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First order logic (FO) of graphs

Quantifiers: ∀,∃
Variables: x , y , z , . . .
Boolean connectives and equality: ∨,∧,¬,→, =
Predicates P(x), Q(x , y), . . .

E (x , y) adjacency relation written x ∼ y
Assumed symmetric and antireflexive

Some examples

I Existence of a triangle: ∃x ∃y ∃z (x ∼ y) ∧ (y ∼ z) ∧ (z ∼ x)
I Existence of fixed H as a subgraph
I There are at most a cycles of length at most k

FO cannot express connectivity, planarity, 3-colorability. . .



The G (n, p) model of random graphs

G (n, p) with 0 < p < 1

Vertices: V = {1, 2, . . . , n}
Each edge {i , j} is in G (n, p) independently with probability p

P(G ) = p|E(G)|(1− p)(n2)−|E(G)|

The expected number of edges is p
(n
2

)
∼ p n2

2

p constant Dense graphs: Θ(n2) edges

p =
c

n
Sparse graphs: Θ(n) edges



Sparse random graphs

Gn = G (n, c/n)

The phase transition Erdős-Rényi (1960)

I For c < 1, all components in Gn are either trees or have a
unique cycle, and have size O(log n)

I For c > 1 there is a unique component of size Θ(n)

FO logic cannot capture the transition since it cannot express that
a graph is acyclic or unicyclic



Limiting probabilities

Gn = G (n, c/n)

Given a FO property A we are interested in the limiting probability

lim
n→∞

P[Gn satisfies A]

Lynch 1992
For every FO property A

lim
n→∞

P[Gn satisfies A ] = fA(c)

and fA(c) is an expression in c using only +, ×, {λ : λ ∈ Λ(c)}
and exponentials, hence it is a C∞ function

Remark Alberto Larrauri has recently generalized Lynch’s result to
sparse hypergraphs [Journal of Logic and Computation, to appear]



The set of limiting probabilities for sparse graphs

Lc = {limP
[
G
(
n, cn

)
satisfies A

]
: FO property A}

Lc is a countable set, we consider its topological closure

Lc ⊆ [0, 1]

Theorem [Alberto Larrauri, Tobias Müller, M.N.]

Let c0 ≈ 0.9368 be the unique positive root of

e
c
2
+ c2

4

√
1− c = 1

2

I Lc is a finite union of intervals

I For c ≥ c0 we have Lc = [0, 1]

I For 0 < c < c0 there is at least one gap in Lc , that is,
an interval [a, b] ⊆ [0, 1] with [a, b] ∩ Lc = ∅



Previous work

P labelled planar graphs

Heinig, Müller, N., Taraz 2018

I With the uniform distribution on graphs in P with n vertices
Lc is a finite union of intervals (in fact 108 intervals of length
≈ 10−6)

I For the class of random forests (acyclic graphs)
Lc = [0, 0.170] ∪ [0.223, 0.393] ∪ [0.606, 0.776] ∪ [0.830, 1]

I For every minor-closed class of graphs which is addable (the
forbidden minors are 2-connected)
Lc is finite union of intervals and there is always a gap



Sketch of proof

1. No gap for c ≥ 1

2. At least one gap for c < c0

3. No gap for c0 ≤ c < 1



1. No gap for c ≥ 1
Xk = number of k-cycles in G (n, cn )

Xk
d−−−→

n→∞
Poisson

(
ck

2k

)
and X3, . . . ,Xk are asymtotically independent for fixed k

X≤k := X3 + · · ·+ Xk
d−−−→

n→∞
Poisson

(
µk =

k∑
i=3

ck

2k

)
• limk→∞ µk =∞ since c ≥ 1
• The property {X≤k ≤ a} is FO expressible for fixed k

P(Poisson(µ) ≤ µ+ x
√
µ) −−−→

µ→∞
Φ(x) =

1√
2π

∫ x

−∞
e−t

2/2dt

Given p ∈ (0, 1) and ε > 0 take x with Φ(x) = p and µ0 such that

|P(Poisson(µ) ≤ µ+ x
√
µ)− p| < ε, for µ ≥ µ0

Finally take k such that µk ≥ µ0
Hence Lc = [0, 1]



2. At least one one gap for c < c0

Structure of Gn = G (n, c/n) for c < 1
Erdős-Rènyi (1960)

I Gn = Fn ∪ Hn

Fn is a forest, Hn is a collection of unicyclic graphs

I For every fixed tree T and m ≥ 1,
Fn contains at least m copies of T

Zero-one law in Fn For every FO property A

lim
n→∞

P[Fn satisfies A] ∈ {0, 1}

Idea Fn contains arbitrarily many copies of each tree, hence two
random instances of Fn cannot be distinguished by FO properties

This can be proved for instance using combinatorial games
(Ehrenfeucht-Fräıssé)



Let F be the property of Gn being acyclic (a forest)

lim
n→∞

P(F ) =
∏
k≥3

e−c
k/(2k) = e−

∑
k≥3

ck

2k =
√

1− cec/2+c2/4 = f (c)

We have limn→∞ P(F ) > 1/2 for c < c0
Given a FO property A, we have in terms of limiting probabilities

P(A) = P(A|F )f (c) + P(A|¬F )(1− f (c))

If P(A|F ) = 1 then P(A) ≥ f (c) > 1/2

If P(A|F ) = 0 then P(A) ≤ 1− f (c) < 1/2

Hence [1− f (c), f (c)] is a gap



3. No gap for c0 ≤ c ≤ 1
I Gn = Fn ∪ Hn

Fn is a forest, Hn is a collection of unicyclic graphs

I E(|Hn|) is bounded

Restricting to Fn we have the FO zero-one law

Hence whether Gn satisfies a FO property depends solely
on the fragment Hn

P[Hn
∼= H]→ pH = f (c)

(ce−c)|V (H)|

aut(H)

P[Gn satisfies A]→
∑

H∈HA

pH

It follows that Lc is the collection of subsums of the series∑
H fragment

pH = 1



Nymann-Sáenz 2000 (Kakeya 1915)
Let

∑
n≥0 pn < +∞ with pn ≥ 0

If pi ≤ pi+1 + pi+2 + · · · (term ≤ tail) for all i ≥ 0 then{∑
i∈A

pi : A ⊂ N

}
=

[
0,
∞∑
n=0

pn

]
Order the limiting probabilities of the fragments H

p0 ≥ p1 ≥ p2 ≥ · · ·

Considering ∑
|V (H)|=k

pH = f (c)(ce−c)k
∑

|V (H)|=k

1

aut(H)

we show that pi ≤
∑

j>i pj for fragments of size k ≥ 4

We complete the argument for size 3 (a triangle)

p0 = probability of being acyclic (empty fragment)

p0 ≤ 1− p0 means p0 ≥ 1/2 which holds because c ≥ c0



Sparse hypergraphs

Gd(n, p) random d-hypergraph in which each d-edge has
independent probability p

Take p =
c

nd−1

Sparse sin the expected number of edges is p
(n
d

)
= Θ(n)

Theorem

Let c0 be the unique positive root of

exp

(
c

2(d − 2)!

)√
1− c

2(d − 2)!
=

1

2
. (1)

I Lc is a finite union of intervals

I Lc = [0, 1] for c ≥ c0
I At least one gap for 0 < c < c0



Graphs with given degree sequence
(ongoing project with Alberto Larrauri and Guillem Perarnau)

Consider random graphs (uniform distribution) with degree
sequence D = d0(n), d1(n), . . .

I di (n) = number of vertices of degree i

I
∑

i di (n) = n

I limn→∞ di (n)/n = λi
I µ1 = limn→∞

∑
i iλi finite

I µ2 = limn→∞
∑

i i
2λi finite

Molloy-Reed 1995
There exists a component of size Θ(n) iff µ2 − 2µ1 > 0

LD the closure of the set of limiting probabilities of FO properties
for random graphs with degree sequence D

When is LD = [0, 1]?

Partial results so far indicate a behavior generalizing what we have
found for G (n, p)


