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results & questions

3-indecomposable planar terms are counted by A000260, which also counts
B-normal 2-indecomposable (= unitless) planar terms. Indeed, 3-indecomposable
planar terms admit a direct inductive characterization...
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isomorphic to a similar characterization of B-normal unitless planar terms.

Conjecture: B-normal 3-indecomposable planar terms are counted by A000257!

What about non-planar 3-indecomposable terms?
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A000257

013627 THE ON-LINE ENCYCLOPEDIA
2'3?5%8 OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane

Search = Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A000257 Number of rooted bicubic maps: a(n) = (8n-4)*a(n-1)/(n+2).
(Formerly M2927 N1175)
1, 1, 3, 12, 56, 288, 1584, 9152, 54912, 339456, 2149888, 13891584, 91287552, 608583680,
4107939840, 28030648320, 193100021760, 1341536993280, 9390758952960, 66182491668480,
469294031831040, 3346270487838720, 23981605162844160, 172667557172477952 (list; graph; refs; listen;
history; text; internal format)

OFFSET 0,3
COMMENTS Number of rooted Eulerian planar maps with n edges. - Valery A. Liskovets, Apr 07
2002

Number of indecomposable 1342-avoiding permutations of length n

Also counts rooted planar 2-constellations with n digons. - Valery A. Liskovets,
Dec 01 2003

a(n) is also the number of rooted planar hypermaps with n darts (darts are semi-
edges in the particular case of ordinary maps). - Valery A. Liskovets, Apr 13
2006

Number of "new" intervals in Tamari lattices of size n (see Chapoton paper). -
Ralf Stephan, May 08 2007

21
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A000257

013627 THE ON-LINE ENCYCLOPEDIA
2‘3(?5%2 OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane
Guan-Ru!

(Greetings from The On-Line Encyclopedia of Integer Sequen

TN
A000257 Number of rooted bicubiWn) = (8n-4)*a(n-1)/(p4
(Formerly M2927 N1175)
1, 1, 3, 12, 56, 288, 1584, 9152, 54912, 339456, 2149888, 13891584,01287552, 608583680,
4107939840, 28030648320, 193100021760, 1341536993280, 9390758952060, 66182491668480,
469294031831040, 3346270487838720, 23981605162844160, 172667557172477952 (list; graph; refs; listen;

history; text; internal format)

2). 21

OFFSET 0,3
COMMENTS Number of rooted Eulerian plan th n edges. - Valery A. Liskovets, Apr 07
2002

Number of indecomposable 1342-avoiding permutations of length n.
Also counts rooted planar 2-constellations with n digons. - Valery A. Liskovets,
Dec 01 2003

a(n) is also the number of rooted planar hypermaps with n darts (darts are semi-
edges in the particular case of ordinary maps). - Valery A. Liskovets, Apr 13
2006

Number of "new" intervals in Tamari lattices of size n (see Chapoton paper). -
Ralf Stephan, May 08 2007
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Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

Ta=VIAVT|TT



Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

Ta=VIAVT|TT

Example.

Aa. (Ab.a(?\c.(c(?\d.b) b)) (a(7\e. (7\f.7\g.e) (7\h.((7\i.eh)e) (Aj.?\k.kj))))



Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

Ta=VIAVT|TT

Example.
Aa. (Ab.a(?\c.(c(?\d.b) b)) (a(7\e. (7\f.7\g.e) (Ah.((?\i.eh)e) (Aj.?\k.kj))))

The above term is closed. It means that every variable is bound by

some lambda.

A (Ao(A.(o(A.0)0)) (o(A.(AA.0) (A.((N.00)o) (AN.00))))



Lambda terms

Let V be a countable set of variables. Lambda terms are defined by

the following grammar:

Tu=VINVT|TT

Example.
Aa. (7\b.a(7\c.(c(7\d.b) b)) (a(7\e. (7\f.7\g.e) (Ah.((?\i.eh)e) (Aj.?\k.kj))))

The above term is closed. It means that every variable is bound by

some lambda.
A (Ao(A.(o(A.0)0)) (o(A.(AA.0) (A.((N.00)o) (AN.00))))

We will be interested in closed terms only.



Lambda terms as trees
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Planar lambda terms

A lambda term is linear iff each variable has exactly one occurrence
(.e.,, there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).



Planar lambda terms

A lambda term is linear iff each variable has exactly one occurrence
(.e.,, there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).
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and unary nodes.

Now, in the right-to-left order on leaves, we add a pointer to each
leaf linking it with the closest unary node above that has not been
chosen yet. The resulting structure has a planar representation on
the plane.
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Planar lambda terms

A lambda term is linear iff each variable has exactly one occurrence
(.e.,, there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).

Let us consider unary-binary trees with the same number of leaves
and unary nodes.

Now, in the right-to-left order on leaves, we add a pointer to each
leaf linking it with the closest unary node above that has not been
chosen yet. The resulting structure has a planar representation on
the plane.

Linear terms that are obtained this way are called planar.

Due to planarity, we no longer need to bother about the pointers, as
every unary-binary tree corresponds to at most one planar term.
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Example of a planar lambda term

?\xy.x(?\z. (zy) ()\w.w))




Example of a planar lambda term

?\xy.x(?\z.(zy)(?\w.w))

size =3



[3-normal 3-indecomposable planar lambda terms

A lambda term is 3-normal iff it does not contain any subterm of
the form Ax.M. Equivalently, the corresponding tree does not have a
left child that is unary.



[3-normal 3-indecomposable planar lambda terms

A lambda term is 3-normal iff it does not contain any subterm of
the form Ax.M. Equivalently, the corresponding tree does not have a
left child that is unary.

In the obtained structure, let us remove every vertex that
corresponds to some leaf by contracting its two incident edges.

If the resulting map is internally 3-connected, i.e., removing any two
edges but the two incident to the root does not make the map
disconnected, then we say that the original planar term is
3-indecomposable.
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[3-normal 3-indecomposable planar lambda terms




Term violating 3-indecomposability
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Term violating 3-indecomposability



Properties

o Every term of size at least 3 has at least three head lambdas.

@ The leftmost maximal binary subtree is just a single leaf.

1

>3
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@ In every non-trivial maximal unary-binary subtree starting
with a unary node the right subtree rooted at the highest
binary node has more leaves than the number of its unary
nodes increased by the number of head unary nodes.
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Properties

@ In every non-trivial maximal unary-binary subtree starting
with a unary node the right subtree rooted at the highest
binary node has more leaves than the number of its unary
nodes increased by the number of head unary nodes.

# ‘right’ # ‘right’
unary nodes leaves

3 6




Sending gifts and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

e Skipping all head unary
nodes.

o Sending gifts (as depicted).
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we perform two operations on
the unary-binary trees of our in-
terest.

o Skipping all head unary
nodes.

o Sending gifts (as depicted).



Decomposition of trees after pre-processing
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A [3(0, 1)-tree is a rooted plane tree whose nodes are labeled with
non-negative integers in the following way:
@ leaves have label 0;
o the label of the root is one more than the sum of its children’s
labels;
o the label of any other node exceeds the sum of its children’s
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Bicubic maps are in bijection with (3(0, 1)-trees.



Bicubic maps and 3(0, 1)-trees

A planar rooted map is bicubic iff it is bipartite and cubic.

A [3(0, 1)-tree is a rooted plane tree whose nodes are labeled with
non-negative integers in the following way:

@ leaves have label 0;

o the label of the root is one more than the sum of its children’s
labels;

o the label of any other node exceeds the sum of its children’s
labels by at most one.

Theorem (Claesson, Kitaev, and de Mier)

Bicubic maps are in bijection with (3(0, 1)-trees.

So let’s play with 3(0, 1)-trees!



Examples of 3(0, 1)-trees

1 2 3
0 1 0 1 1
0 0 0 040, 0
3 4
2 3

1 0 1 1




(3(0,1)-bricks

By a (3(0,1)-brick (or brick for brevity) we mean a 3(0, 1)-tree with
no binary nodes and with its root removed.
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(3(0,1)-bricks

By a (3(0,1)-brick (or brick for brevity) we mean a 3(0, 1)-tree with
no binary nodes and with its root removed.

*0 ]0 ]1 01 0 1 2 0101201012012 3
0 0 00 1 1 1 o011 1001112222
00 0 0O o0o0O0OOT1TT1T1111111

Bricks are enumerated by Catalan numbers.



Labelling binary trees

We label internal nodes in a binary tree by assigning to each of
them the number of right-leaning edges on the path from the the
root to the node being labelled.
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Labelling binary trees

We label internal nodes in a binary tree by assigning to each of
them the number of right-leaning edges on the path from the the
root to the node being labelled.

lab —

A B lab(A) ab(B)+

We use the notions ‘binary tree’ and ‘labelled binary tree’ interchangeably.



Labelling binary trees



Bricks to trees

the highest 0

>0

tree 0 -

s
V
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tree(A) tree(B)—1



Bricks to trees
o 1




Trees to bricks

brick(B)

brick — En
A

brick(A)




Trees to bricks



The ultimate goal

@ [3(0, 1)-trees — (several adjectives) lambda terms

How to decompose 3(0, 1)-trees into bricks and how to
combine the corresponding binary trees together in order to
obtain lambda terms?
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The ultimate goal

@ [3(0, 1)-trees — (several adjectives) lambda terms

How to decompose 3(0, 1)-trees into bricks and how to
combine the corresponding binary trees together in order to
obtain lambda terms?

o (several adjectives) lambda terms — [3(0, 1)-trees
How to encode bricks corresponding to the binary trees from

the decomposition of lambda terms and how to glue them
together in order to obtain (3(0, 1)-trees?

In the case of our candidate for a bijection...

...the number of maximal binary trees in the decomposition of
lambda trees corresponds to the number of leaves in 3(0, 1)-trees.



Translation: trivial cases

A\T.X

— o ——» empty B(0,1)-tree



Translation: trivial cases

A\T.X

—+  « — = empty 5(0,1)-tree

ATy.xY

ZLHAH !



Translation: 3(0, 1)-trees with one leaf

n+1
n n
B(0,1)-tree brick binary tree lambda term

with 1 leaf with 1 part



Example: 3(0, 1)-trees with one leaf
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Example: 3(0, 1)-trees with one leaf

2
1 1 0
0 0 0
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Translation: (3(0, 1)-trees with no jumps
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Translation: (3(0, 1)-trees with no jumps
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Translation: (3(0, 1)-trees with no jumps
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Translation: (3(0, 1)-trees with no jumps
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Translation: (3(0, 1)-trees with no jumps
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Translation: (3(0, 1)-trees with no jumps
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Translation: (3(0, 1)-trees with no jumps
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Translation: (3(0, 1)-trees with no jumps

_|_
+++

o



Jumps

An internal node in a 3(0, 1)-tree is a jump iff
@ it is not the root and

o its label is by at least 2 greater than the label if its rightmost
child.
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Jumps

An internal node in a 3(0, 1)-tree is a jump iff
@ it is not the root and

o its label is by at least 2 greater than the label if its rightmost
child.



RGB jumps

We distinguish three kinds of jumps related to the character of
decomposition of (3(0, 1)-trees.

green red



Green jump and green transformation

m<n+1

integers
>n+2




Green jump and green transformation

oreen
m<n-+1 o

integers _
SN A A+(n—m+1)
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Green example 1
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Green example 2
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Green example 2
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