Homological Methods in Rewriting

Mirai Ikebuchi, MIT

Equational Theories, Term Rewriting Systems (TRSs)

- Set of variables $V=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
- Signature (set of const/func symbols) $\Sigma=\{c, f, g,+, \ldots\}$
- Terms: $f\left(x_{1}\right), f\left(c+x_{1}\right), g\left(x_{2}, f\left(x_{1}\right)\right), \ldots$
- Set of rules
- $R=\left\{\left(x_{1}+x_{2}\right)+x_{3}=x_{1}+\left(x_{2}+x_{3}\right), f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right), \ldots\right\}$

Equational Theory (unordered)
$\stackrel{\text { or }}{ }$ R $=\left\{\left(x_{1}+x_{2}\right)+x_{3} \rightarrow x_{1}+\left(x_{2}+x_{3}\right), f\left(x_{1}+x_{2}\right) \rightarrow f\left(x_{1}\right)+f\left(x_{2}\right), \ldots\right\}$
Term Rewriting System (ordered)

What This Talk is about

R : given an equational theory/TRS
Is there any smaller equational theory/TRS equivalent to R ?
How many rules are needed?

- find a lower bound using algebra.
- + brief intro \& history of the algebra we are going to use.

Example: The Theory of Groups

$$
\begin{aligned}
\left(x_{1} \cdot x_{2}\right) \cdot x_{3} & =x_{1} \cdot\left(x_{2} \cdot x_{3}\right), & & \\
x_{1} \cdot e & =x_{1}, & e \cdot x_{1} & =x_{1}, \\
x_{1} \cdot x_{1}^{-1} & =e, & x_{1}^{-1} \cdot x_{1} & =e .
\end{aligned}
$$

Example: The Theory of Groups

$$
\begin{array}{|r}
\begin{aligned}
\left(x_{1} \cdot x_{2}\right) \cdot x_{3} & =x_{1} \cdot\left(x_{2} \cdot x_{3}\right), \\
x_{1} \cdot e & =x_{1}, \\
x_{1} \cdot x_{1}^{-1} & =e,
\end{aligned} \quad \begin{array}{r}
e \cdot x_{1}=x_{1}, \\
x_{1}^{-1} \cdot x_{1}=e .
\end{array} \\
\text { enough }
\end{array}
$$

Example: The Theory of Groups

$$
\begin{array}{|c}
\begin{aligned}
\left(x_{1} \cdot x_{2}\right) \cdot x_{3} & =x_{1} \cdot\left(x_{2} \cdot x_{3}\right), \\
x_{1} \cdot e & =x_{1}, \\
x_{1} \cdot x_{1}^{-1} & =e,
\end{aligned} \\
\text { enough }
\end{array} \quad \begin{array}{r}
e \cdot x_{1}=x_{1}, \\
x_{1}^{-1} \cdot x_{1}=e .
\end{array}
$$

- Presentation with 2 axioms

$$
\begin{aligned}
& x_{1} \cdot\left(\left(\left(x_{2}^{-1} \cdot\left(x_{1}^{-1} \cdot x_{3}\right)\right)^{-1} \cdot x_{4}\right) \cdot\left(x_{2} \cdot x_{4}\right)^{-1}\right)^{-1}=x_{3}, \\
& x_{1} \cdot x_{1}^{-1}=e .
\end{aligned}
$$

Example: The Theory of Groups

$$
\begin{aligned}
\left(x_{1} \cdot x_{2}\right) \cdot x_{3} & =x_{1} \cdot\left(x_{2} \cdot x_{3}\right), \\
x_{1} \cdot e & =x_{1}, \\
x_{1} \cdot x_{1}^{-1} & =e,
\end{aligned}
$$

$$
\begin{aligned}
e \cdot x_{1} & =x_{1}, \\
x_{1}^{-1} \cdot x_{1} & =e .
\end{aligned}
$$

enough

- Presentation with 2 axioms

$$
\begin{aligned}
& x_{1} \cdot\left(\left(\left(x_{2}^{-1} \cdot\left(x_{1}^{-1} \cdot x_{3}\right)\right)^{-1} \cdot x_{4}\right) \cdot\left(x_{2} \cdot x_{4}\right)^{-1}\right)^{-1}=x_{3}, \\
& x_{1} \cdot x_{1}^{-1}=e .
\end{aligned}
$$

- Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.

$$
x_{1} /\left(\left(\left(\left(x_{1} / x_{1}\right) / x_{2}\right) / x_{3}\right) /\left(\left(\left(x_{1} / x_{1}\right) / x_{1}\right) / x_{3}\right)\right)=x_{2}
$$

Example: The Theory of Groups

$$
\begin{aligned}
\left(x_{1} \cdot x_{2}\right) \cdot x_{3} & =x_{1} \cdot\left(x_{2} \cdot x_{3}\right), \\
x_{1} \cdot e & =x_{1}, \\
x_{1} \cdot x_{1}^{-1} & =e,
\end{aligned}
$$

$$
\begin{aligned}
e \cdot x_{1} & =x_{1}, \\
x_{1}^{-1} \cdot x_{1} & =e .
\end{aligned}
$$

enough

- Presentation with 2 axioms
over the same signature

$$
\begin{aligned}
& x_{1} \cdot\left(\left(\left(x_{2}^{-1} \cdot\left(x_{1}^{-1} \cdot x_{3}\right)\right)^{-1} \cdot x_{4}\right) \cdot\left(x_{2} \cdot x_{4}\right)^{-1}\right)^{-1}=x_{3}, \\
& x_{1} \cdot x_{1}^{-1}=e .
\end{aligned}
$$

- Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.

$$
x_{1} /\left(\left(\left(\left(x_{1} / x_{1}\right) / x_{2}\right) / x_{3}\right) /\left(\left(\left(x_{1} / x_{1}\right) / x_{1}\right) / x_{3}\right)\right)=x_{2}
$$

Example: The Theory of Groups

$$
\begin{aligned}
\left(x_{1} \cdot x_{2}\right) \cdot x_{3} & =x_{1} \cdot\left(x_{2} \cdot x_{3}\right), \\
x_{1} \cdot e & =x_{1}, \\
x_{1} \cdot x_{1}^{-1} & =e
\end{aligned}
$$

$$
\begin{aligned}
e \cdot x_{1} & =x_{1}, \\
x_{1}^{-1} \cdot x_{1} & =e .
\end{aligned}
$$

enough

- Presentation with 2 axioms
over the same signature

$$
\begin{aligned}
& x_{1} \cdot\left(\left(\left(x_{2}^{-1} \cdot\left(x_{1}^{-1} \cdot x_{3}\right)\right)^{-1} \cdot x_{4}\right) \cdot\left(x_{2} \cdot x_{4}\right)^{-1}\right)^{-1}=x_{3} \\
& x_{1} \cdot x_{1}^{-1}=e
\end{aligned}
$$

- Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.

$$
x_{1} /\left(\left(\left(\left(x_{1} / x_{1}\right) / x_{2}\right) / x_{3}\right) /\left(\left(\left(x_{1} / x_{1}\right) / x_{1}\right) / x_{3}\right)\right)=x_{2}
$$

Questions

- Question 1.

Is there a presentation with one axiom over signature $\left\{\cdot,{ }^{-1}, e\right\}$?

- Answer.

No. [Tarski, Neumann, Kunen] We need at least 2 axioms.

- Question 2.

What about other equational theories/TRSs?
Is there a generic way to know how many rules are needed to present a given equational theory/TRS?

A lower bound by [Malbos-Mimram, FSCD'16]

(Σ, R) : complete (= terminating \& confluent) TRS
\exists a computable number $M M(\Sigma, R)$ s.t.

$$
M M(\Sigma, R) \leq \# R^{\prime}
$$

for any $\operatorname{TRS}\left(\Sigma^{\prime}, R^{\prime}\right)$ equivalent to (Σ, R).

- Not many TRSs are known to have $M M(\Sigma, R)>1$
\Rightarrow The inequality just tells "any equivalent TRS has at least
0 or 1 rule" for most examples.
- "Equivalence" for TRSs with possibly different signatures

[Ikebuchi, FSCD ‘19]

Fix Σ. R : complete TRS over Σ. If $\operatorname{deg}(R)$ is 0 or prime,
$\exists e(R)$: (computable) nonnegative integer s.t.

$$
\# R-e(R) \leq \# R^{\prime}
$$

for any R^{\prime} over Σ equivalent to $R .\left(\stackrel{*}{↔}_{R}={\stackrel{*}{↔} R^{\prime}}\right)$

For a complete TRS R of the theory of groups over $\left\{\cdot,{ }^{-1}, e\right\}$, we get

$$
\operatorname{deg}(R)=2 \text { and } \# R-e(R)=2
$$

"Any TRS presenting the theory of groups has at least 2 rules."

- Tarski's theorem is obtained as a corollary.

[Ikebuchi, FSCD ‘19]

Fix Σ. R : complete TRS over Σ. If $\operatorname{deg}(R)$ is 0 or prime,
$\exists e(R)$: (computable) nonnegative integer s.t.

$$
M M(\Sigma, R) \leq \# R-e(R) \leq \# R^{\prime}
$$

for any R^{\prime} over Σ equivalent to $R .\left(\stackrel{*}{\leftrightarrow} R=\stackrel{*}{↔}_{R^{\prime}}\right)$

For a complete TRS R of the theory of groups over $\left\{\cdot,,^{-1}, e\right\}$, we get

$$
\operatorname{deg}(R)=2 \text { and } \# R-e(R)=2
$$

"Any TRS presenting the theory of groups has at least 2 rules."

- Tarski's theorem is obtained as a corollary.

Outline

Definitions of deg, $e(R)$ Examples

Proof Overview

More About Homology \& History
Conclusion

Outline

Definitions of deg, $e(R)$

Examples

Proof Overview
More About Homology \& History
Conclusion

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $\quad R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $\quad R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

$$
\#_{1} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{1} x_{1}=0
$$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

$$
\#_{1} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{1} x_{1}=0
$$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

$$
\#_{1} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{1} x_{1}=0 \quad \#_{2} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{2} x_{1}=2
$$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

$$
\#_{1} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{1} x_{1}=0 \quad \#_{2} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{2} x_{1}=2
$$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

$$
\begin{aligned}
& \#_{1} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{1} x_{1}=0 \quad \#_{2} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{2} x_{1}=2 \\
& \#_{1} g\left(x_{1}, x_{1}, x_{1}\right)-\#_{1} e=3
\end{aligned}
$$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $\quad R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, x_{1}, x_{1}\right) \rightarrow e\right\}$

$$
\begin{aligned}
& \#_{1} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{1} x_{1}=0 \quad \#_{2} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{2} x_{1}=2 \\
& \#_{1} g\left(x_{1}, x_{1}, x_{1}\right)-\#_{1} e=3
\end{aligned}
$$

$$
\therefore \operatorname{deg}(R)=\operatorname{gcd}\{0,2,3\}=1
$$

Degree of a TRS

$\#_{i} t$: the number of occurrences of x_{i} in $t \in \operatorname{Term}\left(\Sigma,\left\{x_{1}, x_{2}, \ldots\right\}\right)$,

$$
\operatorname{deg}(R)=\operatorname{gcd}\left\{\#_{i} l-\#_{i} r \mid l \rightarrow r \in R, i=1,2, \ldots\right\}
$$

Example: $\quad R=\left\{f\left(x_{1}, x_{2}, x_{2}\right) \rightarrow x_{1}, g\left(x_{1}, \underline{x_{1}}, x_{1}\right) \rightarrow e\right\}$

$$
\begin{aligned}
& \#_{1} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{1} x_{1}=0 \quad \#_{2} f\left(x_{1}, x_{2}, x_{2}\right)-\#_{2} x_{1}=2 \\
& \#_{1} g\left(x_{1}, x_{1}, x_{1}\right)-\#_{1} e=3
\end{aligned}
$$

$$
\therefore \operatorname{deg}(R)=\operatorname{gcd}\{0,2,3\}=1
$$

$\operatorname{deg}(R)=0$ iff \rightarrow_{R} preserves the multiset of variables
E.g. $R=\left\{f\left(f\left(x_{1}, x_{2}\right), x_{3}\right) \rightarrow f\left(x_{1}, f\left(x_{2}, x_{3}\right)\right), \quad g\left(f\left(x_{1}, x_{1}\right)\right) \rightarrow f\left(g\left(x_{1}\right), g\left(x_{1}\right)\right)\right\}$

Matrix $D(R)$

$$
R=\left\{l_{1} \rightarrow r_{1}, \ldots, l_{n} \rightarrow r_{n}\right\} \quad: \text { complete TRS (} n \text { rules) }
$$

Fix a rewriting strategy.
$D(R): n \times m$ matrix, (i, j)-th entry $D(R)_{i j}$ is the difference between the numbers of $l_{i} \rightarrow r_{i}$ used in two normalizing paths

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}($

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}(\square)$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}\left(\begin{array}{l}0\end{array}\right)$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}\left(\begin{array}{l}0\end{array}\right)$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}\left(\begin{array}{l}0\end{array}\right)$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}\binom{0}{2}$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}\binom{0}{2}$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$\left.D(R)=\begin{array}{c|l}A_{1} & 0 \\ A_{2} & 2 \\ A_{3} & 0 \\ A_{4} & 0\end{array}\right)$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}\left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$

Definition of $e(R)$

Let $d=\operatorname{deg}(R)$
Consider $D(R)$ as a matrix over $\mathbb{Z} / d \mathbb{Z}$

$$
\begin{aligned}
& \simeq \mathbb{Z} \text { if } d=0 \\
& \simeq \mathbb{F}_{d}(\text { finite field }) \text { if } d \text { is prime }
\end{aligned}
$$

If d is prime: $e(R)=\operatorname{rank}(D(R))$
If $d=0$: compute the "Smith normal form" of $D(R)$ by elementary row/column operations $e(R)=$ (the number of $\pm 1 \mathrm{~s}$ in the Smith n.f.)

Definition of $e(R)$

Let $d=\operatorname{deg}(R)$
Consider $D(R)$ as a matrix over $\mathbb{Z} / d \mathbb{Z}$

$$
\simeq \mathbb{Z} \text { if } d=0
$$

$\downarrow \simeq \mathbb{F}_{d}$ (finite field) if d is prime

If d is prime: $e(R)=\operatorname{rank}(D(R))$
If $d=0$: compute the "Smith normal form" of $D(R)$ by elementary row/column operations $e(R)=$ (the number of $\pm 1 \mathrm{~s}$ in the Smith n.f.)

Dofinitinn of $o(R)$

$$
\left.\begin{array}{cccccccc}
\left(\begin{array}{cccccc}
e_{1} & 0 & \ldots & \ldots & \ldots & \ldots \\
\ldots & 0 \\
0 & e_{2} & 0 & \ldots & \ldots & \ldots \\
\ldots & 0 \\
\vdots & 0 & \ddots & \ldots & \ldots & \ldots \\
\ldots & \vdots \\
\vdots & \vdots & 0 & e_{r} & 0 & \ldots \\
\ldots & \vdots \\
\vdots & \vdots & \vdots & 0 & 0 & \ldots \\
\ldots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array} \ldots\right. & \vdots \\
0 & 0 & \ldots & \ldots & \ldots & \ldots & 0 & 0
\end{array}\right) \quad \simeq \mathbb{Z} \text { if } d=0
$$

If d is prime: $e(R)=\operatorname{rank}(D(R))$
If $d=0$: compute the "Smith normal form" of $D(R)$ by elementary row/column operations
$e(R)=$ (the number of $\pm 1 \mathrm{~s}$ in the Smith n.f.)

Outline

- Definitions of deg, e(R)

Examples

Proof Overview

More About Homology \& History
Conclusion

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{gathered}A_{1} \\ A_{2} \\ A_{3} \\ A_{4}\end{gathered}\left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R= \begin{cases}A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right)- \\ A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right.\end{cases}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$

$$
D(R)=\begin{gathered}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{gathered}\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \xrightarrow{\text { operation }}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example:

$$
\operatorname{deg}(R)=0
$$

$$
R=\left\{\begin{array}{l}
A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, \\
A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right),
\end{array}\right.
$$

$$
C_{3}
$$

$$
C_{4}
$$

$\begin{array}{llll}C_{1} & C_{2} & C_{3} & C_{4}\end{array}$
$D(R)=\begin{aligned} & A_{1} \\ & A_{2} \\ & A_{3} \\ & A_{4}\end{aligned}\left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right) \xrightarrow{\text { row/column }} \begin{aligned} & \text { operation }\end{aligned}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \underline{e(R)=1}$

Example: (cont.)

$$
R=\left\{\begin{array}{ll}
A_{1} \cdot-\left(-x_{1}\right) \rightarrow x_{1}, & A_{2} \cdot-f\left(x_{1}\right) \rightarrow f\left(-x_{1}\right), \\
A_{3} \cdot-\left(x_{1}+x_{2}\right) \rightarrow\left(-x_{1}\right) \cdot\left(-x_{2}\right), & A_{4} \cdot-\left(x_{1} \cdot x_{2}\right) \rightarrow\left(-x_{1}\right)+\left(-x_{2}\right) .
\end{array}\right\}
$$

By Main Theorem:

$$
\# R-e(R)=4-1=3 \leq \# R^{\prime}
$$

for any equivalent TRS R^{\prime}
\Rightarrow There is no equivalent TRS with 2 rules

An equivalent TRS with 3 rules: $\left\{A_{1}, A_{2}, A_{3}\right\}$

Example (the theory of groups)

- Complete TRS

$$
\begin{array}{ll}
\left(x_{1} \cdot x_{2}\right) \cdot x_{3} \rightarrow x_{1} \cdot\left(x_{2} \cdot x_{3}\right) & e \cdot x_{1} \rightarrow x_{1} \\
x_{1} \cdot e \rightarrow x_{1} & x_{1} \cdot x_{1}^{-1} \rightarrow e \\
x_{1}^{-1} \cdot x_{1} \rightarrow e & x_{1}^{-1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2} \\
e^{-1} \rightarrow e & \left(x^{-1}\right)^{-1} \rightarrow x_{1} \\
x_{1} \cdot\left(x_{1}^{-1} \cdot x_{2}\right) \rightarrow x_{2} & \left(x_{1} \cdot x_{2}\right)^{-1} \rightarrow x_{1}^{-1} \cdot x_{2}^{-1}
\end{array}
$$

with 48 critical pairs

- My program (https://github.com/mir-ikbch/homtrs) computes $M M(\Sigma, R), \operatorname{deg}(R), D(R), e(R)$

$$
e(R)=8(\therefore \# R-e(R)=2), M M(\Sigma, R)=0
$$

Example (average and successors)

$$
\begin{aligned}
& A_{1} \text {.ave }(0,0) \rightarrow 0, \quad A_{2} \text {.ave }\left(x_{1}, \mathbf{s}\left(x_{2}\right)\right) \rightarrow \text { ave }\left(\mathbf{s}\left(x_{1}\right), x_{2}\right), \quad A_{3} \text {.ave }(\mathbf{s}(0), 0) \rightarrow 0, \\
& A_{4} \text {.ave }(\mathbf{s}(\mathbf{s}(0)), 0) \rightarrow s(0), \quad A_{5} \text {.ave }\left(\mathrm{s}\left(\mathrm{~s}\left(\mathrm{~s}\left(x_{1}\right)\right)\right), x_{2}\right) \rightarrow \mathrm{s}\left(\operatorname{ave}\left(\mathrm{~s}\left(x_{1}\right), x_{2}\right)\right) . \\
& \operatorname{ave}\left(\mathrm{s}\left(\mathrm{~s}\left(\mathrm{~s}\left(x_{1}\right)\right)\right), \mathrm{s}\left(x_{2}\right)\right)
\end{aligned}
$$

$D(R)$ is the 5×1 zero matrix. $\Rightarrow e(R)=0 . \therefore \# R-e(R)=\# R=5$

* Generally: Given a TRS, if any critical pair is of "this type", then the TRS does not have any smaller equivalent TRSs.

Example (average and successors)

$$
\begin{array}{lll}
A_{1} \text {.ave }(0,0) \rightarrow 0, & A_{2} \cdot \operatorname{ave}\left(x_{1}, \mathbf{s}\left(x_{2}\right)\right) \rightarrow \operatorname{ave}\left(\mathbf{s}\left(x_{1}\right), x_{2}\right), & A_{3} \cdot \operatorname{ave}(\mathbf{s}(0), 0) \rightarrow 0, \\
A_{4} \text {.ave }(\mathbf{s}(\mathbf{s}(0)), 0) \rightarrow s(0),, & A_{5} \cdot \operatorname{ave}\left(\mathbf{s}\left(\mathbf{s}\left(\mathbf{s}\left(x_{1}\right)\right)\right), x_{2}\right) \rightarrow \mathbf{s}\left(\operatorname{ave}\left(\mathbf{s}\left(x_{1}\right), x_{2}\right)\right) . &
\end{array}
$$

the left path and the right path have the same multiset of rewrite rules
$D(R)$ is the 5×1 zero matrix. $\Rightarrow e(R)=0 . \therefore \# R-e(R)=\# R=5$
" Generally: Given a TRS, if any critical pair is of "this type", then the TRS does not have any smaller equivalent TRSs.

Outline

Definitions of deg, $e(R)$ Examples

Proof Overview

More About Homology \& History
Conclusion

Assumption \& Notation

- Assume $d=\operatorname{deg}(R)$ is prime for simplicity
- $\mathbb{Z} / d \mathbb{Z}=\{0,1, \ldots, d-1\}$ forms a field
- $\mathbb{Z} / d \mathbb{Z}^{n}=\mathbb{Z} / d \mathbb{Z} \times \ldots \times \mathbb{Z} / d \mathbb{Z}: n$-dim. vector space
(For $d=0, \mathbb{Z} / d \mathbb{Z} \simeq \mathbb{Z}$ does not form a field, so the proof is more complicated.)

Main tools: linear algebra \& Malbos-Mimram's results

Malbos-Mimram's Lower Bound

They introduced two linear maps

$$
\begin{aligned}
& \tilde{\partial}_{1}: \mathbb{Z} / d \mathbb{Z}^{\# R} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# \Sigma}, \\
& \tilde{\partial}_{2}: \mathbb{Z} / d \mathbb{Z}^{\# \mathrm{CP}(R)} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# R}
\end{aligned}
$$

$M M(\Sigma, R):=\operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right) \leq \# R$
$M M(\Sigma, R)=M M\left(\Sigma^{\prime}, R^{\prime}\right)$ if $(\Sigma, R) \&\left(\Sigma^{\prime}, R^{\prime}\right)$ are equivalent.
(shown via homological algebra.
$\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}$ is called the "second homology")
$\therefore M M(\Sigma, R) \leq \# R^{\prime} \quad$ for any R^{\prime} equivalent to R

Malbos-Mimram's Lower Bound

They introduced two linear maps
$\tilde{\partial}_{1}: \mathbb{Z} / d \mathbb{Z}^{\# R} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# \Sigma}$,
$\tilde{\partial}_{2}: \mathbb{Z} / d \mathbb{Z}^{\# C P(R)} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# R}$
$M M(\Sigma, R):=\operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right) \leq \# R$
$M M(\Sigma, R)=M M\left(\Sigma^{\prime}, R^{\prime}\right)$ if $(\Sigma, R) \&\left(\Sigma^{\prime}, R^{\prime}\right)$ are equivalent.
(shown via homological algebra.
$\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}$ is called the "second homology")
$\therefore M M(\Sigma, R) \leq \# R^{\prime} \quad$ for any R^{\prime} equivalent to R

Malbos-Mimram's Lower Bound

They introduced two linear maps

$$
\begin{aligned}
& \tilde{\partial}_{1}: \mathbb{Z} / d \mathbb{Z}^{\# R} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# \Sigma}, \\
& \tilde{\partial}_{2}: \mathbb{Z} / d \mathbb{Z}^{\# \mathrm{CP}(R)} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# R}
\end{aligned}
$$

$M M(\Sigma, R):=\operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right) \leq \# R$
$M M(\Sigma, R)=M M\left(\Sigma^{\prime}, R^{\prime}\right)$ if $(\Sigma, R) \&\left(\Sigma^{\prime}, R^{\prime}\right)$ are equivalent.
(shown via homological algebra.
$\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}$ is called the "second homology")
$\therefore M M(\Sigma, R) \leq \# R^{\prime} \quad$ for any R^{\prime} equivalent to R

Malbos-Mimram's Lower Bound

They introduced two linear maps

$$
\begin{aligned}
& \tilde{a}_{1}: \mathbb{Z} / d \mathbb{Z}^{\# R} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# \Sigma}, \\
& \tilde{\partial}_{2}: \mathbb{Z} / d \mathbb{Z}^{\# \operatorname{CP}(R)} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# R}
\end{aligned}
$$

$M M(\Sigma, R):=\operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right) \leq \# R$

If R is complete, the matrix representation is $D(R)$

$$
\begin{aligned}
& \operatorname{ker} \tilde{\partial}_{1}=\left\{x \mid \tilde{\partial}_{1}(x)=0\right\} \\
& \operatorname{im} \tilde{\partial}_{2}=\left\{\tilde{\partial}_{2}(x) \mid x \in \mathbb{Z} / d \mathbb{Z}^{\# \operatorname{CP}(R)}\right\} \\
& \text { subspaces of } \mathbb{Z} / d \mathbb{Z}^{\# R}
\end{aligned}
$$

$M M(\Sigma, R)=M M\left(\Sigma^{\prime}, R^{\prime}\right)$ if $(\Sigma, R) \&\left(\Sigma^{\prime}, R^{\prime}\right)$ are equivalent.
(shown via homological algebra.
$\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}$ is called the "second homology")
$\therefore M M(\Sigma, R) \leq \# R^{\prime} \quad$ for any R^{\prime} equivalent to R

Malbos-Mimram's Lower Bound

They introduced two linear maps

$$
\begin{aligned}
& \tilde{\partial}_{1}: \mathbb{Z} / d \mathbb{Z}^{\# R} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# \Sigma}, \\
& \tilde{\partial}_{2}: \mathbb{Z} / d \mathbb{Z}^{\# \mathrm{CP}(R)} \rightarrow \mathbb{Z} / d \mathbb{Z}^{\# R}
\end{aligned}
$$

$M M(\Sigma, R):=\operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right) \leq \# R$

If R is complete, the matrix representation is $D(R)$

$$
\begin{aligned}
& \operatorname{ker} \tilde{\partial}_{1}=\left\{x \mid \tilde{\partial}_{1}(x)=0\right\} \\
& \operatorname{im} \tilde{\partial}_{2}=\left\{\tilde{\partial}_{2}(x) \mid x \in \mathbb{Z} / d \mathbb{Z}^{\# C P(R)}\right\} \\
& \text { subspaces of } \mathbb{Z} / d \mathbb{Z}^{\# R}
\end{aligned}
$$

$\because \operatorname{dim}\left(\operatorname{ker} \tilde{1}_{1} / \operatorname{im} \tilde{\partial}_{2}\right) \leq \operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1}\right) \leq \operatorname{dim}\left(\mathbb{Z} / d \mathbb{Z}^{\# R}\right)=\# R$
$M M(\Sigma, R)=M M\left(\Sigma^{\prime}, R^{\prime}\right)$ if $(\Sigma, R) \&\left(\Sigma^{\prime}, R^{\prime}\right)$ are equivalent.
(shown via homological algebra.
$\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}$ is called the "second homology")
$\therefore M M(\Sigma, R) \leq \# R^{\prime} \quad$ for any R^{\prime} equivalent to R

Proof Overview

- $\# R-e(R)$ equals the dimension of $V:=\left(\mathbb{Z} / d \mathbb{Z}^{\# R}\right) / \mathrm{im} \tilde{\partial}_{2}$

$$
\left(\begin{array}{rl}
\because \operatorname{dim}\left(\left(\mathbb{Z} / d \mathbb{Z}^{\# R}\right) / \operatorname{im} \tilde{\partial}_{2}\right) & =\operatorname{dim}\left(\mathbb{Z} / d \mathbb{Z}^{\# R}\right)-\operatorname{dim}\left(\operatorname{im} \tilde{\partial}_{2}\right) \\
& =\# R-\operatorname{rank}(D(R))=\# R-e(R)
\end{array}\right)
$$

- By more theorems from linear algebra,

$$
\operatorname{dim}(V)=\operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right)+\operatorname{dim}\left(\operatorname{im} \tilde{a}_{1}\right) \leq \# R
$$

Any equivalent R, R^{\prime} give the same $\operatorname{dim}\left(i m \tilde{\partial}_{1}\right)$

$$
\text { and the same } \operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right)=M M(\Sigma, R)
$$

$\# R-e(R)=\operatorname{dim}(V)=\operatorname{dim}\left(\operatorname{ker} \tilde{\partial}_{1} / \operatorname{im} \tilde{\partial}_{2}\right)+\operatorname{dim}\left(i m \tilde{\partial}_{1}\right)$ invariant

$$
\therefore \# R-e(R) \leq \# R^{\prime}
$$

\square

Main Theorem

 $\exists e(R)$: (computable) nonnegative integer s.t.

$$
\# R-e(R) \leq \# R^{\prime}
$$

for any R^{\prime} over Σ equivalent to R.

What if $d=\operatorname{deg}(R)$ is not either 0 or prime?

- $\mathbb{Z} / d \mathbb{Z}$ has zero divisors.
- e.g., for $d=4,2 \times 2=4 \equiv 0 \bmod 4$.
\Rightarrow Many useful theorems don't work.
" e.g., "Smith normal form" is no longer well defined.

Outline

Definitions of deg, $e(R)$ Examples
 Proof Overview
 More About Homology \& History

Conclusion

String Rewriting Systems

- String Rewriting Systems (SRSs)
- Alphabet Σ
- Rules $R=\left\{s_{1} \rightarrow t_{1}, s_{2} \rightarrow t_{2}, \ldots\right\} \quad s_{i}, t_{i} \in \Sigma^{*}$ (strings over Σ)
- Example
- $\Sigma=\{a, b\}, R=\{b a \rightarrow a b, a b b \rightarrow \varepsilon\}$

$$
a b a b \rightarrow a a b b \rightarrow a
$$

How SRSs relate to algebra? - Monoids Presentation

- Any $\operatorname{SRS}(\Sigma, R)$ presents a monoid $M=\Sigma^{*} / \leftrightarrow_{R}^{*}$ (multiplication: string concatenation)
- Example:

$$
\Sigma=\{a\}, R=\{a a \rightarrow \varepsilon\} \Rightarrow \Sigma^{*}=\left\{a^{n}\right\}
$$

$$
M=\{[\varepsilon],[a]\},[a a]=[\varepsilon]
$$

$$
\Sigma=\{a, b\}, R=\{b a \rightarrow a b\} \Rightarrow \Sigma^{*}=\{\varepsilon, a, b, a a, a b, b a, \ldots\}
$$

$$
M=\left\{\left[a^{n} b^{m}\right]\right\},[b a]=[a b],[b b a]=[a b b], \ldots
$$

Monoids vs SRSs

- Equivalent SRSs present isomorphic monoids
- Any monoid can be presented by an SRS (possibly with an infinite alphabet \& rules)

Homology Groups in General

- There are many types of homology groups
- Homology groups of a topological space
- Homology groups of a group
- Homology groups of a general algebraic system (Quillen)
- Corresponds an "object" to a sequence of abelian groups that extracts some information from the object

For topological spaces:

(topologically) isomorphic $\mathbb{Z},\{0\}, \mathbb{Z},\{0\},\{0\}, \ldots$

$\longrightarrow \mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathbb{Z},\{0\},\{0\}, \ldots$

For groups:

Group

Homology groups of a group (= group homology)

- Group presentation $-\Sigma$: alphabet, R : set of strings on $\Sigma \cup \Sigma^{-1}\left(\Sigma^{-1}=\left\{a^{-1} \mid a \in \Sigma\right\}, a^{-1}\right.$ is the formal inverse of $\left.a\right)$
- Monoid presented by alphabet $\Sigma \cup \Sigma^{-1}$ and rules $\left\{w \rightarrow \varepsilon \mid w \in R \cup\left\{x x^{-1}, x^{-1} x \mid x \in \Sigma\right\}\right\}$ forms a group
- Any group can be presented in this way.
- [Epstein, Q. J. Math., 1961] If G is presented by finite Σ, R,

$$
\# R-\# \Sigma \geq s\left(H_{2}(G)\right)-\operatorname{rank} H_{1}(G)
$$

2nd \& 1st homology groups of G

- We can construct homology groups for monoids/SRSs

$$
\{a a \rightarrow a\} \longrightarrow H_{0}^{\prime}, H_{1}^{\prime}, H_{2}^{\prime}, \ldots
$$

SRS/Monoid
Homology groups
but no application to rewriting known until 1987

[Squier, J. Pure Appl. Algebra, 1987]

- Solved an open problem at the time: "Does there exist a monoid with a solvable word problem that cannot be presented by any finite complete SRS?" - Yes
- Word problem is solvable = equality is decidable
- If a finite complete SRS presents a monoid, the word problem of the monoid is solvable
- Squier discovered that if the 3rd homology group constructed from a complete SRS is not finitely generated, then the SRS is infinite. (His main theorem is even stronger)
(0) https://fr.wikipedia.org/wiki/Réécriture_(informatique)

目 … ©

Invariants homologiques [modifier I modifier le code]

Dans le cas de la réécriture de mots, un système de réécriture définit une présentation par ! quotient $\Sigma^{\star} / \leftrightarrow^{*}$, où $\boldsymbol{\Sigma}^{*}$ est le monoide libre engendré par l'alphabet $\boldsymbol{\Sigma}$ et \leftrightarrow^{*} est la congruenc clôture réflexive, symétrique et transitive de \rightarrow. Exemple : $\mathbf{Z}=\boldsymbol{\Sigma}^{\star} / ↔^{*}$ où $\boldsymbol{\Sigma}=\{\mathbf{a}, \mathrm{b}\}$ avec les générateur).

Comme un monoïde \mathbf{M} a beaucoup de présentations, on s'intéresse aux invariants, c'est-àdépendent pas du choix de la présentation. Exemple : la décidabilité du problème du mot pr

Un monoïde finiment présentable \mathbf{M} peut avoir un problème du mot décidable, mais aucune En effet, s'il existe un tel système, le groupe d'homologie $\mathbf{H}_{3}(\mathbf{M})$ est de type fini. Or on peut problème du mot est décidable et tel que le groupe $\mathbf{H}_{3}(\mathbf{M})$ n'est pas de type fini.

En fait, ce groupe est engendré par les paires critiques, et plus généralement, un système c monoïde en toute dimension. Il y a aussi des invariants homotopiques : s'll existe un systèr celui-ci a un type de dérivation fini. Il s'agit à nouveau d'une propriété qui se définit à partir (de cette présentation. Cette propriété implique que le groupe $\mathbf{H}_{3}(\mathbf{M})$ est de type fini, mais la

Monoids vs SRSs

Any monoid can be presented by an SRS (possibly with an infinite alphabet \& rules)

Monoids
SRSs

Monoids vs SRSs

Any monoid can be presented by an SRS (possibly with an infinite alphabet \& rules)

Monoids

SRSs

What about TRSs?

Algebraic Structure on Terms

- Multiplication? - substitution of tuples of terms:
- $f\left(g\left(x_{1}\right), x_{2}\right) \cdot\left\langle c, f\left(x_{2}, x_{1}\right)\right\rangle=f\left(g(c), f\left(x_{2}, x_{1}\right)\right)$
- $\left\langle g\left(x_{1}\right), f\left(x_{2}, x_{3}\right)\right\rangle \cdot\left\langle c, f\left(x_{2}, x_{1}\right), g(c)\right\rangle=\left\langle g(c), f\left(f\left(x_{2}, x_{1}\right), g(c)\right)\right\rangle$
- (n-tuple with k kinds of vars) $\cdot(k$-tuple with m kinds of vars)
\rightarrow (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication

Algebraic Structure on Terms

- Multiplication? - substitution of tuples of terms:
- $f\left(g\left(x_{1}\right), x_{2}\right) \cdot\left\langle c, f\left(x_{2}, x_{1}\right)\right\rangle=f\left(g(c), f\left(x_{2}, x_{1}\right)\right)$
- $\left\langle g\left(x_{1}\right), f\left(x_{2}, x_{3}\right)\right\rangle \cdot\left\langle c, f\left(x_{2}, x_{1}\right), g(c)\right\rangle=\left\langle g(c), f\left(f\left(x_{2}, x_{1}\right), g(c)\right)\right\rangle$
- (n-tuple with k kinds of vars) $\cdot(k$-tuple with m kinds of vars)
\rightarrow (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication

Algebraic Structure on Terms

- Multiplication? - substitution of tuples of terms:
- $f\left(g\left(x_{1}\right), x_{2}\right) \cdot\left\langle c, f\left(x_{2}, x_{1}\right)\right\rangle=f\left(g(c), f\left(x_{2}, x_{1}\right)\right)$
- $\left\langle g\left(x_{1}\right), f\left(x_{2}, x_{3}\right)\right\rangle \cdot\left\langle c, f\left(x_{2}, x_{1}\right), g(c)\right\rangle=\left\langle g(c), f\left(f\left(x_{2}, x_{1}\right), g(c)\right)\right\rangle$
- (n-tuple with k kinds of vars) $\cdot(k$-tuple with m kinds of vars)
\rightarrow (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication

Algebraic Structure on Terms

- Multiplication? - substitution of tuples of terms:
- $f\left(g\left(x_{1}\right), x_{2}\right) \cdot\left\langle c, f\left(x_{2}, x_{1}\right)\right\rangle=f\left(g(c), f\left(x_{2}, x_{1}\right)\right)$
- $\left\langle g\left(x_{1}\right), f\left(x_{2}, x_{3}\right)\right\rangle \cdot\left\langle c, f\left(x_{2}, x_{1}\right), g(c)\right\rangle=\left\langle g(c), f\left(f\left(x_{2}, x_{1}\right), g(c)\right)\right\rangle$
- (n-tuple with k kinds of vars) \cdot (k-tuple with m kinds of vars)
\rightarrow (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication

Algebraic Structure on Terms

- Multiplication? - substitution of tuples of terms:
- $f\left(g\left(x_{1}\right), x_{2}\right) \cdot\left\langle c, f\left(x_{2}, x_{1}\right)\right\rangle=f\left(g(c), f\left(x_{2}, x_{1}\right)\right)$
- $\left\langle g\left(x_{1}\right), f\left(x_{2}, x_{3}\right)\right\rangle \cdot\left\langle c, f\left(x_{2}, x_{1}\right), g(c)\right\rangle=\left\langle g(c), f\left(f\left(x_{2}, x_{1}\right), g(c)\right)\right\rangle$
- (n-tuple with k kinds of vars) $\cdot(k$-tuple with m kinds of vars)
\rightarrow (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication

Algebraic Structure on Terms

- Multiplication? - substitution of tuples of terms:
- $f\left(g\left(x_{1}\right), x_{2}\right) \cdot\left\langle c, f\left(x_{2}, x_{1}\right)\right\rangle=f\left(g(c), f\left(x_{2}, x_{1}\right)\right)$
- $\left\langle g\left(x_{1}\right), f\left(x_{2}, x_{3}\right)\right\rangle \cdot\left\langle c, f\left(x_{2}, x_{1}\right), g(c)\right\rangle=\left\langle g(c), f\left(f\left(x_{2}, x_{1}\right), g(c)\right)\right\rangle$
- (n-tuple with k kinds of vars) $\cdot(k$-tuple with m kinds of vars)
\rightarrow (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication

Algebraic Structure on Terms

- Multiplication? - substitution of tuples of terms:
- $f\left(g\left(x_{1}\right), x_{2}\right) \cdot\left\langle c, f\left(x_{2}, x_{1}\right)\right\rangle=f\left(g(c), f\left(x_{2}, x_{1}\right)\right)$
- $\left\langle g\left(x_{1}\right), f\left(x_{2}, x_{3}\right)\right\rangle \cdot\left\langle c, f\left(x_{2}, x_{1}\right), g(c)\right\rangle=\left\langle g(c), f\left(f\left(x_{2}, x_{1}\right), g(c)\right)\right\rangle$
- (n-tuple with k kinds of vars) $\cdot(k$-tuple with m kinds of vars)
\rightarrow (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication = Category

Category of Terms

- Objects: natural numbers $0,1,2,3, \ldots$
- Morphisms $k \rightarrow n$: n -tuples of terms with vars in $\left\{x_{1}, \ldots, x_{\mathrm{k}}\right\}$

Composition (multiplication): $(k \rightarrow n) \cdot(m \rightarrow k):(m \rightarrow n)$
$\left\langle t_{1}, \ldots, t_{n}\right\rangle \cdot\left\langle s_{1}, \ldots, s_{k}\right\rangle=\left\langle t_{1}\left[s_{1} / x_{1}, \ldots, s_{k} / x_{k}\right], \ldots, t_{n}\left[s_{1} / x_{1}, \ldots, s_{k} / x_{k}\right]\right\rangle$

- Identity: $\left\langle x_{1}, \ldots, x_{n}\right\rangle: n \rightarrow n$

Term version of the free monoid Σ^{*}.

Lawvere Theories

- A Lawvere theory is a category whose objects are $0,1,2, \ldots$ where n equals the nth categorical power of 1
(Any morphism $n \rightarrow k$ is a n-tuple of $1 \rightarrow k$)
- $($ SRS vs Monoid $)=($ TRS vs Lawvere theory $)$
- The Lawvere theory presented by a TRS R : Any term t is identified with s iff $t \leftrightarrow_{R}^{*} s$

Homology Groups for Lawvere theories/TRSs

- [Jibladze \& Pirashvili, J. of Algebra, 1991] defined cohomology groups of Lawvere theories
- [Malbos \& Mimram, FSCD 2016] figured out how to compute the 2nd homology H_{2} when the given TRS is complete and \# of rules is bounded below by \# of generators of H_{2}.
- [Ikebuchi, FSCD 2019] better lower bound I showed today

Outline

Definitions of deg, $e(R)$ Examples

Proof Overview

More About Homology \& History
Conclusion

Conclusion

- We obtained a lower bound of the number of rewrite rules to present a TRS over a fixed signature.
- Relationship between rewriting and abstract algebra
- New algebraic tools \& more research directions of TRSs/ equational theories

