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Lambda terms

Let V be a countable set of variables. Lambda terms are defined by
the following grammar:

T ::= V | λV.T | T T

Example.

λa.
(
λb.a

(
λc.(c(λd.b)b

)) (
a
(
λe.

(
λf .λg.e

)(
λh.

(
(λi.eh)e

)(
λj.λk.kj

))))
The above term is closed. It means that every variable is bound by
some lambda.

λ.
(
λ.•

(
λ.(•(λ.•)•

)) (
•
(
λ.
(
λ.λ.•

)(
λ.
(
(λ.••)•

)(
λ.λ.••

))))
We will be interested in closed terms only.
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Lambda terms as trees
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Planar lambda terms

A lambda term is linear i� each variable has exactly one occurrence
(i.e., there is a one-to-one correspondence between unary nodes and
leaves). The size of a linear term is defines as the number of
applications (binary nodes).

Let us consider unary-binary trees with the same number of leaves
and unary nodes.

Now, in the right-to-le� order on leaves, we add a pointer to each
leaf linking it with the closest unary node above that has not been
chosen yet. The resulting structure has a planar representation on
the plane.

Linear terms that are obtained this way are called planar.

Due to planarity, we no longer need to bother about the pointers, as
every unary-binary tree corresponds to at most one planar term.
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Example of a planar lambda term
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(
λz.(zy)(λw.w)

)

size = 3



β-normal 3-indecomposable planar lambda terms

A lambda term is β-normal i� it does not contain any subterm of
the form λx.M . Equivalently, the corresponding tree does not have a
le� child that is unary.

In the obtained structure, let us remove every vertex that
corresponds to some leaf by contracting its two incident edges.

If the resulting map is internally 3-connected, i.e., removing any two
edges but the two incident to the root does not make the map
disconnected, then we say that the original planar term is
3-indecomposable.
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Properties

Every term of size at least 3 has at least three head lambdas.

The le�most maximal binary subtree is just a single leaf.

> 3



Properties

# ‘right’ # ‘right’
unary nodes leaves

In every non-trivial maximal unary-binary subtree starting
with a unary node the right subtree rooted at the highest
binary node has more leaves than the number of its unary
nodes increased by the number of head unary nodes.
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# ‘right’ # ‘right’
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Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).



Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).



Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).



Sending gi�s and skipping top unary nodes

Without any loss of information,
we perform two operations on
the unary-binary trees of our in-
terest.

Skipping all head unary
nodes.

Sending gi�s (as depicted).



Decomposition of trees a�er pre-processing



Bicubic maps and β(0, 1)-trees

A planar rooted map is bicubic i� it is bipartite and cubic.

A β(0, 1)-tree is a rooted plane tree whose nodes are labeled with
non-negative integers in the following way:

leaves have label 0;

the label of the root is one more than the sum of its children’s
labels;

the label of any other node exceeds the sum of its children’s
labels by at most one.

Theorem (Claesson, Kitaev, and de Mier)
Bicubic maps are in bijection with β(0, 1)-trees.

So let’s play with β(0, 1)-trees!
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Examples of β(0, 1)-trees
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β(0,1)-bricks

By a β(0,1)-brick (or brick for brevity) we mean a β(0, 1)-tree with
no binary nodes and with its root removed.
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Bricks are enumerated by Catalan numbers.
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Labelling binary trees

We label internal nodes in a binary tree by assigning to each of
them the number of right-leaning edges on the path from the the
root to the node being labelled.

A B lab(A) lab(B)+1
lab

0

We use the notions ‘binary tree’ and ‘labelled binary tree’ interchangeably.
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Bricks to trees

tree 0

B

A tree(A) tree(B)−1

> 0

≥ 0

the highest 0



Bricks to trees
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Trees to bricks

brick

n

n

brick(B)

brick(A)

A B



Trees to bricks



The ultimate goal

β(0, 1)-trees −→ (several adjectives) lambda terms

How to decompose β(0, 1)-trees into bricks and how to
combine the corresponding binary trees together in order to
obtain lambda terms?

(several adjectives) lambda terms −→ β(0, 1)-trees

How to encode bricks corresponding to the binary trees from
the decomposition of lambda terms and how to glue them
together in order to obtain β(0, 1)-trees?

In the case of our candidate for a bijection. . .
. . . the number of maximal binary trees in the decomposition of
lambda trees corresponds to the number of leaves in β(0, 1)-trees.
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Translation: trivial cases

λx:x

empty β(0; 1)-tree



Translation: trivial cases
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empty β(0; 1)-tree
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Translation: β(0, 1)-trees with one leaf

n

n + 1

n

β(0; 1)-tree brick binary tree lambda term
with 1 leaf with 1 part



Example: β(0, 1)-trees with one leaf
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Translation: β(0, 1)-trees with no jumps
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Translation: β(0, 1)-trees with no jumps
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+
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Jumps

An internal node in a β(0, 1)-tree is a jump i�

it is not the root and

its label is by at least 2 greater than the label if its rightmost
child.
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RGB jumps

We distinguish three kinds of jumps related to the character of
decomposition of β(0, 1)-trees.

green red blue



Green jump and green transformation
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