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Binary Decision Diagram

Let f be a Boolean function in k variables.

A Binary Decision Diagram is a compact repre-
sentation of f allowing to evaluate it efficiently.

It is based on some divide-and-conquer principle.

[Wegener00]: Branching Programs and Binary De-
cision Diagrams
[Knuth11]: The Art of Computer Programming
(vol.4)
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We are interested in Reduced Ordered Binary Decision Diagrams,
denoted ROBDDs from now.
We take a point of view of a combinatorialist. 2



Motivations: J. Newton & D. Verna (2018)

224
= 216 = 65, 536

225
= 232 = 4, 294, 967, 296

229
= 2512 ≈ 1.34 · 10154

2210
= 21024 ≈ 1.80 · 10308
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Motivations: J. Newton & D. Verna (2018)

Specific functions with small ROBDDs (in k variables):

- addition in k bits,
- read-once fcts,
- symmetric fcts:
O(k2).

` threshold functions: 5 ≤ k ≤ 10; 1 ≤ ` ≤ k
7 10 11 10 7
8 12 14 14 12 8
9 14 17 18 17 14 9
10 16 20 22 22 20 16 10
11 18 23 26 27 26 23 18 11
12 20 26 30 32 32 30 26 20 12

(There are also interesting functions with large ROBDDs – size

exponential in k – like the multiplier, the hidden weighted bit fct, . . . ) 3



Why does the enumeration be difficult?
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Outline of the talk

• Combinatorial preliminaries
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• Unranking an ROBDD (key-ideas)
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Combinatorial preliminaries



Boolean functions: decision tree representation

A decision tree is a data structure representing a Boolean function.
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In the talk we suppose that the tree is plane.

At node x :
the left subtree of a node x is traversed when x is assigned to False.
the right subtree is traversed when x is assigned to True.

In the rest of the talk, we use the following order xk , . . . , x1. 7



Boolean functions: ROBDD representation

A Reduced Ordered Binary Decision Diagram is a compacted data
structure, based on the decision tree of a function and obtained
with the following rules of compaction:

• Eliminate any node with two identical children;
• Merge any identical subtrees.
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Compaction through a postorder traversal
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Spine of an ROBDD
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The spine of an ROBDD is the spanning tree obtained by a
postorder traversal of the plane ROBDD, omitting the sinks.

Goal
• Definition of an equivalence relation to partition the set of

ROBDDs according to their spines;

• Count for each spine how many ROBDDs have this spine.
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Recursive counting



Node: level rank, pool and weight
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Let T be a spine. The weight wT (ν) (for ν ∈ Q ′) is the number of
possibilities for completing δ′(ν, ·)
and yielding (at the end) an ROBDD with spine T .
(the weight is a multiplicative parameter)
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Weight of a spine
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The weight is a multiplicative parameter for the complete spine.

• 2 · 1
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Weight of a spine
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Weight of a spine
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The weight is a multiplicative parameter for the complete spine.

• 2

• 2

• 3 · 2− 1

• 2 · 1− 1

• 4− 1

• 5

Total weight: 2 · 2 · 5 · 1 · 3 · 5 = 300.
=⇒ 300 ROBDDs built with this spine
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Node weight computation
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wT (ν) =


1 if δ′(ν, 0) 6= nil & δ′(ν, 1) 6= nil

|pT (ν)|
(
|pT (ν)| − 1

)
− sT (ν) if δ′(ν, 0) = δ′(ν, 1) = nil

|pT (ν)| if δ′(ν, 0) = nil & δ′(ν, 1) 6= nil

|pT (ν) + profile(T ′)| if δ′(ν, 0) 6= nil & δ′(ν, 1) = nil

where pT (ν) is the pool profile of node ν, sT is the level rank and

T ′ = Tν0 is the subtree rooted at ν0 = δ′(ν, 0). 13



Pool-ROBDDs

• First equivalence relation: ROBDDs to spines

• Second equivalence relation: spines to pool-spines
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Time complexity

The time complexity (in the number of arithmetic operations) for
partitioning the Boolean functions in k variables according to their
ROBDD size is

O

(
1
k
23k2/2+k

)
.

This value must be put in front of the number of Boolean
functions: 22k .

In practice, we compute the partition for k = 8 in about 2 hours on
a personal computer with a python implementation
and for k = 9, in 3 days using a fast computer with a C++
implementation.

cf. https://github.com/agenitrini/BDDgen
15
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Time complexity

The time complexity (in the number of arithmetic operations) for
partitioning the Boolean functions in k variables according to their
ROBDD size is

O

(
1
k
23k2/2+k

)
.

Proof ideas:
- We have no constructive spine builder without filtering bin. trees.
Thus we proceed differently:
- The largest size of an ROBDD in k var. is mk = O

(
2k
k

)
.

- Let P be the number of profiles up to k var.:
- for index ` there are between 1 and 2` nodes: P = O(2k

2/2)

- for an entry profile and an exit profile, we must build the
intermediate profile: O(P3)

=⇒ time complexity: O(mk · P3).
16



Feedback: J. Newton & D. Verna (2018)

17



With a logarithmic scale for functions in 9 variables
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Unranking an ROBDD (key-ideas)



The Unranking method for binary trees [NW75,MM03]

1. Defining a total order over trees (of the same size).
2. Constructing the tree only by using its rank.

< 0, 0 > < 1, 0 > < 2, 0 > < 2, 1 >

< 3, 0 > < 3, 1 > < 3, 2 > < 3, 3 > < 3, 4 >

Size decomposition for binary trees

Bn+1 = Bn · B0 + Bn−1 · B1 + Bn−2 · B2 + Bn−3 · B3 + . . .
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Unranking a binary tree

Number of binary trees according to their size:
n 0 1 2 3 4 5 6 7 8 9 10 . . .

Catn 1 1 2 5 14 42 132 429 1430 4862 16796 . . .

Among the 429 trees of size 7,
we want to build the tree with rank 250.

429 = 132 · 1 + 42 · 1 + 14 · 2 + 5 · 5 + 2 · 14 + 1 · 42 + 1 · 132.
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227

+2 · 14
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+1 · 42 + 1 · 132.

Thus the tree admits a size decomposition (2, 4) and the ranks for
the subtrees are (250− 227)//14 = 1 and (250− 227)%14 = 9.

The unranking method does not adapt directly,
to the sampling of ROBDDs:
the recursive calls are not independent.
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Unranking an ROBDD: main ideas

Recall: While traversing an ROBDD, the pointers are all going to
already visited nodes.
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x2

x1 x1

x4

True False

• for substructure containing at least one node,
the recursive calls are evaluated through the postorder traversal

• for a given node, all the substructures it can point to must be
dynamically ranked

• pay attention not to define twice the same substructure
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Unranking an ROBDD: example

There are 2 ROBDDs with 2 variables of size 5.

< 2, 5, 0 > < 1, 3, 0 > < 1, 3, 1 >

x1 x1

x2

TrueFalse

x1

TrueFalse

x1

FalseTrue

The rank of this size-5 ROBDD is 0.
During the construction, the rank of the leftmost child is 0 but
the rank of the rightmost child is also 0.
But both children are distinct.
During the call for the rightmost child, there is only one available
substructure of size 1.
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Conclusion and future work

– Our combinatorial approach adapts very well.

• subclasses of fct: ex. only with essential variables
• other classes of BDDs (with other compaction rules)

• OBDDs
• Quasi-reduced BDDs
• Zero-supressed BDDs

– We can use an analogous strategy than [E-PFW20] to enumerate
ROBDDs through enriched walks.

– In the future:

• Combinatorial characterization of the class of spines ?
• A better equivalence relation for a better counting/sampling

method?
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