
In search of a bijection between
β-normal 3-indecomposable planar lambda

terms and β(0, 1)-trees

fds

Katarzyna Grygiel
Institute of Theoretical Computer Science

Jagiellonian University in Kraków

fds

Guan-Ru Yu
Institute of Statistical Science

Academia Sinica in Taipei

Computational Logic and Applications 2020

Last year in Versailles (CLA 2019)

Some topological properties of planar lambda terms
by Noam Zeilberger and Jason Reed

Last year in Versailles (CLA 2019)

Some topological properties of planar lambda terms
by Noam Zeilberger and Jason Reed

Last year in Versailles (CLA 2019)

Some topological properties of planar lambda terms
by Noam Zeilberger and Jason Reed

β-normal 3-indecomposable planar lambda terms A000257

A000257

A000257

A000257

OEIS A000257

Rooted bicubic maps

3·2n−1(2n)!
n!(n+2)!

Wenjie
Fang’s

degree trees

New
intervals

in Tamari
lattices

β-normal
3-indecom.

planar
λ-terms

β(0,1)-trees

Rooted
Eulerian

planar maps

Indecom.
1342-

avoiding
perms

1

Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

T ::= V | λV.T | T T

Example.

λa.
(
λb.a

(
λc.(c(λd.b)b

)) (
a
(
λe.

(
λf .λg.e

)(
λh.

(
(λi.eh)e

)(
λj.λk.kj

))))
The above term is closed. It means that every variable is bound by
some lambda.

λ.
(
λ.•

(
λ.(•(λ.•)•

)) (
•
(
λ.
(
λ.λ.•

)(
λ.
(
(λ.••)•

)(
λ.λ.••

))))
We will be interested in closed terms only.

Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

T ::= V | λV.T | T T

Example.

λa.
(
λb.a

(
λc.(c(λd.b)b

)) (
a
(
λe.

(
λf .λg.e

)(
λh.

(
(λi.eh)e

)(
λj.λk.kj

))))

The above term is closed. It means that every variable is bound by
some lambda.

λ.
(
λ.•

(
λ.(•(λ.•)•

)) (
•
(
λ.
(
λ.λ.•

)(
λ.
(
(λ.••)•

)(
λ.λ.••

))))
We will be interested in closed terms only.

Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

T ::= V | λV.T | T T

Example.

λa.
(
λb.a

(
λc.(c(λd.b)b

)) (
a
(
λe.

(
λf .λg.e

)(
λh.

(
(λi.eh)e

)(
λj.λk.kj

))))
The above term is closed. It means that every variable is bound by
some lambda.

λ.
(
λ.•

(
λ.(•(λ.•)•

)) (
•
(
λ.
(
λ.λ.•

)(
λ.
(
(λ.••)•

)(
λ.λ.••

))))

We will be interested in closed terms only.

Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

T ::= V | λV.T | T T

Example.

λa.
(
λb.a

(
λc.(c(λd.b)b

)) (
a
(
λe.

(
λf .λg.e

)(
λh.

(
(λi.eh)e

)(
λj.λk.kj

))))
The above term is closed. It means that every variable is bound by
some lambda.

λ.
(
λ.•

(
λ.(•(λ.•)•

)) (
•
(
λ.
(
λ.λ.•

)(
λ.
(
(λ.••)•

)(
λ.λ.••

))))
We will be interested in closed terms only.

Lambda terms as trees

λa.
(
λb.a

(
λc.(c(λd.b)b

)) (
a
(
λe.

(
λf .λg.e

)(
λh.

(
(λi.eh)e

)(
λj.λk.kj

))))

c

k

a

e

j

a

he

e

b

b

λa

λb

λc

λd

λe

λf

λg

λh

λi

λj

λk

Lambda terms as trees

λa.
(
λb.a

(
λc.(c(λd.b)b

)) (
a
(
λe.

(
λf .λg.e

)(
λh.

(
(λi.eh)e

)(
λj.λk.kj

))))

c

k

a

e

j

a

he

e

b

b

λa

λb

λc

λd

λe

λf

λg

λh

λi

λj

λk

Planar lambda terms

A lambda term is linear i� each variable has exactly one occurrence
(i.e., there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).

Let us consider unary-binary trees with the same number of leaves
and unary nodes.

Now, in the right-to-le� order on leaves, we add a pointer to each
leaf linking it with the closest unary node above that has not been
chosen yet. The resulting structure has a planar representation on
the plane.

Linear terms that are obtained this way are called planar.

Due to planarity, we no longer need to bother about the pointers, as
every unary-binary tree corresponds to at most one planar term.

Planar lambda terms

A lambda term is linear i� each variable has exactly one occurrence
(i.e., there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).

Let us consider unary-binary trees with the same number of leaves
and unary nodes.

Now, in the right-to-le� order on leaves, we add a pointer to each
leaf linking it with the closest unary node above that has not been
chosen yet. The resulting structure has a planar representation on
the plane.

Linear terms that are obtained this way are called planar.

Due to planarity, we no longer need to bother about the pointers, as
every unary-binary tree corresponds to at most one planar term.

Planar lambda terms

A lambda term is linear i� each variable has exactly one occurrence
(i.e., there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).

Let us consider unary-binary trees with the same number of leaves
and unary nodes.

Now, in the right-to-le� order on leaves, we add a pointer to each
leaf linking it with the closest unary node above that has not been
chosen yet. The resulting structure has a planar representation on
the plane.

Linear terms that are obtained this way are called planar.

Due to planarity, we no longer need to bother about the pointers, as
every unary-binary tree corresponds to at most one planar term.

Planar lambda terms

A lambda term is linear i� each variable has exactly one occurrence
(i.e., there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).

Let us consider unary-binary trees with the same number of leaves
and unary nodes.

Now, in the right-to-le� order on leaves, we add a pointer to each
leaf linking it with the closest unary node above that has not been
chosen yet. The resulting structure has a planar representation on
the plane.

Linear terms that are obtained this way are called planar.

Due to planarity, we no longer need to bother about the pointers, as
every unary-binary tree corresponds to at most one planar term.

Example of a planar lambda term

Example of a planar lambda term

Example of a planar lambda term

λxy.x
(
λz.(zy)(λw.w)

)

Example of a planar lambda term

λxy.x
(
λz.(zy)(λw.w)

)

size = 3

β-normal 3-indecomposable planar lambda terms

A lambda term is β-normal i� it does not contain any subterm of
the form λx.M . Equivalently, the corresponding tree does not have a
le� child that is unary.

In the obtained structure, let us remove every vertex that
corresponds to some leaf by contracting its two incident edges.

If the resulting map is internally 3-connected, i.e., removing any two
edges but the two incident to the root does not make the map
disconnected, then we say that the original planar term is
3-indecomposable.

β-normal 3-indecomposable planar lambda terms

A lambda term is β-normal i� it does not contain any subterm of
the form λx.M . Equivalently, the corresponding tree does not have a
le� child that is unary.

In the obtained structure, let us remove every vertex that
corresponds to some leaf by contracting its two incident edges.

If the resulting map is internally 3-connected, i.e., removing any two
edges but the two incident to the root does not make the map
disconnected, then we say that the original planar term is
3-indecomposable.

β-normal 3-indecomposable planar lambda terms

β-normal 3-indecomposable planar lambda terms

β-normal 3-indecomposable planar lambda terms

Term violating 3-indecomposability

Term violating 3-indecomposability

Term violating 3-indecomposability

Term violating 3-indecomposability

Term violating 3-indecomposability

Properties

Every term of size at least 3 has at least three head lambdas.

The le�most maximal binary subtree is just a single leaf.

> 3

Properties

‘right’ # ‘right’
unary nodes leaves

In every non-trivial maximal unary-binary subtree starting
with a unary node the right subtree rooted at the highest
binary node has more leaves than the number of its unary
nodes increased by the number of head unary nodes.

Properties

‘right’ # ‘right’
unary nodes leaves

1 3

In every non-trivial maximal unary-binary subtree starting
with a unary node the right subtree rooted at the highest
binary node has more leaves than the number of its unary
nodes increased by the number of head unary nodes.

Properties

‘right’ # ‘right’
unary nodes leaves

1 2

In every non-trivial maximal unary-binary subtree starting
with a unary node the right subtree rooted at the highest
binary node has more leaves than the number of its unary
nodes increased by the number of head unary nodes.

Properties

‘right’ # ‘right’
unary nodes leaves

3 6

In every non-trivial maximal unary-binary subtree starting
with a unary node the right subtree rooted at the highest
binary node has more leaves than the number of its unary
nodes increased by the number of head unary nodes.

Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).

Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).

Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).

Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).

Decomposition of trees a�er pre-processing

Bicubic maps and β(0, 1)-trees

A planar rooted map is bicubic i� it is bipartite and cubic.

A β(0, 1)-tree is a rooted plane tree whose nodes are labeled with
non-negative integers in the following way:

leaves have label 0;

the label of the root is one more than the sum of its children’s
labels;

the label of any other node exceeds the sum of its children’s
labels by at most one.

Theorem (Claesson, Kitaev, and de Mier)
Bicubic maps are in bijection with β(0, 1)-trees.

So let’s play with β(0, 1)-trees!

Bicubic maps and β(0, 1)-trees

A planar rooted map is bicubic i� it is bipartite and cubic.

A β(0, 1)-tree is a rooted plane tree whose nodes are labeled with
non-negative integers in the following way:

leaves have label 0;

the label of the root is one more than the sum of its children’s
labels;

the label of any other node exceeds the sum of its children’s
labels by at most one.

Theorem (Claesson, Kitaev, and de Mier)
Bicubic maps are in bijection with β(0, 1)-trees.

So let’s play with β(0, 1)-trees!

Bicubic maps and β(0, 1)-trees

A planar rooted map is bicubic i� it is bipartite and cubic.

A β(0, 1)-tree is a rooted plane tree whose nodes are labeled with
non-negative integers in the following way:

leaves have label 0;

the label of the root is one more than the sum of its children’s
labels;

the label of any other node exceeds the sum of its children’s
labels by at most one.

Theorem (Claesson, Kitaev, and de Mier)
Bicubic maps are in bijection with β(0, 1)-trees.

So let’s play with β(0, 1)-trees!

Bicubic maps and β(0, 1)-trees

A planar rooted map is bicubic i� it is bipartite and cubic.

A β(0, 1)-tree is a rooted plane tree whose nodes are labeled with
non-negative integers in the following way:

leaves have label 0;

the label of the root is one more than the sum of its children’s
labels;

the label of any other node exceeds the sum of its children’s
labels by at most one.

Theorem (Claesson, Kitaev, and de Mier)
Bicubic maps are in bijection with β(0, 1)-trees.

So let’s play with β(0, 1)-trees!

Examples of β(0, 1)-trees

0

1 1

0 0

1

32

3 4

0

0

0

0 0

0

1

1

2

4

5

0 0 0 0 0 0 0

0 01 1 1

1 2 3

β(0,1)-bricks

By a β(0,1)-brick (or brick for brevity) we mean a β(0, 1)-tree with
no binary nodes and with its root removed.

0

0

1

0

0

0

0

1

0

0

0

1

0

1

1

0

2

1

0

0

0

0

0

0

0

0 1

0

1

0

0

1

1

0

0

1

1

0

1

1

0

0

1

0

0

0 1

1

0

0

2

0

1

0

1

1

1

0

2

1

0

2

1

0

2

1

0

2

1

0

0 2 32 10

Bricks are enumerated by Catalan numbers.

β(0,1)-bricks

By a β(0,1)-brick (or brick for brevity) we mean a β(0, 1)-tree with
no binary nodes and with its root removed.

0

0

1

0

0

0

0

1

0

0

0

1

0

1

1

0

2

1

0

0

0

0

0

0

0

0 1

0

1

0

0

1

1

0

0

1

1

0

1

1

0

0

1

0

0

0 1

1

0

0

2

0

1

0

1

1

1

0

2

1

0

2

1

0

2

1

0

2

1

0

0 2 32 10

Bricks are enumerated by Catalan numbers.

β(0,1)-bricks

By a β(0,1)-brick (or brick for brevity) we mean a β(0, 1)-tree with
no binary nodes and with its root removed.

0

0

1

0

0

0

0

1

0

0

0

1

0

1

1

0

2

1

0

0

0

0

0

0

0

0 1

0

1

0

0

1

1

0

0

1

1

0

1

1

0

0

1

0

0

0 1

1

0

0

2

0

1

0

1

1

1

0

2

1

0

2

1

0

2

1

0

2

1

0

0 2 32 10

Bricks are enumerated by Catalan numbers.

Labelling binary trees

We label internal nodes in a binary tree by assigning to each of
them the number of right-leaning edges on the path from the the
root to the node being labelled.

A B lab(A) lab(B)+1
lab

0

We use the notions ‘binary tree’ and ‘labelled binary tree’ interchangeably.

Labelling binary trees

We label internal nodes in a binary tree by assigning to each of
them the number of right-leaning edges on the path from the the
root to the node being labelled.

A B lab(A) lab(B)+1
lab

0

We use the notions ‘binary tree’ and ‘labelled binary tree’ interchangeably.

Labelling binary trees

We label internal nodes in a binary tree by assigning to each of
them the number of right-leaning edges on the path from the the
root to the node being labelled.

A B lab(A) lab(B)+1
lab

0

We use the notions ‘binary tree’ and ‘labelled binary tree’ interchangeably.

Labelling binary trees

Bricks to trees

tree 0

B

A tree(A) tree(B)−1

> 0

≥ 0

the highest 0

Bricks to trees

0

1

2

0

0

1

1

Trees to bricks

brick

n

n

brick(B)

brick(A)

A B

Trees to bricks

The ultimate goal

β(0, 1)-trees −→ (several adjectives) lambda terms

How to decompose β(0, 1)-trees into bricks and how to
combine the corresponding binary trees together in order to
obtain lambda terms?

(several adjectives) lambda terms −→ β(0, 1)-trees

How to encode bricks corresponding to the binary trees from
the decomposition of lambda terms and how to glue them
together in order to obtain β(0, 1)-trees?

In the case of our candidate for a bijection. . .
. . . the number of maximal binary trees in the decomposition of
lambda trees corresponds to the number of leaves in β(0, 1)-trees.

The ultimate goal

β(0, 1)-trees −→ (several adjectives) lambda terms

How to decompose β(0, 1)-trees into bricks and how to
combine the corresponding binary trees together in order to
obtain lambda terms?

(several adjectives) lambda terms −→ β(0, 1)-trees

How to encode bricks corresponding to the binary trees from
the decomposition of lambda terms and how to glue them
together in order to obtain β(0, 1)-trees?

In the case of our candidate for a bijection. . .
. . . the number of maximal binary trees in the decomposition of
lambda trees corresponds to the number of leaves in β(0, 1)-trees.

The ultimate goal

β(0, 1)-trees −→ (several adjectives) lambda terms

How to decompose β(0, 1)-trees into bricks and how to
combine the corresponding binary trees together in order to
obtain lambda terms?

(several adjectives) lambda terms −→ β(0, 1)-trees

How to encode bricks corresponding to the binary trees from
the decomposition of lambda terms and how to glue them
together in order to obtain β(0, 1)-trees?

In the case of our candidate for a bijection. . .
. . . the number of maximal binary trees in the decomposition of
lambda trees corresponds to the number of leaves in β(0, 1)-trees.

Translation: trivial cases

λx:x

empty β(0; 1)-tree

Translation: trivial cases

λx:x

empty β(0; 1)-tree

λxy:xy

0

Translation: β(0, 1)-trees with one leaf

n

n + 1

n

β(0; 1)-tree brick binary tree lambda term
with 1 leaf with 1 part

Example: β(0, 1)-trees with one leaf

0

1

0

1

2

Example: β(0, 1)-trees with one leaf

0

1

0

1

2

0

1

0

1

Example: β(0, 1)-trees with one leaf

0

1

0

1

2

0

1

0

1

1

1

0

0

Example: β(0, 1)-trees with one leaf

0

1

0

1

2

0

1

0

1

1

1

0

0

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

Translation: β(0, 1)-trees with no jumps

0 0 0 0

00
0 11

1 1

3

0

0

0

0

0 0

0

1 1 1

1

r

+
+
+++

+
+
+

Translation: β(0, 1)-trees with no jumps

0

0

0

0

0 0

0

1 1 1

1

r

+
+
+++

+
+
+

Translation: β(0, 1)-trees with no jumps

0

0

0

0

0 0

0

1 1 1

1

r

+
+
+++

+
+
+

Translation: β(0, 1)-trees with no jumps

0

0

0

0

0 0

0

1 1 1

1

r

+
+
+++

+
+
+

Translation: β(0, 1)-trees with no jumps

0

0

0

0

0 0

0

1 1 1

1

r

+
+
+++

+
+
+

Translation: β(0, 1)-trees with no jumps

0

0

0

0

0 0

0

1 1 1

1

r

+
+
+++

+
+
+

Translation: β(0, 1)-trees with no jumps

0

0

0

0

0 0

0

1 1 1

1

r

+
+
+++

+
+
+

Jumps

An internal node in a β(0, 1)-tree is a jump i�

it is not the root and

its label is by at least 2 greater than the label if its rightmost
child.

Jumps

0

1 1

0 0

1

32

3 4

0

0

0

0 0

0

1

1

2

4

5

An internal node in a β(0, 1)-tree is a jump i�

it is not the root and

its label is by at least 2 greater than the label if its rightmost
child.

Jumps

0

1 1

0 0

1

32

3 4

0

0

0

0 0

0

1

1

2

4

5

An internal node in a β(0, 1)-tree is a jump i�

it is not the root and

its label is by at least 2 greater than the label if its rightmost
child.

RGB jumps

We distinguish three kinds of jumps related to the character of
decomposition of β(0, 1)-trees.

green red blue

Green jump and green transformation

≥ n + 2
integers

A A + (n−m + 1)

B B

0

n

m n + 1
n

0

k

green

Green jump and green transformation

≥ n + 2
integers A A + (n−m + 1)

B B

0

n

m n + 1
n

0

k

green

Green example 1

0

01

1

2

2

0

3

Green example 1

0

01

1

2

2

0

3

Green example 1

0

01

1

2

2

0

3

0

r

0

1

2

1

0

1

+ +

Green example 1

0

01

1

2

2

0

3

0

r

0

1

2

1

0

1

+ +

Green example 1

0

01

1

2

2

0

3

0

r

0

1

2

1

0

1

+ +

Green example 2

0

01

0

1

2

0

3

Green example 2

0

01

0

1

2

0

3

Green example 2

0

01

0

1

2

0

3

0

r

0

0

1

1

0

1

+ +

Green example 2

0

01

0

1

2

0

3

0

r

0

0

1

1

0

1

+ +

Green example 2

0

01

0

1

2

0

3

0

r

0

0

1

1

0

1

+ +

Green example 2

0

01

0

1

2

0

3

0

r

0

0

1

1

0

1

+ +

gift

Green example 2

0

01

0

1

2

0

3

0

r

0

0

1

1

0

1

+ +

Green example 3

0

11

0

3

0

1 0

2

Green example 3

0

11

0

3

0

1 0

2

Green example 3

0

11

0

3

0

1 0

2

+

+
+

0

0

0

0

1

1

r

1

1

Green example 3

0

11

0

3

0

1 0

2

+

+
+

0

0

2

0

1

1

r

3

1

Green example 3

0

11

0

3

0

1 0

2

+

+
+

0

0

2

0

1

1

r

3

1

Green example 3

0

11

0

3

0

1 0

2

+

+
+

0

0

2

0

1

1

r

3

1

