Limiting probabilities of first order properties in sparse random graphs

Alberto Larrauri Marc Noy Universitat Politècnica de Catalunya, Barcelona

> Tobias Müller University of Groningen

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

First order logic (FO) of graphs

Quantifiers: \forall, \exists Variables: x, y, z, \ldots Boolean connectives and equality: $\lor, \land, \neg, \rightarrow, =$ Predicates $P(x), Q(x, y), \ldots$

E(x, y) adjacency relation written $x \sim y$ Assumed symmetric and antireflexive

Some examples

• Existence of a triangle: $\exists x \exists y \exists z (x \sim y) \land (y \sim z) \land (z \sim x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Existence of fixed H as a subgraph
- There are at most a cycles of length at most k

FO cannot express connectivity, planarity, 3-colorability...

The G(n, p) model of random graphs

G(n, p) with 0 $Vertices: <math>V = \{1, 2, ..., n\}$ Each edge $\{i, j\}$ is in G(n, p) independently with probability p $\mathbf{P}(G) = p^{|E(G)|}(1-p) {n \choose 2}^{-|E(G)|}$

The expected number of edges is $p\binom{n}{2} \sim p\frac{n^2}{2}$

p constant Dense graphs: $\Theta(n^2)$ edges

 $p = \frac{c}{n}$ Sparse graphs: $\Theta(n)$ edges

Sparse random graphs

 $G_n = G(n, c/n)$

The phase transition Erdős-Rényi (1960)

- For c < 1, all components in G_n are either trees or have a unique cycle, and have size O(log n)
- For c > 1 there is a unique component of size $\Theta(n)$

FO logic cannot capture the transition since it cannot express that a graph is acyclic or unicyclic

Limiting probabilities

 $G_n = G(n, c/n)$

Given a FO property A we are interested in the limiting probability

 $\lim_{n\to\infty}\mathbf{P}[G_n \text{ satisfies } A]$

Lynch 1992 For every FO property A

 $\lim_{n\to\infty} \mathbf{P}[G_n \text{ satisfies } A] = f_A(c)$

and $f_A(c)$ is an expression in c using only +, ×, { $\lambda : \lambda \in \Lambda(c)$ } and exponentials, hence it is a C^{∞} function

Remark Alberto Larrauri has recently generalized Lynch's result to sparse hypergraphs [Journal of Logic and Computation, to appear]

The set of limiting probabilities for sparse graphs

 $L_{c} = \{ \lim \mathbf{P} \left[G \left(n, \frac{c}{n} \right) \text{ satisfies } A \right] : \text{FO property } A \}$ $L_{c} \text{ is a countable set, we consider its topological closure}$

 $\overline{L_c} \subseteq [0,1]$

Theorem [Alberto Larrauri, Tobias Müller, M.N.] Let $c_0 \approx 0.9368$ be the unique positive root of

$$e^{\frac{c}{2} + \frac{c^2}{4}}\sqrt{1-c} = \frac{1}{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\overline{L_c}$ is a finite union of intervals
- For $c \ge c_0$ we have $\overline{L_c} = [0, 1]$
- For 0 < c < c₀ there is at least one gap in L_c, that is, an interval [a, b] ⊆ [0, 1] with [a, b] ∩ L_c = Ø

Previous work

${\mathcal P}$ labelled planar graphs

Heinig, Müller, N., Taraz 2018

- ▶ With the uniform distribution on graphs in \mathcal{P} with *n* vertices $\overline{L_c}$ is a finite union of intervals (in fact 108 intervals of length $\approx 10^{-6}$)
- ► For the class of random forests (acyclic graphs) $\overline{L_c} = [0, 0.170] \cup [0.223, 0.393] \cup [0.606, 0.776] \cup [0.830, 1]$
- For every minor-closed class of graphs which is addable (the forbidden minors are 2-connected) *L_c* is finite union of intervals and there is always a gap

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sketch of proof

- 1. No gap for $c \geq 1$
- 2. At least one gap for $c < c_0$

3. No gap for $c_0 \leq c < 1$

1. No gap for $c \ge 1$

 X_k = number of k-cycles in $G(n, \frac{c}{n})$

$$X_k \xrightarrow[n \to \infty]{d} \operatorname{Poisson}\left(rac{c^k}{2k}
ight)$$

and X_3, \ldots, X_k are asymtotically independent for fixed k

$$X_{\leq k} := X_3 + \dots + X_k \xrightarrow[n \to \infty]{d} \operatorname{Poisson} \left(\mu_k = \sum_{i=3}^k \frac{c^k}{2k} \right)$$

• $\lim_{k\to\infty}\mu_k=\infty$ since $c\geq 1$

• The property $\{X_{\leq k} \leq a\}$ is FO expressible for fixed k

$$\mathbf{P}(\mathsf{Poisson}(\mu) \leq \mu + x\sqrt{\mu}) \xrightarrow[\mu \to \infty]{} \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

Given $p \in (0,1)$ and $\epsilon > 0$ take x with $\Phi(x) = p$ and μ_0 such that

$$|\mathbf{P}(\mathsf{Poisson}(\mu) \leq \mu + x\sqrt{\mu}) - p| < \epsilon, \quad ext{ for } \mu \geq \mu_0$$

Finally take k such that $\mu_k \ge \mu_0$ Hence $\overline{L_c} = [0,1]$ 2. At least one one gap for $c < c_0$

Structure of
$$G_n = G(n, c/n)$$
 for $c < 1$
Erdős-Rènyi (1960)

$$\blacktriangleright \quad G_n = F_n \cup H_n$$

 F_n is a **forest**, H_n is a collection of **unicyclic** graphs

Zero-one law in F_n For every FO property A

 $\lim_{n\to\infty}\mathbf{P}[F_n \text{ satisfies } A] \in \{0,1\}$

Idea F_n contains arbitrarily many copies of each tree, hence two random instances of F_n cannot be distinguished by FO properties

This can be proved for instance using combinatorial games (Ehrenfeucht-Fraïssé)

Let *F* be the property of G_n being acyclic (a forest)

$$\lim_{n \to \infty} \mathbf{P}(F) = \prod_{k \ge 3} e^{-c^k/(2k)} = e^{-\sum_{k \ge 3} \frac{c^k}{2k}} = \sqrt{1 - c} e^{c/2 + c^2/4} = f(c)$$

We have $\lim_{n\to\infty} \mathbf{P}(F) > 1/2$ for $c < c_0$ Given a FO property A, we have in terms of limiting probabilities

$$\mathbf{P}(A) = \mathbf{P}(A|F)f(c) + \mathbf{P}(A|\neg F)(1 - f(c))$$

If P(A|F) = 1 then $P(A) \ge f(c) > 1/2$ If P(A|F) = 0 then $P(A) \le 1 - f(c) < 1/2$ Hence [1 - f(c), f(c)] is a gap 3. No gap for $c_0 \leq c \leq 1$

$$\blacktriangleright \quad G_n = F_n \cup H_n$$

 F_n is a **forest**, H_n is a collection of **unicyclic** graphs

E($|H_n|$) is bounded

Restricting to F_n we have the FO zero-one law Hence whether G_n satisfies a FO property depends solely on the fragment H_n

$$\mathbf{P}[H_n \cong H] \to p_H = f(c) \frac{(ce^{-c})^{|V(H)|}}{\operatorname{aut}(H)}$$

 $\mathbf{P}[G_n \text{ satisfies } A] \to \sum_{H \in \mathcal{H}_A} p_H$

It follows that $\overline{L_c}$ is the collection of subsums of the series

$$\sum_{\substack{H \text{ fragment}}} p_H = 1$$

A D N A 目 N A E N A E N A B N A C N

Nymann-Sáenz 2000 (Kakeya 1915)
Let
$$\sum_{n\geq 0} p_n < +\infty$$
 with $p_n \geq 0$
If $p_i \leq p_{i+1} + p_{i+2} + \cdots$ (term \leq tail) for all $i \geq 0$ then
$$\left\{\sum_{i\in A} p_i \colon A \subset \mathbb{N}\right\} = \left[0, \sum_{n=0}^{\infty} p_n\right]$$

Order the limiting probabilities of the fragments H

$$p_0 \geq p_1 \geq p_2 \geq \cdots$$

Considering

$$\sum_{|V(H)|=k} p_H = f(c)(ce^{-c})^k \sum_{|V(H)|=k} \frac{1}{\operatorname{aut}(\mathsf{H})}$$

we show that $p_i \leq \sum_{j>i} p_j$ for fragments of size k \geq 4 We complete the argument for size 3 (a triangle)

 $p_0 = \text{probability of being acyclic (empty fragment)}$ $p_0 \le 1 - p_0$ means $p_0 \ge 1/2$ which holds because $c \ge c_0$, c_0

Sparse hypergraphs

 $G^d(n,p)$ random *d*-hypergraph in which each *d*-edge has independent probability p

Take $p = \frac{c}{n^{d-1}}$ Sparse sin the expected number of edges is $p\binom{n}{d} = \Theta(n)$

Theorem

Let c_0 be the unique positive root of

$$\exp\left(\frac{c}{2(d-2)!}\right)\sqrt{1-\frac{c}{2(d-2)!}} = \frac{1}{2}.$$
 (1)

•
$$\overline{L_c}$$
 is a finite union of intervals

$$\blacktriangleright \ \overline{L_c} = [0, 1] \text{ for } c \ge c_0$$

• At least one gap for $0 < c < c_0$

Graphs with given degree sequence

(ongoing project with Alberto Larrauri and Guillem Perarnau)

Consider random graphs (uniform distribution) with degree sequence $\mathcal{D} = d_0(n), d_1(n), \ldots$

•
$$d_i(n) =$$
 number of vertices of degree *i*

$$\blacktriangleright \sum_i d_i(n) = n$$

•
$$\mu_1 = \lim_{n \to \infty} \sum_i i \lambda_i$$
 finite

•
$$\mu_2 = \lim_{n \to \infty} \sum_i i^2 \lambda_i$$
 finite

Molloy-Reed 1995

There exists a component of size $\Theta(n)$ iff $\mu_2 - 2\mu_1 > 0$

 $\overline{\mathcal{L}_{\mathcal{D}}}$ the closure of the set of limiting probabilities of FO properties for random graphs with degree sequence \mathcal{D}

When is
$$\overline{L_{\mathcal{D}}} = [0, 1]$$
?

Partial results so far indicate a behavior generalizing what we have found for G(n, p)