\right]}{\text { recursive method }}$ uniform execution

$$
\operatorname{SHUFFLE}(a, \operatorname{SAMPLE}((c+(d ; e)+(f ; g)), 2))
$$

Rule:

$$
P_{n}=Q_{n}+R_{n}+S_{n}
$$

Choose Q (or R) with probability $Q_{n} / P_{n}\left(\operatorname{or} R_{n} / P_{n}\right)$

$$
\begin{aligned}
& 1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0) \\
& 0 \cdot 1+2 \cdot 1=2 \cdot(0+1) \\
& 1+1=2 \cdot(1 / 2+1 / 2) \\
& 0+1+1=2
\end{aligned}
$$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\text { [FZC'93] }}{\text { recursive method }}$ uniform execution

$$
\operatorname{SHUFFLE}(a, \operatorname{SAMPLE}((d ; e), 2))
$$

Rule:

$$
\begin{aligned}
& 1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0) \\
& 0 \cdot 1+2 \cdot 1=2 \cdot(0+1) \\
& 1+1=2 \cdot(1 / 2+1 / 2) \\
& 0+1+1=2
\end{aligned}
$$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \xrightarrow{\text { recursive method }} \underset{\left[F Z C^{\prime} 93\right]}{ }$ uniform execution

SHUFFLE($a, d e$)

Rule:

$$
\begin{aligned}
& 1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0) \\
& 0 \cdot 1+2 \cdot 1=2 \cdot(0+1) \\
& 1+1=2 \cdot(1 / 2+1 / 2) \\
& 0+1+1=2
\end{aligned}
$$

Random sampling of executions

Algorithm: $P \xrightarrow{\text { prev. slides }} \llbracket P \rrbracket \underset{\text { [FZC'93] }}{\text { recursive method }}$ uniform execution

dae

Rule:

$$
\begin{aligned}
& 1 \cdot 0 \cdot\binom{3}{0}+2 \cdot 2 \cdot\binom{3}{1}+4 \cdot 1 \cdot\binom{3}{2}+8 \cdot 0 \cdot\binom{3}{3}=24 \cdot(0+1 / 2+1 / 2+0) \\
& 0 \cdot 1+2 \cdot 1=2 \cdot(0+1) \\
& 1+1=2 \cdot(1 / 2+1 / 2) \\
& 0+1+1=2
\end{aligned}
$$

Random sampling of executions

$$
P_{n}=Q_{0} R_{n}+Q_{1} R_{n-1}+Q_{2} R_{n-2}+\cdots+Q_{n} R_{0}
$$

How to draw $k \in \llbracket 0 ; n \rrbracket$ with probability $Q_{k} R_{n-k} / P_{n}$?

Random sampling of executions

$P_{n}=Q_{0} R_{n}+Q_{1} R_{n-1}+Q_{2} R_{n-2}+\cdots+Q_{n} R_{0}$
How to draw $k \in \llbracket 0 ; n \rrbracket$ with probability $Q_{k} R_{n-k} / P_{n}$?

Solution 1:

Draw $x \sim \operatorname{UnIF}\left(\llbracket 0 ; P_{n} \llbracket\right)$ and take the minimum k such that $x<Q_{0} R_{n}+Q_{1} R_{n-1}+\cdots+Q_{k} R_{n-k}$.

Random sampling of executions

$P_{n}=Q_{0} R_{n}+Q_{1} R_{n-1}+Q_{2} R_{n-2}+\cdots+Q_{n} R_{0}$
How to draw $k \in \llbracket 0 ; n \rrbracket$ with probability $Q_{k} R_{n-k} / P_{n}$?

Solution 1:

Draw $x \sim \operatorname{UnIF}\left(\llbracket 0 ; P_{n} \llbracket\right)$ and take the minimum k such that $x<Q_{0} R_{n}+Q_{1} R_{n-1}+\cdots+Q_{k} R_{n-k}$.

Solution 2 (boustrophedonic alg., [FZC'93,Molinero'05]):
Draw $x \sim \operatorname{UNIF}\left(\llbracket 0 ; P_{n} \llbracket\right)$ and take the minimum k such that $x<Q_{0} R_{n}+Q_{n} R_{0}+Q_{1} R_{n-1}+Q_{n-1} R_{1}+Q_{2} R_{n-2}+\ldots$ (k terms).

Random sampling of executions - complexity

Theorem [FZC'93,Molinero'05]

The recursive method with solution 2 has complexity $O(n \ln n)$.
Theorem [Molinero'05]
The recursive method has complexity $O(n)$ on recursion-free specifications.

Random sampling of executions - complexity

Theorem [FZC'93,Molinero'05]

The recursive method with solution 2 has complexity $O(n \ln n)$.

Theorem [Molinero'05]

The recursive method has complexity $O(n)$ on recursion-free specifications.

©
The constant hidden in the O depends on the specification!

Random sampling of executions - complexity

Theorem [FZC'93,Molinero'05]

The recursive method with solution 2 has complexity $O(n \ln n)$.

Theorem (updated)

The recursive method has complexity $O(h \cdot n)$ on recursion-free specification, where h is the number of nested operators of the spec.

The constant hidden in the O depends on the specification!

Random sampling of executions - complexity

Theorem

Random sampling of executions has complexity $O(n \cdot \min (h(P), \ln n))$ where h denotes the "height" of P i.e. its maximum number of nested constructors.

Outline

A class of concurrent programs

Algorithmic aspects

Conclusion and perspective

Conclusion

Take away:

- Specifications can be used as first-class objects

Conclusion

Take away:

- Specifications can be used as first-class objects

Future work:

- Generalize the model
- Analytic properties of the OGF of $\llbracket P \rrbracket$?
- Statistical model-checking

Thanks for your attention

