Homological Methods in Rewriting

Mirai Ikebuchi, MIT

Equational Theories, Term Rewriting Systems (TRSs)

- Set of variables $V = \{x_1, x_2, x_3, ...\}$
- Signature (set of const/func symbols) $\Sigma = \{c, f, g, +, ...\}$

• Terms:
$$f(x_1), f(c + x_1), g(x_2, f(x_1)), \dots$$

Set of rules

►
$$R = \{(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3), f(x_1 + x_2) = f(x_1) + f(x_2), ...\}$$

Equational Theory (unordered)
► $R = \{(x_1 + x_2) + x_3 \rightarrow x_1 + (x_2 + x_3), f(x_1 + x_2) \rightarrow f(x_1) + f(x_2), ...\}$
Term Rewriting System (ordered)

What This Talk is about

R : given an equational theory/TRS

Is there any smaller equational theory/TRS equivalent to R?

How many rules are needed?

- find a lower bound using algebra.
- + brief intro & history of the algebra we are going to use.

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3), x_1 \cdot e = x_1, x_1 \cdot x_1^{-1} = e,$$

$$e \cdot x_1 = x_1, x_1^{-1} \cdot x_1 = e.$$

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$

 $x_1 \cdot e = x_1,$
 $x_1 \cdot x_1^{-1} = e,$

$$e \cdot x_1 = x_1,$$
$$x_1^{-1} \cdot x_1 = e.$$

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$

 $x_1 \cdot e = x_1,$
 $x_1 \cdot x_1^{-1} = e,$

$$e \cdot x_1 = x_1,$$
$$x_1^{-1} \cdot x_1 = e.$$

enough

Presentation with 2 axioms $x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$ $x_1 \cdot x_1^{-1} = e.$

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$

 $x_1 \cdot e = x_1,$
 $x_1 \cdot x_1^{-1} = e,$

$$e \cdot x_1 = x_1,$$
$$x_1^{-1} \cdot x_1 = e.$$

- Presentation with 2 axioms $x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$ $x_1 \cdot x_1^{-1} = e.$
- Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.
 x₁/((((x₁/x₁)/x₂)/x₃)/(((x₁/x₁)/x₁)/x₃)) = x₂

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$

 $x_1 \cdot e = x_1,$
 $x_1 \cdot x_1^{-1} = e,$

$$e \cdot x_1 = x_1,$$
$$x_1^{-1} \cdot x_1 = e.$$

- Presentation with 2 axioms over the same signature $x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$ $x_1 \cdot x_1^{-1} = e.$
- Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.
 x₁/((((x₁/x₁)/x₂)/x₃)/(((x₁/x₁)/x₁)/x₃)) = x₂

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$

 $x_1 \cdot e = x_1,$
 $x_1 \cdot x_1^{-1} = e,$

$$e \cdot x_1 = x_1,$$
$$x_1^{-1} \cdot x_1 = e.$$

- Presentation with 2 axioms over the same signature $x_1 \cdot (((x_2^{-1} \cdot (x_1^{-1} \cdot x_3))^{-1} \cdot x_4) \cdot (x_2 \cdot x_4)^{-1})^{-1} = x_3,$ $x_1 \cdot x_1^{-1} = e.$
- Presentation with 1 axiom is possible if we use division "/" instead of multiplication m.
 x₁/((((x₁/x₁)/x₂)/x₃)/(((x₁/x₁)/x₁)/x₃)) = x₂

Questions

Question 1.

Is there a presentation with one axiom over signature $\{\cdot, \cdot^1, e\}$?

Answer.

No. [Tarski, Neumann, Kunen] We need at least 2 axioms.

Question 2.

What about other equational theories/TRSs?

Is there a generic way to know how many rules are needed to present a given equational theory/TRS?

A lower bound by [Malbos-Mimram, FSCD'16]

 (Σ, R) : complete (= terminating & confluent) TRS \exists a computable number $MM(\Sigma, R)$ s.t. $MM(\Sigma, R) \leq \#R'$ for any TRS (Σ', R') equivalent to (Σ, R) .

- Not many TRSs are known to have $MM(\Sigma, R) > 1$
- \Rightarrow The inequality just tells "any equivalent TRS has at least

0 or 1 rule" for most examples. 😢

"Equivalence" for TRSs with possibly different signatures

[lkebuchi, FSCD '19]

Fix Σ . R: complete TRS over Σ . If deg(R) is 0 or prime, $\exists e(R)$: (computable) nonnegative integer s.t. $\#R - e(R) \leq \#R'$ for any R' over Σ equivalent to R. $(\stackrel{*}{\leftrightarrow}_R = \stackrel{*}{\leftrightarrow}_{R'})$

For a complete TRS *R* of the theory of groups over $\{\cdot, -1, e\}$, we get

 $\deg(R) = 2$ and #R - e(R) = 2.

"Any TRS presenting the theory of groups has at least 2 rules."

Tarski's theorem is obtained **as a corollary**.

[lkebuchi, FSCD '19]

Fix Σ . R : complete TRS over Σ . If deg(R) is 0 or prime, $\exists e(R)$: (computable) nonnegative integer s.t. $MM(\Sigma, R) \leq \#R - e(R) \leq \#R'$ for any R' over Σ equivalent to R. $(\stackrel{*}{\leftrightarrow}_R = \stackrel{*}{\leftrightarrow}_{R'})$

For a complete TRS *R* of the theory of groups over $\{\cdot, -1, e\}$, we get

 $\deg(R) = 2$ and #R - e(R) = 2.

"Any TRS presenting the theory of groups has at least 2 rules."

Tarski's theorem is obtained **as a corollary**.

Outline

Definitions of deg, e(R)Examples **Proof Overview** More About Homology & History Conclusion

Outline

Definitions of deg, e(R)Examples **Proof Overview** More About Homology & History Conclusion

 $#_i t$: the number of occurrences of x_i in $t \in \text{Term}(\Sigma, \{x_1, x_2, ...\})$,

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example: $R = \{ f(x_1, x_2, x_2) \rightarrow x_1, g(x_1, x_1, x_1) \rightarrow e \}$

 $#_i t$: the number of occurrences of x_i in t ∈ Term(Σ , { $x_1, x_2, ...$ }),

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example: $R = \{ \underline{f(x_1, x_2, x_2)} \rightarrow \underline{x_1}, g(x_1, x_1, x_1) \rightarrow e \}$

 $#_i t$: the number of occurrences of x_i in t ∈ Term(Σ , { $x_1, x_2, ...$ }),

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example: $R = \{ \underline{f(x_1, x_2, x_2)} \rightarrow \underline{x_1}, g(x_1, x_1, x_1) \rightarrow e \}$

$$\#_1 f(x_1, x_2, x_2) - \#_1 x_1 = 0$$

 $#_i t$: the number of occurrences of x_i in t ∈ Term(Σ , { $x_1, x_2, ...$ }),

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example: $R = \{ f(x_1, x_2, x_2) \to x_1, g(x_1, x_1, x_1) \to e \}$

$$\#_1 f(x_1, x_2, x_2) - \#_1 x_1 = 0$$

 $#_i t$: the number of occurrences of x_i in $t \in \text{Term}(\Sigma, \{x_1, x_2, ...\})$,

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example:
$$R = \{ f(x_1, x_2, x_2) \to x_1, g(x_1, x_1, x_1) \to e \}$$

$$\#_1 f(x_1, x_2, x_2) - \#_1 x_1 = 0 \qquad \#_2 f(x_1, x_2, x_2) - \#_2 x_1 = 2$$

 $#_i t$: the number of occurrences of x_i in t ∈ Term(Σ , { $x_1, x_2, ...$ }),

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example: $R = \{ f(x_1, x_2, x_2) \to x_1, g(x_1, x_1, x_1) \to e \}$

$$\#_1 f(x_1, x_2, x_2) - \#_1 x_1 = 0 \qquad \#_2 f(x_1, x_2, x_2) - \#_2 x_1 = 2$$

 $#_i t$: the number of occurrences of x_i in t ∈ Term(Σ , { $x_1, x_2, ...$ }),

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example: $R = \{ f(x_1, x_2, x_2) \rightarrow x_1, g(x_1, x_1, x_1) \rightarrow e \}$

$$\#_1 f(x_1, x_2, x_2) - \#_1 x_1 = 0 \qquad \#_2 f(x_1, x_2, x_2) - \#_2 x_1 = 2$$
$$\#_1 g(x_1, x_1, x_1) - \#_1 e = 3$$

 $#_i t$: the number of occurrences of x_i in t ∈ Term(Σ , { $x_1, x_2, ...$ }),

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example: $R = \{ f(x_1, x_2, x_2) \rightarrow x_1, g(x_1, x_1, x_1) \rightarrow e \}$

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0 \qquad #_2 f(x_1, x_2, x_2) - #_2 x_1 = 2$$
$$#_1 g(x_1, x_1, x_1) - #_1 e = 3$$
$$\therefore \deg(R) = \gcd\{0, 2, 3\} = 1$$

 $#_i t$: the number of occurrences of x_i in t ∈ Term(Σ , { $x_1, x_2, ...$ }),

$$\deg(R) = \gcd\{\#_i l - \#_i r \mid l \to r \in R, i = 1, 2, ...\}$$

Example:
$$R = \{ f(x_1, x_2, x_2) \to x_1, g(x_1, x_1, x_1) \to e \}$$

$$#_1 f(x_1, x_2, x_2) - #_1 x_1 = 0 \qquad #_2 f(x_1, x_2, x_2) - #_2 x_1 = 2$$
$$#_1 g(x_1, x_1, x_1) - #_1 e = 3$$
$$\therefore \deg(R) = \gcd\{0, 2, 3\} = 1$$

 $\deg(R) = 0 \quad \text{iff} \quad \rightarrow_R \text{ preserves the multiset of variables}$ E.g. $R = \{f(f(x_1, x_2), x_3) \rightarrow f(x_1, f(x_2, x_3)), g(f(x_1, x_1)) \rightarrow f(g(x_1), g(x_1))\}$

Fix a rewriting strategy.

 $D(R): n \times m$ matrix, (i, j)-th entry $D(R)_{ij}$ is the difference between the numbers of $l_i \rightarrow r_i$ used in two normalizing paths

$$D(R) = \begin{array}{cccc} C_{1} & C_{2} & C_{3} & C_{4} \\ A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \end{array} \right)$$

Example: $\deg(R) = 0$ $R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2). \end{cases}$ C_4 C_3 $\begin{array}{c|c} \hline C_1 \\ \hline & & \\ \hline -(-f(x_1)) \\ \hline & C_2 \\ \hline & & \\ \hline & A_2 \\ -(f(-x_1)) \\ \hline & A_2 \\ \hline & A_1 \\ \hline \hline & A_1 \\ \hline & A_1 \\ \hline & A_1 \\ \hline &$

$$D(R) = \begin{array}{cccc} C_{1} & C_{2} & C_{3} & C_{4} \\ A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \end{array} \right)$$

Example: $\deg(R) = 0$ $R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2). \end{cases}$ C_4 C_3 $\begin{array}{c|c} \hline C_1 \\ \hline & & \\ \hline -(-f(x_1)) \\ \hline & C_2 \\ \hline & & \\ \hline & A_2 \\ -(f(-x_1)) \\ \hline & A_2 \\ \hline & A_1 \\ \hline \hline & A_1 \\ \hline & A_1 \\ \hline & A_1 \\ \hline &$

$$D(R) = \begin{array}{cccc} C_{1} & C_{2} & C_{3} & C_{4} \\ A_{1} & 0 & & \\ A_{2} & & \\ A_{3} & & \\ A_{4} & & & \\ \end{array}$$

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & 0 \\ A_3 & A_4 & & \\ A_4 & & & \\ \end{array}$$

Example: $\deg(R) = 0$ $R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2). \end{cases}$ C_4 C_3 $\begin{array}{c|c} \hline C_1 \\ \hline & & \\ -(-f(x_1)) \\ \hline (A_2) \\ -(f(-x_1)) \\ \hline (A_2) \\ f(-(-x_1)) \\ f(x_1) \\ \hline (A_1) \hline \hline (A_1) \\ \hline (A_1) \\ \hline (A_1) \hline \hline (A_1) \\ \hline (A_1) \hline \hline (A_1) \\ \hline (A_1) \hline \hline ($

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & 0 & & \\ A_3 & A_4 & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

Example: $\deg(R) = 0$ $R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2). \end{cases}$ C_4 C_3 $\begin{array}{c|c} \hline C_1 \\ \hline & & \\ -(-f(x_1)) \\ \hline (A_2) \\ -(f(-x_1)) \\ \hline (A_2) \\ f(-(-x_1)) \\ f(x_1) \\ \hline (A_1) \hline \hline (A_1) \\ \hline (A_1) \\ \hline (A_1) \hline \hline (A_1) \\ \hline (A_1) \hline \hline (A_1) \\ \hline (A_1) \hline \hline ($

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & 2 & & \\ A_3 & A_4 & & \\ & & & & \\ \end{array}$$

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & 0 & & \\ A_2 & 2 & & \\ A_3 & A_4 & & \\ & & & & \\ \end{array}$$

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & \begin{pmatrix} 0 & & & \\ 2 & & & \\ A_3 & & \\ A_4 & 0 & & \\ \end{array} \right)$$

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ A_3 & & \\ A_4 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

Definition of *e*(*R*)

Let $d = \deg(R)$

Consider D(R) as a matrix over $\mathbb{Z}/d\mathbb{Z}$

•
$$\simeq \mathbb{Z}$$
 if $d = 0$
• $\simeq \mathbb{F}_d$ (finite field) if d is prime

If *d* is prime: $e(R) = \operatorname{rank}(D(R))$

If d = 0: compute the "Smith normal form" of D(R)by elementary row/column operations e(R) = (the number of ±1s in the Smith n.f.)

Definition of *e*(*R*)

Let $d = \deg(R)$

Consider D(R) as a matrix over $\mathbb{Z}/d\mathbb{Z}$

$$\simeq \mathbb{Z} \text{ if } d = 0$$

 $\succ \simeq \mathbb{F}_d$ (finite field) if *d* is prime

If *d* is prime: $e(R) = \operatorname{rank}(D(R))$

If d = 0: compute the "Smith normal form" of D(R)by elementary row/column operations e(R) = (the number of ±1s in the Smith n.f.)

If *d* is prime: $e(R) = \operatorname{rank}(D(R))$

If d = 0: compute the "Smith normal form" of D(R)by elementary row/column operations e(R) = (the number of ±1s in the Smith n.f.) Outline

Definitions of deg, e(R)Examples **Proof Overview** More About Homology & History Conclusion

Example: $\deg(R) = 0$ $R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2). \end{cases}$ C_4 C_3

$$D(R) = \begin{array}{cccc} C_1 & C_2 & C_3 & C_4 \\ A_1 & \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ A_3 & & & \\ A_4 & & & & & \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

Example: $\deg(R) = 0$ $R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2). \end{cases}$ C_3 | C_4 $\begin{array}{c|c} \hline C_1 \\ \hline & -(-f(x_1)) \\ \hline & C_2 \\ \hline & & A_3 \\ \hline & A_4 \\ \hline & A_2 \\ \hline & A_1 \\ \hline \hline & A_1 \\ \hline & A_1 \\ \hline & A_1 \\ \hline & A_1 \\ \hline & A_1$ C_1 $x_1 + x_2$ $x_1 \cdot x_2$ C_1 C_2 C_3 C_4

Example: $\deg(R) = 0$ $R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2). \end{cases}$ C_4 C_3 C_1 C_2 C_3 C_4

Example: (cont.)

$$R = \begin{cases} A_1 \cdot -(-x_1) \to x_1, & A_2 \cdot -f(x_1) \to f(-x_1), \\ A_3 \cdot -(x_1 + x_2) \to (-x_1) \cdot (-x_2), & A_4 \cdot -(x_1 \cdot x_2) \to (-x_1) + (-x_2) \cdot \end{cases}$$

By Main Theorem: $\#R - e(R) = 4 - 1 = 3 \le \#R'$ for any equivalent TRS R' \Rightarrow There is no equivalent TRS with 2 rules

An equivalent TRS with 3 rules: $\{A_1, A_2, A_3\}$

Example (the theory of groups)

Complete TRS

$$\begin{array}{ll} (x_{1} \cdot x_{2}) \cdot x_{3} \to x_{1} \cdot (x_{2} \cdot x_{3}) & e \cdot x_{1} \to x_{1} \\ x_{1} \cdot e \to x_{1} & x_{1} \cdot x_{1}^{-1} \to e \\ x_{1}^{-1} \cdot x_{1} \to e & x_{1}^{-1} \cdot (x_{1} \cdot x_{2}) \to x_{2} \\ e^{-1} \to e & (x^{-1})^{-1} \to x_{1} \\ x_{1} \cdot (x_{1}^{-1} \cdot x_{2}) \to x_{2} & (x_{1} \cdot x_{2})^{-1} \to x_{1}^{-1} \cdot x_{2}^{-1} \end{array}$$

with 48 critical pairs

My program (<u>https://github.com/mir-ikbch/homtrs</u>)
 computes MM(Σ, R), deg(R), D(R), e(R)

•
$$e(R) = 8$$
 (: $\#R - e(R) = 2$), $MM(\Sigma, R) = 0$

Example (average and successors)

 $\begin{array}{cccc} A_{1}.\mathsf{ave}(0,0) \to 0, & A_{2}.\mathsf{ave}(x_{1},\mathsf{s}(x_{2})) \to \mathsf{ave}(\mathsf{s}(x_{1}),x_{2}), & A_{3}.\mathsf{ave}(\mathsf{s}(0),0) \to 0, \\ A_{4}.\mathsf{ave}(\mathsf{s}(\mathsf{s}(0)),0) \to \mathsf{s}(0), & A_{5}.\mathsf{ave}(\mathsf{s}(\mathsf{s}(s(x_{1}))),x_{2}) \to \mathsf{s}(\mathsf{ave}(\mathsf{s}(x_{1}),x_{2})). \\ & \mathsf{ave}(\mathsf{s}(\mathsf{s}(\mathsf{s}(x_{1})))),\mathsf{s}(x_{2})) \\ & \mathsf{ave}(\mathsf{s}(\mathsf{s}(\mathsf{s}(x_{1})))),x_{2}) & \mathsf{s}(\mathsf{ave}(\mathsf{s}(x_{1}),\mathsf{s}(x_{2}))) \\ & \mathsf{ave}(\mathsf{s}(\mathsf{s}(\mathsf{s}(x_{1})))),x_{2}) & \mathsf{s}(\mathsf{ave}(\mathsf{s}(x_{1}),\mathsf{s}(x_{2}))) \\ & \mathsf{ave}(\mathsf{s}(\mathsf{s}(\mathsf{s}(x_{1}))),x_{2})) \end{array}$

▶ D(R) is the 5×1 zero matrix. $\Rightarrow e(R) = 0$. $\therefore \#R - e(R) = \#R = 5$

Generally: Given a TRS, if any critical pair is of "this type", then the TRS does not have any smaller equivalent TRSs.

Example (average and successors)

 $\begin{array}{ll} A_1.\mathsf{ave}(0,0) \to \mathsf{0}, & A_2.\mathsf{ave}(x_1,\mathsf{s}(x_2)) \to \mathsf{ave}(\mathsf{s}(x_1),x_2), & A_3.\mathsf{ave}(\mathsf{s}(0),0) \to \mathsf{0}, \\ A_4.\mathsf{ave}(\mathsf{s}(\mathsf{s}(0)),\mathsf{0}) \to s(\mathsf{0}), & A_5.\mathsf{ave}(\mathsf{s}(\mathsf{s}(\mathsf{s}(x_1))),x_2) \to \mathsf{s}(\mathsf{ave}(\mathsf{s}(x_1),x_2)). \end{array}$

► D(R) is the 5×1 zero matrix. $\Rightarrow e(R) = 0$. $\therefore \#R - e(R) = \#R = 5$

Generally: Given a TRS, if any critical pair is of "this type", then the TRS does not have any smaller equivalent TRSs. Outline

Definitions of deg, e(R)Examples **Proof Overview** More About Homology & History Conclusion

Assumption & Notation

• Assume $d = \deg(R)$ is prime for simplicity

▶
$$\mathbb{Z}/d\mathbb{Z} = \{0, 1, ..., d - 1\}$$
 forms a field

 $\mathbb{Z}/d\mathbb{Z}^n = \mathbb{Z}/d\mathbb{Z} \times ... \times \mathbb{Z}/d\mathbb{Z} : n\text{-dim. vector space}$

► (For d = 0, Z/dZ ~ Z does not form a field, so the proof is more complicated.)

Main tools: linear algebra & Malbos-Mimram's results

They introduced two linear maps

 $\tilde{\partial}_1 \colon \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$ $\tilde{\partial}_2 \colon \mathbb{Z}/d\mathbb{Z}^{\#\operatorname{CP}(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$

 $MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \le \# R$

 $MM(\Sigma, R) = MM(\Sigma', R') \text{ if } (\Sigma, R) \& (\Sigma', R') \text{ are equivalent.}$ (shown via homological algebra. $\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2 \text{ is called the "second homology")}$

 $\therefore MM(\Sigma, R) \le \#R'$ for any R' equivalent to R

They introduced two linear maps

 $\tilde{\partial}_1 \colon \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$ $\tilde{\partial}_2 \colon \mathbb{Z}/d\mathbb{Z}^{\#CP(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$

 $MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \mathrm{im} \tilde{\partial}_2) \le \# R$

 $MM(\Sigma, R) = MM(\Sigma', R') \text{ if } (\Sigma, R) \& (\Sigma', R') \text{ are equivalent.}$ (shown via homological algebra. $\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2 \text{ is called the "second homology")}$

 $\therefore MM(\Sigma, R) \le \#R'$ for any R' equivalent to R

They introduced two linear maps

$$\begin{split} \tilde{\partial}_1 &: \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma}, \\ \tilde{\partial}_2 &: \mathbb{Z}/d\mathbb{Z}^{\#\operatorname{CP}(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R} \end{split}$$

 $MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \le \# R$

 $MM(\Sigma, R) = MM(\Sigma', R') \text{ if } (\Sigma, R) \& (\Sigma', R') \text{ are equivalent.}$ (shown via homological algebra. $\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2 \text{ is called the "second homology")}$

 $\therefore MM(\Sigma, R) \le \#R'$ for any R' equivalent to R

If R is complete, the matrix representation is D(R)

They introduced two linear maps

 $\tilde{\partial}_1 \colon \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$ $\tilde{\partial}_2 \colon \mathbb{Z}/d\mathbb{Z}^{\#CP(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$

 $MM(\Sigma, R) := \dim(\ker \tilde{\partial}_1 / \mathrm{im} \tilde{\partial}_2) \le \# R$

If *R* is complete, the matrix representation is *D*(*R*)

$$\ker \tilde{\partial}_1 = \{x \mid \tilde{\partial}_1(x) = 0\}$$

$$\operatorname{im} \tilde{\partial}_2 = \{\tilde{\partial}_2(x) \mid x \in \mathbb{Z}/d\mathbb{Z}^{\#\operatorname{CP}(R)}\}$$

subspaces of $\mathbb{Z}/d\mathbb{Z}^{\#R}$

 $MM(\Sigma, R) = MM(\Sigma', R') \text{ if } (\Sigma, R) \& (\Sigma', R') \text{ are equivalent.}$ (shown via homological algebra. $\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2 \text{ is called the "second homology")}$

 $\therefore MM(\Sigma, R) \le \#R'$ for any R' equivalent to R

They introduced two linear maps

 $\tilde{\partial}_1: \mathbb{Z}/d\mathbb{Z}^{\#R} \to \mathbb{Z}/d\mathbb{Z}^{\#\Sigma},$ $\tilde{\partial}_2: \mathbb{Z}/d\mathbb{Z}^{\#CP(R)} \to \mathbb{Z}/d\mathbb{Z}^{\#R}$

 $MM(\Sigma, R) := \dim(\ker \partial_1 / \operatorname{im} \partial_2) \le \#R$

If *R* is complete, the matrix representation is *D*(*R*)

$$\ker \tilde{\partial}_1 = \{x \mid \tilde{\partial}_1(x) = 0\}$$

$$\operatorname{im} \tilde{\partial}_2 = \{\tilde{\partial}_2(x) \mid x \in \mathbb{Z}/d\mathbb{Z}^{\#\operatorname{CP}(R)}\}$$

subspaces of $\mathbb{Z}/d\mathbb{Z}^{\#R}$

 $\therefore \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) \leq \dim(\ker \tilde{\partial}_1) \leq \dim(\mathbb{Z}/d\mathbb{Z}^{\#R}) = \#R$ $MM(\Sigma, R) = MM(\Sigma', R') \text{ if } (\Sigma, R) \& (\Sigma', R') \text{ are equivalent.}$ (shown via homological algebra. $\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2 \text{ is called the "second homology"})$

 $\therefore MM(\Sigma, R) \le \#R'$ for any *R'* equivalent to *R*

Proof Overview

- ▶ #R e(R) equals the dimension of $V := (\mathbb{Z}/d\mathbb{Z}^{\#R})/\mathrm{im}\tilde{\partial}_2$ $\left(\therefore \dim((\mathbb{Z}/d\mathbb{Z}^{\#R})/\mathrm{im}\tilde{\partial}_2) = \dim(\mathbb{Z}/d\mathbb{Z}^{\#R}) - \dim(\mathrm{im}\tilde{\partial}_2) = \#R - \mathrm{rank}(D(R)) = \#R - e(R) \right)$
- By more theorems from linear algebra,

 $\dim(V) = \dim(\ker \tilde{\partial}_1 / \operatorname{im} \tilde{\partial}_2) + \dim(\operatorname{im} \tilde{\partial}_1) \le \#R$

Any equivalent R, R' give the same dim $(im\tilde{\partial}_1)$ and the same dim $(\ker \tilde{\partial}_1 / im\tilde{\partial}_2) = MM(\Sigma, R)$ $\#R - e(R) = \dim(V) = \dim(\ker \tilde{\partial}_1 / im\tilde{\partial}_2) + \dim(im\tilde{\partial}_1)$: invariant $\therefore \#R - e(R) \le \#R'$

Main Theorem

Fix Σ . R : complete TRS over Σ . If $\underline{deg(R)}$ is 0 or prime, $\exists e(R)$: (computable) nonnegative integer s.t. $\#R - e(R) \leq \#R'$ for any R' over Σ equivalent to R.

What if d = deg(R) is not either 0 or prime?

- ▶ $\mathbb{Z}/d\mathbb{Z}$ has zero divisors.
 - e.g., for d = 4, $2 \times 2 = 4 \equiv 0 \mod 4$.
- \Rightarrow Many useful theorems don't work.
 - e.g., "Smith normal form" is no longer well defined.

Outline

Definitions of deg, e(R)Examples **Proof Overview** More About Homology & History Conclusion

String Rewriting Systems

- String Rewriting Systems (SRSs)
 - Alphabet Σ
 - Rules $R = \{ s_1 \rightarrow t_1, s_2 \rightarrow t_2, \dots \} s_i, t_i \in \Sigma^* \text{ (strings over } \Sigma \text{)} \}$

Example

$$\Sigma = \{a, b\}, R = \{ ba \to ab, abb \to \varepsilon \}$$

 $abab \rightarrow aabb \rightarrow a$

How SRSs relate to algebra? — Monoids Presentation

Any SRS (Σ, R) presents a monoid $M = \Sigma^* / \leftrightarrow_R^*$ (multiplication: string concatenation)

Example:

$$\Sigma = \{a\}, R = \{aa \to \varepsilon\} \Rightarrow \Sigma^* = \{a^n\},$$
$$M = \{[\varepsilon], [a]\}, [aa] = [\varepsilon]$$
$$\Sigma = \{a, b\}, R = \{ba \to ab\} \Rightarrow \Sigma^* = \{\varepsilon, a, b, aa, ab, ba, \dots\},$$
$$M = \{[a^n b^m]\}, [ba] = [ab], [bba] = [abb], \dots$$

Monoids vs SRSs

- Equivalent SRSs present isomorphic monoids
- Any monoid can be presented by an SRS (possibly with an infinite alphabet & rules)

Homology Groups in General

- There are many types of homology groups
 - Homology groups of a topological space
 - Homology groups of a group

•••

- Homology groups of a general algebraic system (Quillen)
- Corresponds an "object" to a sequence of abelian groups that extracts some information from the object

 H_0, H_1, H_2, \dots

Homology groups

Homology groups of a group (= group homology)

- Group presentation $-\Sigma$: alphabet, R: set of strings on $\Sigma \cup \Sigma^{-1}$ ($\Sigma^{-1} = \{a^{-1} \mid a \in \Sigma\}, a^{-1}$ is the formal inverse of a)
- Monoid presented by alphabet $\Sigma \cup \Sigma^{-1}$ and rules $\{w \to \varepsilon \mid w \in R \cup \{xx^{-1}, x^{-1}x \mid x \in \Sigma\}\}$ forms a group
- Any group can be presented in this way.
- [Epstein, Q. J. Math., 1961] If G is presented by finite Σ , R,

 $#R - #\Sigma \ge s(H_2(G)) - \operatorname{rank} H_1(G)$

2nd & 1st homology groups of G

We can construct homology groups for monoids/SRSs

but no application to rewriting known until 1987

[Squier, J. Pure Appl. Algebra, 1987]

- Solved an open problem at the time: "Does there exist a monoid with a solvable word problem that cannot be presented by any finite complete SRS?" - Yes
 - Word problem is solvable = equality is decidable
 - If a finite complete SRS presents a monoid, the word problem of the monoid is solvable
- Squier discovered that if the 3rd homology group constructed from a complete SRS is not finitely generated, then the SRS is infinite. (His main theorem is even stronger)

Invariants homologiques [modifier | modifier | code]

Dans le cas de la réécriture de mots, un système de réécriture définit une *présentation par* : *quotient* $\Sigma^*/\leftrightarrow^*$, où Σ^* est le *monoide libre* engendré par l'alphabet Σ et \leftrightarrow^* est la *congruenc* clôture réflexive, symétrique et transitive de \rightarrow . Exemple : $Z = \Sigma^*/\leftrightarrow^*$ où $\Sigma = \{a, b\}$ avec les générateur).

 ${f igsidents}$

•••

Comme un monoïde **M** a beaucoup de présentations, on s'intéresse aux *invariants*, c'est-àdépendent pas du choix de la présentation. Exemple : la *décidabilité* du problème du mot po

Un monoïde *finiment présentable* **M** peut avoir un problème du mot décidable, mais aucune En effet, s'il existe un tel système, le *groupe d'homologie* $H_3(M)$ est de type fini. Or on peut problème du mot est décidable et tel que le groupe $H_3(M)$ n'est pas de type fini.

En fait, ce groupe est engendré par les *paires critiques*, et plus généralement, un système c monoïde en toute dimension. Il y a aussi des *invariants homotopiques* : s'il existe un systèm celui-ci a un *type de dérivation fini*. Il s'agit à nouveau d'une propriété qui se définit à partir (de cette présentation. Cette propriété implique que le groupe $H_3(M)$ est de type fini, mais la

Monoids vs SRSs

Any monoid can be presented by an SRS (possibly with an infinite alphabet & rules)

Monoids vs SRSs

Any monoid can be presented by an SRS (possibly with an infinite alphabet & rules)

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with *k* kinds of vars) · (*k*-tuple with *m* kinds of vars)
 → (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

Multiplication? – substitution of tuples of terms:

$$f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$$

- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with *k* kinds of vars) · (*k*-tuple with *m* kinds of vars)
 → (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

- Multiplication? substitution of tuples of terms:
- $f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$
- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with *k* kinds of vars) · (*k*-tuple with *m* kinds of vars)
 → (*n*-tuple with *m* kinds of vars)
- Monoids with typed (sorted) multiplication

Multiplication? – substitution of tuples of terms:

$$f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$$

 $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$

- (*n*-tuple with k kinds of vars) · (k-tuple with m kinds of vars)
 → (n-tuple with m kinds of vars)
- Monoids with typed (sorted) multiplication

Multiplication? – substitution of tuples of terms:

$$f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$$

- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (n-tuple with k kinds of vars) · (k-tuple with m kinds of vars)

→ (*n*-tuple with *m* kinds of vars)

Monoids with typed (sorted) multiplication

Multiplication? – substitution of tuples of terms:

$$f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$$

 $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$

(n-tuple with k kinds of vars) · (k-tuple with m kinds of vars)

→ (*n*-tuple with *m* kinds of vars)

Monoids with typed (sorted) multiplication

Multiplication? – substitution of tuples of terms:

$$f(g(x_1), x_2) \cdot \langle c, f(x_2, x_1) \rangle = f(g(c), f(x_2, x_1))$$

- $\langle g(x_1), f(x_2, x_3) \rangle \cdot \langle c, f(x_2, x_1), g(c) \rangle = \langle g(c), f(f(x_2, x_1), g(c)) \rangle$
- (*n*-tuple with k kinds of vars) · (k-tuple with m kinds of vars)

→ (*n*-tuple with *m* kinds of vars)

Monoids with typed (sorted) multiplication = Category

Category of Terms

- Objects: natural numbers 0, 1, 2, 3, …
- Morphisms $k \rightarrow n$: n-tuples of terms with vars in $\{x_1, ..., x_k\}$
- Composition (multiplication): $(k \to n) \cdot (m \to k) : (m \to n)$ $\langle t_1, \dots, t_n \rangle \cdot \langle s_1, \dots, s_k \rangle = \langle t_1[s_1/x_1, \dots, s_k/x_k], \dots, t_n[s_1/x_1, \dots, s_k/x_k] \rangle$
- Identity: $\langle x_1, ..., x_n \rangle : n \to n$

Term version of the free monoid Σ^* .

Lawvere Theories

A Lawvere theory is a category whose objects are 0,1,2, ... where *n* equals the *n*th categorical power of 1

(Any morphism $n \rightarrow k$ is a n-tuple of $1 \rightarrow k$)

- (SRS vs Monoid) = (TRS vs Lawvere theory)
- The Lawvere theory presented by a TRS R: Any term t is identified with s iff $t \leftrightarrow_R^* s$

Homology Groups for Lawvere theories/TRSs

- [Jibladze & Pirashvili, J. of Algebra, 1991] defined cohomology groups of Lawvere theories
- [Malbos & Mimram, FSCD 2016] figured out how to compute the 2nd homology H₂ when the given TRS is complete and # of rules is bounded below by # of generators of H₂.
- [Ikebuchi, FSCD 2019] better lower bound I showed today

Outline

Definitions of deg, e(R)Examples **Proof Overview** More About Homology & History Conclusion

Conclusion

- We obtained a lower bound of the number of rewrite rules to present a TRS over a fixed signature.
- Relationship between rewriting and abstract algebra
- New algebraic tools & more research directions of TRSs/ equational theories