
Reduced Ordered Binary Decision Diagrams
as compacted tree-structures:
Enumeration and Sampling

Antoine Genitrini†

with Julien Clément∗

workshop CLA

October 13, 2020
†LIP6 @ Sorbonne University ∗GREYC @ Normandie University

Binary Decision Diagram

Let f be a Boolean function in k variables.

A Binary Decision Diagram is a compact repre-
sentation of f allowing to evaluate it efficiently.

It is based on some divide-and-conquer principle.

[Wegener00]: Branching Programs and Binary De-
cision Diagrams
[Knuth11]: The Art of Computer Programming
(vol.4)

True False

x2

x1

x3

x2 x2

x1

x4

x3

We are interested in Reduced Ordered Binary Decision Diagrams,
denoted ROBDDs from now.
We take a point of view of a combinatorialist. 2

Motivations: J. Newton & D. Verna (2018)

224
= 216 = 65, 536

225
= 232 = 4, 294, 967, 296

229
= 2512 ≈ 1.34 · 10154

2210
= 21024 ≈ 1.80 · 10308

3

Motivations: J. Newton & D. Verna (2018)

Specific functions with small ROBDDs (in k variables):

- addition in k bits,
- read-once fcts,
- symmetric fcts:
O(k2).

` threshold functions: 5 ≤ k ≤ 10; 1 ≤ ` ≤ k
7 10 11 10 7
8 12 14 14 12 8
9 14 17 18 17 14 9
10 16 20 22 22 20 16 10
11 18 23 26 27 26 23 18 11
12 20 26 30 32 32 30 26 20 12

(There are also interesting functions with large ROBDDs – size

exponential in k – like the multiplier, the hidden weighted bit fct, . . .) 3

Why does the enumeration be difficult?

X_9

X_8 X_8

X_7

X_5

X_7 X_7

X_5 X_5

X_2 X_2

X_4 X_4

FalseTrue

X_1

X_6

X_5X_5

X_4 X_4

X_3X_3

4

Why does the enumeration be difficult?

X_9

X_8 X_8

X_7

X_5

X_7

X_5X_5

X_6

X_2 X_2

X_5

X_4 X_4 X_4

FalseTrue

X_4

X_3

X_1

X_7

X_5

X_3

5

Outline of the talk

• Combinatorial preliminaries

x1

TrueTrue

x1

FalseFalse

x2

x1

x2

x1

x2

x3 x3

x2

FalseTrueTrue False

x1 x1x1

x4

False FalseFalseTrue FalseTrue

x1

True False

6

Outline of the talk

• Combinatorial preliminaries

• Recursive counting

True False

x2

x1

x3

x2 x2

x1

x4

x3

6

Outline of the talk

• Combinatorial preliminaries

• Recursive counting

• Unranking an ROBDD (key-ideas)

X_8

X_7 X_7

X_6 X_6 X_6 X_6

X_5 X_5X_5 X_5

X_4 X_4 X_4 X_4

False

X_2

X_3 X_3

X_1

True

X_2 X_2 X_2

X_3 X_3 X_3

X_2

X_1

X_2 X_2

X_4 X_4 X_4 X_4

X_3 X_3X_3 X_3

X_4

X_5 X_5 X_5

X_3 X_3

X_4 X_4

X_2

X_3 X_3X_3 X_3

X_4 X_4X_4 X_4

X_3 X_3 X_3X_3 X_3 X_3

6

Combinatorial preliminaries

Boolean functions: decision tree representation

A decision tree is a data structure representing a Boolean function.

x1

TrueTrue

x1

FalseFalse

x2

x1

x2

x1

x2

x3 x3

x2

FalseTrueTrue False

x1 x1x1

x4

False FalseFalseTrue FalseTrue

x1

True False

In the talk we suppose that the tree is plane.

At node x :
the left subtree of a node x is traversed when x is assigned to False.
the right subtree is traversed when x is assigned to True.

In the rest of the talk, we use the following order xk , . . . , x1. 7

Boolean functions: ROBDD representation

A Reduced Ordered Binary Decision Diagram is a compacted data
structure, based on the decision tree of a function and obtained
with the following rules of compaction:

• Eliminate any node with two identical children;
• Merge any identical subtrees.

x1

TrueTrue

x1

FalseFalse

x2

x1

x2

x1

x2

x3 x3

x2

FalseTrueTrue False

x1 x1x1

x4

False FalseFalseTrue FalseTrue

x1

True False

True False

x2

x1

x3

x2 x2

x1

x4

x3

8

Compaction through a postorder traversal

x1

TrueTrue

x1

FalseFalse

x2

x1

x2

x1

x2

x3 x3

x2

FalseTrueTrue False

x1 x1x1

x4

False FalseFalseTrue FalseTrue

x1

True False

x2 x2

x3 x3

x2

x1 x1

x4

True False 9

Spine of an ROBDD

x2 x2

x3 x3

x2

x1 x1

x4

The spine of an ROBDD is the spanning tree obtained by a
postorder traversal of the plane ROBDD, omitting the sinks.

Goal
• Definition of an equivalence relation to partition the set of

ROBDDs according to their spines;

• Count for each spine how many ROBDDs have this spine.

10

Spine of an ROBDD

x2 x2

x3 x3

x2

x1 x1

x4

The spine of an ROBDD is the spanning tree obtained by a
postorder traversal of the plane ROBDD, omitting the sinks.

Goal
• Definition of an equivalence relation to partition the set of

ROBDDs according to their spines;

• Count for each spine how many ROBDDs have this spine.
10

Recursive counting

Node: level rank, pool and weight

x2 x2

x3 x3

x2

x1 x1

x4

True False pool

level

Let T be a spine. The weight wT (ν) (for ν ∈ Q ′) is the number of
possibilities for completing δ′(ν, ·)
and yielding (at the end) an ROBDD with spine T .
(the weight is a multiplicative parameter)

11

Weight of a spine

x2 x2

x3 x3

x2

x1 x1

x4

True False

The weight is a multiplicative parameter for the complete spine.

• 2 · 1

12

Weight of a spine

x2 x2

x3 x3

x2

x1 x1

x4

True False

The weight is a multiplicative parameter for the complete spine.

• 2 · 1
• 2

12

Weight of a spine

x2 x2

x3 x3

x2

x1 x1

x4

True False

The weight is a multiplicative parameter for the complete spine.

• 2 · 1
• 2

• 3 · 2− 1

12

Weight of a spine

x2 x2

x3 x3

x2

x1 x1

x4

True False

The weight is a multiplicative parameter for the complete spine.
• 2 · 1
• 2

• 3 · 2− 1

• 2 · 1− 1

12

Weight of a spine

x2 x2

x3 x3

x2

x1 x1

x4

True False

The weight is a multiplicative parameter for the complete spine.
• 2

• 2

• 3 · 2− 1

• 2 · 1− 1

• 4− 1

12

Weight of a spine

x2 x2

x3 x3

x2

x1 x1

x4

True False

The weight is a multiplicative parameter for the complete spine.
• 2

• 2

• 3 · 2− 1

• 2 · 1− 1

• 4− 1

• 5

12

Weight of a spine

x2 x2

x3 x3

x2

x1 x1

x4

True False

The weight is a multiplicative parameter for the complete spine.

• 2

• 2

• 3 · 2− 1

• 2 · 1− 1

• 4− 1

• 5

Total weight: 2 · 2 · 5 · 1 · 3 · 5 = 300.
=⇒ 300 ROBDDs built with this spine

12

Node weight computation

x2 x2

x3 x3

x2

x1 x1

x4

True False

wT (ν) =

1 if δ′(ν, 0) 6= nil & δ′(ν, 1) 6= nil

|pT (ν)|
(
|pT (ν)| − 1

)
− sT (ν) if δ′(ν, 0) = δ′(ν, 1) = nil

|pT (ν)| if δ′(ν, 0) = nil & δ′(ν, 1) 6= nil

|pT (ν) + profile(T ′)| if δ′(ν, 0) 6= nil & δ′(ν, 1) = nil

where pT (ν) is the pool profile of node ν, sT is the level rank and

T ′ = Tν0 is the subtree rooted at ν0 = δ′(ν, 0). 13

Pool-ROBDDs

• First equivalence relation: ROBDDs to spines

• Second equivalence relation: spines to pool-spines

2

1 x3

x2

1 x1

x4

2(black-box) pool

14

Pool-ROBDDs

• First equivalence relation: ROBDDs to spines

• Second equivalence relation: spines to pool-spines

2

1 x3

x2

1 x1

x4

2(black-box) pool

14

Time complexity

The time complexity (in the number of arithmetic operations) for
partitioning the Boolean functions in k variables according to their
ROBDD size is

O

(
1
k
23k2/2+k

)
.

This value must be put in front of the number of Boolean
functions: 22k .

In practice, we compute the partition for k = 8 in about 2 hours on
a personal computer with a python implementation
and for k = 9, in 3 days using a fast computer with a C++
implementation.

cf. https://github.com/agenitrini/BDDgen
15

https://github.com/agenitrini/BDDgen

Time complexity

The time complexity (in the number of arithmetic operations) for
partitioning the Boolean functions in k variables according to their
ROBDD size is

O

(
1
k
23k2/2+k

)
.

Proof ideas:
- We have no constructive spine builder without filtering bin. trees.
Thus we proceed differently:
- The largest size of an ROBDD in k var. is mk = O

(
2k
k

)
.

- Let P be the number of profiles up to k var.:
- for index ` there are between 1 and 2` nodes: P = O(2k

2/2)

- for an entry profile and an exit profile, we must build the
intermediate profile: O(P3)

=⇒ time complexity: O(mk · P3).
16

Feedback: J. Newton & D. Verna (2018)

17

With a logarithmic scale for functions in 9 variables

18

Unranking an ROBDD (key-ideas)

The Unranking method for binary trees [NW75,MM03]

1. Defining a total order over trees (of the same size).
2. Constructing the tree only by using its rank.

< 0, 0 > < 1, 0 > < 2, 0 > < 2, 1 >

< 3, 0 > < 3, 1 > < 3, 2 > < 3, 3 > < 3, 4 >

Size decomposition for binary trees

Bn+1 = Bn · B0 + Bn−1 · B1 + Bn−2 · B2 + Bn−3 · B3 + . . .

19

The Unranking method for binary trees [NW75,MM03]

1. Defining a total order over trees (of the same size).
2. Constructing the tree only by using its rank.

< 0, 0 > < 1, 0 > < 2, 0 > < 2, 1 >

< 3, 0 > < 3, 1 > < 3, 2 > < 3, 3 > < 3, 4 >

Size decomposition for binary trees

Bn+1 = Bn · B0 + Bn−1 · B1 + Bn−2 · B2 + Bn−3 · B3 + . . .

19

Unranking a binary tree

Number of binary trees according to their size:
n 0 1 2 3 4 5 6 7 8 9 10 . . .

Catn 1 1 2 5 14 42 132 429 1430 4862 16796 . . .

Among the 429 trees of size 7,
we want to build the tree with rank 250.

429 = 132 · 1 + 42 · 1 + 14 · 2 + 5 · 5 + 2 · 14 + 1 · 42 + 1 · 132.

20

Unranking a binary tree

Number of binary trees according to their size:
n 0 1 2 3 4 5 6 7 8 9 10 . . .

Catn 1 1 2 5 14 42 132 429 1430 4862 16796 . . .

Among the 429 trees of size 7,
we want to build the tree with rank 250.

429 = 132 · 1︸ ︷︷ ︸
132

+42 · 1︸ ︷︷ ︸
174

+14 · 2

︸ ︷︷ ︸
202

+5 · 5

︸ ︷︷ ︸
227

+2 · 14

︸ ︷︷ ︸
255

+1 · 42 + 1 · 132.

Thus the tree admits a size decomposition (2, 4) and the ranks for
the subtrees are (250− 227)//14 = 1 and (250− 227)%14 = 9.

The unranking method does not adapt directly,
to the sampling of ROBDDs:
the recursive calls are not independent.

20

Unranking a binary tree

Number of binary trees according to their size:
n 0 1 2 3 4 5 6 7 8 9 10 . . .

Catn 1 1 2 5 14 42 132 429 1430 4862 16796 . . .

Among the 429 trees of size 7,
we want to build the tree with rank 250.

429 = 132 · 1︸ ︷︷ ︸
132

+42 · 1︸ ︷︷ ︸
174

+14 · 2

︸ ︷︷ ︸
202

+5 · 5

︸ ︷︷ ︸
227

+2 · 14

︸ ︷︷ ︸
255

+1 · 42 + 1 · 132.

Thus the tree admits a size decomposition (2, 4) and the ranks for
the subtrees are (250− 227)//14 = 1 and (250− 227)%14 = 9.

The unranking method does not adapt directly,
to the sampling of ROBDDs:
the recursive calls are not independent.

20

Unranking an ROBDD: main ideas

Recall: While traversing an ROBDD, the pointers are all going to
already visited nodes.

x2 x2

x3 x3

x2

x1 x1

x4

True False

• for substructure containing at least one node,
the recursive calls are evaluated through the postorder traversal

• for a given node, all the substructures it can point to must be
dynamically ranked

• pay attention not to define twice the same substructure

21

Unranking an ROBDD: example

There are 2 ROBDDs with 2 variables of size 5.

< 2, 5, 0 > < 1, 3, 0 > < 1, 3, 1 >

x1 x1

x2

TrueFalse

x1

TrueFalse

x1

FalseTrue

The rank of this size-5 ROBDD is 0.
During the construction, the rank of the leftmost child is 0 but
the rank of the rightmost child is also 0.
But both children are distinct.
During the call for the rightmost child, there is only one available
substructure of size 1.

22

Conclusion and future work

– Our combinatorial approach adapts very well.

• subclasses of fct: ex. only with essential variables
• other classes of BDDs (with other compaction rules)

• OBDDs
• Quasi-reduced BDDs
• Zero-supressed BDDs

– We can use an analogous strategy than [E-PFW20] to enumerate
ROBDDs through enriched walks.

– In the future:

• Combinatorial characterization of the class of spines ?
• A better equivalence relation for a better counting/sampling

method?

23

	Combinatorial preliminaries
	

	Recursive counting
	

	Unranking an ROBDD (key-ideas)
	

