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Introduction

Equational Theories, Term Rewriting Systems (TRSs)

▸ Set of variables V = {x1, x2, x3, …} 

▸ Signature (set of const/func symbols)  Σ={c, f, g, +, …} 

▸ Terms: f(x1), f(c + x1), g(x2, f(x1)), … 

▸ Set of rules 

▸ R = {(x1 + x2) + x3 = x1 + (x2 + x3), f(x1 + x2) = f(x1) + f(x2), …} 

▸ R = {(x1 + x2) + x3 → x1 + (x2 + x3), f(x1 + x2) → f(x1) + f(x2), …}
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Equational Theory (unordered)

Term Rewriting System (ordered)

or



Introduction

What This Talk is about

R  : given an equational theory/TRS  

Is there any smaller equational theory/TRS equivalent to R ? 

How many rules are needed? 

▸ find a lower bound using algebra. 

▸ + brief intro & history of the algebra we are going to use.
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Introduction

Example: The Theory of Groups

(x1 ⋅ x2) ⋅ x3 = x1 ⋅ (x2 ⋅ x3),
x1 ⋅ e = x1, e ⋅ x1 = x1,

x1 ⋅ x−1
1 = e, x−1

1 ⋅ x1 = e .
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Introduction

Example: The Theory of Groups

(x1 ⋅ x2) ⋅ x3 = x1 ⋅ (x2 ⋅ x3),
x1 ⋅ e = x1, e ⋅ x1 = x1,

x1 ⋅ x−1
1 = e, x−1

1 ⋅ x1 = e .
enough

x1 ⋅ x−1
1 = e .

x1 ⋅ (((x−1
2 ⋅ (x−1

1 ⋅ x3))−1 ⋅ x4) ⋅ (x2 ⋅ x4)−1)−1 = x3,
‣ Presentation with 2 axioms
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‣ Presentation with 1 axiom is possible if we use 
division “/“ instead of multiplication m.
x1/((((x1/x1)/x2)/x3)/(((x1/x1)/x1)/x3)) = x2
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Introduction

Questions

▸ Question 1. 

Is there a presentation with one axiom over signature {・,  -1, e }? 

▸ Answer. 

No. [Tarski, Neumann, Kunen] We need at least 2 axioms. 

▸ Question 2. 

What about other equational theories/TRSs? 

Is there a generic way to know how many rules are needed to present 
a given equational theory/TRS?
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A lower bound by [Malbos-Mimram, FSCD’16]

(Σ, R) : complete (= terminating & confluent) TRS 
∃ a computable number MM(Σ, R) s.t. 

for any TRS              equivalent to (Σ, R). 
MM(Σ, R) ≤ #R′ 

(Σ′ , R′ )

‣ Not many TRSs are known to have MM(Σ, R) > 1 
⇒ The inequality just tells “any equivalent TRS has at least 

0 or 1 rule” for most examples. 😢 

‣ “Equivalence” for TRSs with possibly different signatures 

6



Introduction

[Ikebuchi, FSCD ‘19]

Fix Σ.   R : complete TRS over Σ. If deg(R) is 0 or prime, 

∃ e(R) : (computable) nonnegative integer s.t. 

for any      over Σ equivalent to R.

#R − e(R) ≤ #R′ 

R′ ( *↔R = *↔R′ )

For a complete TRS R of the theory of groups over {・,  -1, e }, we get 

            deg(R) = 2 and 
 “Any TRS presenting the theory of groups has at least 2 rules.” 

‣ Tarski’s theorem is obtained as a corollary.

#R − e(R) = 2.
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Definitions

Degree of a TRS
       : the number of occurrences of xi in

deg(R) = gcd{#il − #ir ∣ l → r ∈ R, i = 1,2,…}

#it t ∈ Term(Σ, {x1, x2, …}),

R = { f (x1, x2, x2) → x1, g(x1, x1, x1) → e}Example:
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deg(R) = 0   iff          preserves the multiset of variables  →R

R = {f( f(x1, x2), x3) → f(x1, f(x2, x3)), g( f(x1, x1)) → f(g(x1), g(x1))}E.g.



Definitions

Matrix

between the numbers of li →ri used in two normalizing paths

R = {l1 → r1, …, ln → rn}

u1

t1
v1

la1
→ ra1

lb1
→ rb1

um

tm
vm

lam
→ ram

lbm
→ rbm, . . . ,

D(R)ij

: complete TRS (n rules)

: m critical pairs

D(R)

D(R) : n × m matrix, (i, j)-th entry             is the difference

11

Fix a rewriting strategy.



Definitions

Example:

C1 C2 C3 C4

0 0 1 1
2 0 0 0
0 0 1 1
0 0 1 1

A1
A2
A3

A4

deg(R) = 0

R = {A1 . −(−x1) → x1, A2 . −f(x1) → f(−x1),
A3 . −(x1 + x2) → (−x1) ⋅ (−x2), A4 . −(x1 ⋅ x2) → (−x1) + (−x2) . }

12
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Definitions

Definition of e(R)

If d is prime: e(R) = rank(D(R))

ℤ/dℤConsider D(R) as a matrix over

If d = 0: compute the “Smith normal form” of D(R)  
              by elementary row/column operations 
                   e(R) = (the number of ±1s in the Smith n.f.)

‣         if d = 0 

‣          (finite field) if d is prime

≃ ℤ

≃ 𝔽d

Let d = deg(R)
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‣         if d = 0 

‣          (finite field) if d is prime

≃ ℤ

≃ 𝔽d

Let d = deg(R)

e1 0 … … … … … 0
0 e2 0 … … … … 0
⋮ 0 ⋱ … … … … ⋮
⋮ ⋮ 0 er 0 … … ⋮
⋮ ⋮ ⋮ 0 0 … … ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ … ⋮
0 0 … … … … 0 0

ei 𝖽𝗂𝗏𝗂𝖽𝖾𝗌 ei+1 (1 ≤ i < r)

13



‣ Definitions of deg, e(R) 
‣ Examples 
‣ Proof Overview 
‣ More About Homology & History 
‣ Conclusion

Outline



Definitions

Example:

C1 C2 C3 C4

0 0 1 1
2 0 0 0
0 0 1 1
0 0 1 1

A1
A2
A3

A4

deg(R) = 0

R = {A1 . −(−x1) → x1, A2 . −f(x1) → f(−x1),
A3 . −(x1 + x2) → (−x1) ⋅ (−x2), A4 . −(x1 ⋅ x2) → (−x1) + (−x2) . }

15

D(R) =



Definitions

Example:

C1 C2 C3 C4

0 0 1 1
2 0 0 0
0 0 1 1
0 0 1 1

A1
A2
A3

A4

1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

row/column 
operation

deg(R) = 0

R = {A1 . −(−x1) → x1, A2 . −f(x1) → f(−x1),
A3 . −(x1 + x2) → (−x1) ⋅ (−x2), A4 . −(x1 ⋅ x2) → (−x1) + (−x2) . }

15

D(R) =



Definitions

Example:

C1 C2 C3 C4

0 0 1 1
2 0 0 0
0 0 1 1
0 0 1 1

A1
A2
A3

A4

1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

row/column 
operation

deg(R) = 0

e(R) = 1

R = {A1 . −(−x1) → x1, A2 . −f(x1) → f(−x1),
A3 . −(x1 + x2) → (−x1) ⋅ (−x2), A4 . −(x1 ⋅ x2) → (−x1) + (−x2) . }

15

D(R) =



Definitions

Example: (cont.)

#R − e(R) = 4 − 1 = 3 ≤ #R′ 

for any equivalent TRS

R = {A1 . −(−x1) → x1, A2 . −f(x1) → f(−x1),
A3 . −(x1 + x2) → (−x1) ⋅ (−x2), A4 . −(x1 ⋅ x2) → (−x1) + (−x2) . }

R′ 

{A1, A2, A3}

⇒There is no equivalent TRS with 2 rules

An equivalent TRS with 3 rules:

By Main Theorem:
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Definitions

Example (the theory of groups)

▸ Complete TRS 

     with 48 critical pairs 

▸ My program (https://github.com/mir-ikbch/homtrs) 
computes MM(Σ, R), deg(R), D(R), e(R) 

▸  e(R) = 8 ( ∴ #R − e(R) = 2), MM(Σ, R) = 0

17

https://github.com/mir-ikbch/homtrs


Definitions

Example (average and successors)

▸ D(R) is the 5×1 zero matrix. ⇒ e(R) = 0.  

▸ Generally: Given a TRS, if any critical pair is of “this type”, 
then the TRS does not have any smaller equivalent TRSs.

∴ #R − e(R) = #R = 5
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▸ Generally: Given a TRS, if any critical pair is of “this type”, 
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 the left path and the right path 
have the same multiset of 
rewrite rules
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Proof Overview

Assumption & Notation

▸ Assume d = deg(R) is prime for simplicity 

▸                                        forms a field 

▸                                                   : n-dim. vector space 

▸ (For d = 0,                     does not form a field, so the proof is 
more complicated.)

ℤ/dℤ = {0,1,…, d − 1}

ℤ/dℤn = ℤ/dℤ × … × ℤ/dℤ
n

ℤ/dℤ ≃ ℤ

20

Main tools: linear algebra & Malbos-Mimram’s results



Proof Overview

Malbos-Mimram’s Lower Bound

∂̃1: ℤ/dℤ#R → ℤ/dℤ#Σ,
∂̃2: ℤ/dℤ#CP(R) → ℤ/dℤ#R

MM(Σ, R) := dim(ker ∂̃1/im∂̃2) ≤ #R

MM(Σ, R) = MM(Σ′, R′) if (Σ, R) & (Σ′, R′) are equivalent.
(shown via homological algebra. 
                        is called the “second homology”)

They introduced two linear maps

for any R′ equivalent to R

ker ∂̃1/im∂̃2

21

∴ MM(Σ, R) ≤ #R′ 
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∵ dim(ker ∂̃1/im∂̃2) ≤ dim(ker ∂̃1) ≤ dim(ℤ/dℤ#R) = #R



Proof Overview

Proof Overview

▸ #R − e(R) equals the dimension of  

▸ By more theorems from linear algebra, 

      
     Any equivalent  give the same R, R′ dim(im∂̃1)

V := (ℤ/dℤ#R)/im∂̃2

dim(V ) = dim(ker ∂̃1/im∂̃2) + dim(im∂̃1) ≤ #R

∴ #R − e(R) ≤ #R′ 

( ∵ dim((ℤ/dℤ#R)/im∂̃2) = dim(ℤ/dℤ#R) − dim(im∂̃2)
= #R − rank(D(R)) = #R − e(R))

dim(ker ∂̃1/im∂̃2) = MM(Σ, R)and the same

22

#R − e(R) = dim(V ) = dim(ker ∂̃1/im∂̃2) + dim(im∂̃1): invariant
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Main Theorem

Fix Σ.   R : complete TRS over Σ. If deg(R) is 0 or prime, 

∃ e(R) : (computable) nonnegative integer s.t. 

for any R′ over Σ equivalent to R.
#R − e(R) ≤ #R′ 



Proof Overview

What if d = deg(R) is not either 0 or prime?

▸            has zero divisors. 

▸ e.g., for d = 4, 2×2 = 4 ≡ 0 mod 4. 

⇒ Many useful theorems don’t work. 

‣ e.g., “Smith normal form” is no longer well defined.

ℤ/dℤ

24
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More About Homology

String Rewriting Systems

▸ String Rewriting Systems (SRSs) 

▸ Alphabet Σ 

▸ Rules R = { s1→ t1, s2 → t2, … }  si, ti ∈ Σ* (strings over Σ) 

▸ Example 

▸ Σ = {a, b}, R = { ba → ab, abb → ε } 

abab → aabb → a

26



More About Homology

How SRSs relate to algebra? — Monoids Presentation

▸ Any SRS (Σ, R) presents a monoid  
(multiplication: string concatenation) 

▸ Example: 

▸  ⇒  

                        
▸  ⇒  

                      

M = Σ*/ ↔*R

Σ = {a}, R = {aa → ε} Σ* = {an},

M = {[ε], [a]}, [aa] = [ε]
Σ = {a, b}, R = {ba → ab} Σ* = {ε, a, b, aa, ab, ba, …},

M = {[anbm]}, [ba] = [ab], [bba] = [abb], . . .

27



More About Homology

Monoids vs SRSs

‣ Equivalent SRSs present isomorphic monoids 

‣ Any monoid can be presented by an SRS (possibly with an 
infinite alphabet & rules)

28

Monoids SRSs



More About Homology

Homology Groups in General

▸ There are many types of homology groups 

▸ Homology groups of a topological space 

▸ Homology groups of a group 

▸ … 

▸ Homology groups of a general algebraic system (Quillen) 

▸ Corresponds an “object” to a sequence of abelian groups 
that extracts some information from the object

29



30

ℤ, {0}, ℤ, {0}, {0}, …

ℤ, ℤ × ℤ, ℤ, {0}, {0}, …

Surface Homology groups

(topologically) isomorphic

For topological spaces:

0th  1st   2nd …
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Group Homology groups

G1

G2

G3

isomorphic
H0, H1, H2, …

H′ 0, H′ 1, H′ 2, …

For groups:



More About Homology

Homology groups of a group (= group homology)

▸ Group presentation — Σ : alphabet, R : set of strings on 
 (   is the formal inverse of a) 

▸ Monoid presented by alphabet  and rules
 forms a group 

▸ Any group can be presented in this way. 

▸ [Epstein, Q. J. Math., 1961] If G is presented by finite Σ, R, 

                   

Σ ∪ Σ−1 Σ−1 = {a−1 ∣ a ∈ Σ}, a−1

Σ ∪ Σ−1

{w → ε ∣ w ∈ R ∪ {xx−1, x−1x ∣ x ∈ Σ}}

#R − #Σ ≥ s(H2(G)) − rankH1(G)

32

2nd & 1st homology groups of G
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SRS/Monoid Homology groups

{aba → ε}

{aa → a}

equivalent
H0, H1, H2, …

H′ 0, H′ 1, H′ 2, …

‣ We can construct homology groups for monoids/SRSs

{ba → ab, abb → ε}

but no application to rewriting known until 1987



More About Homology

[Squier, J. Pure Appl. Algebra, 1987]

▸ Solved an open problem at the time: “Does there exist a 
monoid with a solvable word problem that cannot be presented 
by any finite complete SRS?” - Yes 

▸ Word problem is solvable = equality is decidable 

▸ If a finite complete SRS presents a monoid, the word problem 
of the monoid is solvable 

▸ Squier discovered that if the 3rd homology group constructed 
from a complete SRS is not finitely generated, then the SRS is 
infinite. (His main theorem is even stronger)

34
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Monoids vs SRSs

‣ Any monoid can be presented by an SRS (possibly with an 
infinite alphabet & rules)

36
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‣ Any monoid can be presented by an SRS (possibly with an 
infinite alphabet & rules)
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Monoids SRSs
What about TRSs?



More About Homology

Algebraic Structure on Terms

▸ Multiplication? — substitution of tuples of terms: 

▸  

▸  

▸ (n-tuple with k kinds of vars)・(k-tuple with m kinds of vars) 

→ (n-tuple with m kinds of vars) 

▸ Monoids with typed (sorted) multiplication = Category

f(g(x1), x2) ⋅ ⟨c, f(x2, x1)⟩ = f(g(c), f(x2, x1))

⟨g(x1), f(x2, x3)⟩ ⋅ ⟨c, f(x2, x1), g(c)⟩ = ⟨g(c), f( f(x2, x1), g(c))⟩
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More About Homology

Category of Terms

▸ Objects: natural numbers 0, 1, 2, 3, … 

▸ Morphisms k → n: n-tuples of terms with vars in {x1, …, xk} 

▸ Composition (multiplication):  
 

‣ Identity:  

Term version of the free monoid Σ*.

(k → n) ⋅ (m → k) : (m → n)
⟨t1, …, tn⟩ ⋅ ⟨s1, …, sk⟩ = ⟨t1[s1/x1, …, sk /xk], …, tn[s1/x1, …, sk /xk]⟩

⟨x1, …, xn⟩ : n → n
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More About Homology

Lawvere Theories

▸ A Lawvere theory is a category whose objects are 0,1,2, … 
where n equals the nth categorical power of 1 

          (Any morphism n → k is a n-tuple of 1 → k) 

▸ (SRS vs Monoid) = (TRS vs Lawvere theory) 

▸ The Lawvere theory presented by a TRS R: Any term t is 
identified with s iff t ↔*R s

39



More About Homology

Homology Groups for Lawvere theories/TRSs

▸ [Jibladze & Pirashvili, J. of Algebra, 1991] defined 
cohomology groups of Lawvere theories 

▸ [Malbos & Mimram, FSCD 2016] figured out how to 
compute the 2nd homology H2 when the given TRS is 
complete and # of rules is bounded below by # of 
generators of H2. 

▸ [Ikebuchi, FSCD 2019] better lower bound I showed today
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Conclusion and Future Work

Conclusion

▸ We obtained a lower bound of the number of rewrite rules 
to present a TRS over a fixed signature. 

▸ Relationship between rewriting and abstract algebra 

▸ New algebraic tools & more research directions of TRSs/
equational theories
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