Compacted binary trees admit stretched exponentials CLA 2020 - Online

Andrew Elvey Price, Wenjie Fang, and Michael Wallner

Institute of Discrete Mathematics and Geometry, TU Wien, Austria
October, 2020
Based on the papers:
Compacted binary trees admit a stretched exponential, JCTA, Vol. 177(105306), Jan. 2021; ArXiv:1908.11181
Asymptotics of minimal deterministic finite automata recognizing a finite binary language, AofA 2020.

What is a compacted binary tree?

Let's start simple: binary trees

$$
\square
$$

- Internal node: Node of out-degree 2 (circle)
- Leave: Node of out-degree 0 (square)
- Root: Distinguished node (top node)
- Left-Right Order of children

A recursive construction

- A binary tree is either a leaf,
- or it consists of a root and a left and right binary tree.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0)), \quad(2,(\times, 1,1))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0)), \quad(2,(x, 1,1))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} \mathrm{y})))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$, $(6,(+, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} \mathrm{y})))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$, $(6,(+, 2,4))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* x \mathrm{x})(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} \mathrm{y})))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$,
$(6,(+, 2,4)), \quad(7,(\times, 5,6))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(*(-(* \mathrm{x} x)(* \mathrm{y} y))(+(* \mathrm{x} x)(* \mathrm{y} y)))
$$

which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$,
$(6,(+, 2,4)), \quad(7,(\times, 5,6))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
which represents $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

$(1,(x, 0,0))$,
$(2,(\times, 1,1))$,
$(3,(y, 0,0))$,
$(4,(\times, 3,3))$,
$(5,(-, 2,4))$,
$(6,(+, 2,4)), \quad(7,(\times, 5,6))$

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Compacted trees

- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree: expected time $\mathcal{O}(n)$
- Analyzed by [Flajolet, Sipala, Steyaert 1990]: A tree of size n has a compacted form of expected size

$$
C \frac{n}{\sqrt{\log n}},
$$

where C is explicit related to the type of trees and the statistical model.

- Applications:

■ XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
■ Compilers [Aho, Sethi, Ullman 1986]

- LISP [Goto 1974]

■ Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Reverse question

How many compacted trees of (compacted) size n exist?

Main result compacted trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem

The number of compacted binary trees satisfy for $n \rightarrow \infty$

$$
c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
$$

with $a_{1} \approx-2.338:$ largest root of the Airy function $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$.

Main result compacted trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem

The number of compacted binary trees satisfy for $n \rightarrow \infty$

$$
c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$.

Conjecture

Experimentally we find

$$
c_{n} \sim \gamma_{c} n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}
$$

where

$$
\gamma_{c} \approx 173.12670485
$$

What is a DFA?

Deterministic finite automata (DFA)

DFA on alphabet $\{a, b\}$

Graph with

- two outgoing edges from each node (state), labelled a and b
- An initial state q_{0}
- A set F of final states (coloured green).

Figure: A DFA.

Deterministic finite automata (DFA)

DFA on alphabet $\{a, b\}$
Graph with

- two outgoing edges from each node (state), labelled a and b
- An initial state q_{0}
- A set F of final states (coloured green).

Properties

- Language: the set of accepted words
- Minimal: no DFA with fewer states accepts the same language
- Acyclic: no cycles (except loops at unique sink)

Figure: A DFA. This is the minimal DFA recognising the language $\{a, a a, b a, a b a\}$.

Counting minimal acyclic DFAs

This work: Asymptotics of the numbers m_{n} of minimal, acyclic DFAs on a binary alphabet with $n+1$ nodes.

- Studied by Domaratzki, Kisman, Shallit, and Liskovets between 2002 and 2006
- Best bounds were out by an exponential factor
- We gave upper and lower bounds differing by a $\Theta\left(n^{1 / 4}\right)$ factor, by relating the DFAs to compacted trees.

Main result minimal DFAs

A stretched exponential $\mu^{n^{\sigma}}$ appears again!

Theorem

The number m_{n} of minimal DFAs recognizing a finite binary for $n \rightarrow \infty$

$$
m_{n}=\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right)
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$.

Main result minimal DFAs

A stretched exponential $\mu^{n^{\sigma}}$ appears again!

Theorem

The number m_{n} of minimal DFAs recognizing a finite binary for $n \rightarrow \infty$

$$
m_{n}=\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right)
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$.

Conjecture

Experimentally we find

$$
m_{n} \sim \gamma n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}
$$

where

$$
\gamma \approx 76.438160702
$$

What is the Airy function?

Properties

■ $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$
■ Largest root $a_{1} \approx-2.338$
■ $\lim _{x \rightarrow \infty} \operatorname{Ai}(x)=0$

- Also defined by $\mathrm{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)$

■ [Banderier, Flajolet, Schaeffer, Soria 2001]: Random Maps
■ [Flajolet, Louchard 2001]:
Brownian excursion area

Bijection to decorated paths

Bijection to decorated paths

Bijection to decorated paths

- Highlight spanning tree given by depth first search (ignoring the sink)
- I.e., black path to each vertex is first in lexicographic order

Bijection to decorated paths

- Highlight spanning tree given by depth first search (ignoring the sink)
- I.e., black path to each vertex is first in lexicographic order
- Colour other edges red

Bijection to decorated paths

- Highlight spanning tree given by depth first search (ignoring the sink)
- I.e., black path to each vertex is first in lexicographic order
- Colour other edges red
- Draw as a binary tree with a edges pointing left and b edges pointing right

Bijection to decorated paths

- Label nodes in post-order. By construction red edges point from a larger number to a smaller number

Bijection to decorated paths

- Label nodes in post-order. By construction red edges point from a larger number to a smaller number
- \rightarrow Label pointers

Bijection to decorated paths

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Bijection to decorated paths

When the tree traversal...

- goes up: add up step with colour matching the corresponding node.
- passes a pointer:
- add horizontal step
- mark box corresponding to pointer label

Decorated paths

- Path starts at $(-1,0)$ and ends at (n, n)
- Path stays below diagonal (after first step)

Decorated paths

- Path starts at $(-1,0)$ and ends at (n, n)
- Path stays below diagonal (after first step)
- One box is marked below each horizontal step

Decorated paths

- Path starts at $(-1,0)$ and ends at (n, n)
- Path stays below diagonal (after first step)
- One box is marked below each horizontal step
- Each vertical step is colored white or green

By the bijection: The number of these paths is the number d_{n} of acyclic DFAs with $n+1$ nodes.

Decorated paths

Recurrence: Denote by $a_{n, m}$ the number of paths ending at (n, m).

$$
\begin{aligned}
a_{n, m} & =2 a_{n, m-1}+(m+1) a_{n-1, m}, \\
a_{-1,0} & =1 .
\end{aligned}
$$

$$
\text { for } n \geq m
$$

By the bijection: $d_{n}=a_{n, n}$ is the number of acyclic DFAs with $n+1$ nodes. What about minimality?

Minimal acyclic DFAs

For the DFA to be minimal, no state can be equivalent to a previous state:

- only possible if the new node is a leaf.

$$
\text { - Leaf corresponds to } \rightarrow \rightarrow \uparrow \text { in path. }
$$

Minimal acyclic DFAs

For the DFA to be minimal, no state can be equivalent to a previous state:

- only possible if the new node is a leaf.
- If leaf is labeled $m+1$, then m choices of pointer labels and state color must be avoided.

Minimal acyclic DFAs

For the DFA to be minimal, no state can be equivalent to a previous state:

- only possible if the new node is a leaf.
- If leaf is labeled $m+1$, then m choices of pointer labels and state color must be avoided.

Minimal acyclic DFAs

For the DFA to be minimal, no state can be equivalent to a previous state:

- only possible if the new node is a leaf.
- If leaf is labeled $m+1$, then m choices of pointer labels and state color must be avoided.

Minimal acyclic DFAs

For the DFA to be minimal, no state can be equivalent to a previous state:

- only possible if the new node is a leaf.
- If leaf is labeled $m+1$, then m choices of pointer labels and state color must be avoided.
- Leaf corresponds to $\rightarrow \rightarrow \uparrow$ in path.

Recurrence for minimal DFAs

Recurrence: Denote by $b_{n, m}$ the number of paths ending at (n, m).

$$
\begin{aligned}
b_{n, m} & =2 b_{n, m-1}+(m+1) b_{n-1, m}-m b_{n-2, m-1}, \quad \text { for } n \geq m \\
b_{-1,0} & =1
\end{aligned}
$$

Now: $m_{n}=b_{n, n}$ is the number of minimal acyclic DFAs with $n+1$ nodes.

Transforming the recurrence for minimal DFAs

Transformation:

$$
e_{n+m, n-m}=\frac{1}{n!2^{m-1}} b_{n, m} .
$$

Transforming the recurrence for minimal DFAs

Transformation:

$$
e_{n+m, n-m}=\frac{1}{n!2^{m-1}} b_{n, m} .
$$

Transforming the recurrence for minimal DFAs

Transformation:

$$
e_{n+m, n-m}=\frac{1}{n!2^{m-1}} b_{n, m} .
$$

New recurrence:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Now: $m_{n}=n!2^{n-1} e_{2 n, 0}$.

Heuristics

Side note: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Consider paths with max height n^{α} (for $0<\alpha \leq 1 / 2$):

Weighted number of paths is $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}-\log (2) n^{\alpha}}$.
Maximum occurs when $\alpha=1 / 3$ and is equal to $4^{n} e^{-c n^{1 / 3}}$.
Our case: weights decrease similarly with height so we expect similar behavior

Side note: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Consider paths with max height n^{α} (for $0<\alpha \leq 1 / 2$):
Number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}}, \quad$ Weight $=2^{-n^{\alpha}}=e^{-\log (2) n^{\alpha}}$.

Our case: weights decrease similarly with height so we expect similar behavior

Side note: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Consider paths with max height n^{α} (for $0<\alpha \leq 1 / 2$):
Number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}}, \quad$ Weight $=2^{-n^{\alpha}}=e^{-\log (2) n^{\alpha}}$.
Weighted number of paths is $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}-\log (2) n^{\alpha}}$.
Maximum occurs when $\alpha=1 / 3$ and is equal to $4^{n} e^{-c n^{1 / 3}}$.

Side note: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Consider paths with max height n^{α} (for $0<\alpha \leq 1 / 2$):
Number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}}, \quad$ Weight $=2^{-n^{\alpha}}=e^{-\log (2) n^{\alpha}}$.
Weighted number of paths is $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}-\log (2) n^{\alpha}}$.
Maximum occurs when $\alpha=1 / 3$ and is equal to $4^{n} e^{-c n^{1 / 3}}$.
Our case: weights decrease similarly with height so we expect similar behavior

Heuristics

We want to understand $e_{n, m}$ for large n.

Figure: Plots of $e_{n, m}$ against $m+1$. Left: $n=100$, Right: $n=1000$.

Heuristics

We want to understand $e_{n, m}$ for large n.

Figure: Plots of $e_{n, m}$ against $m+1$. Left: $n=100$, Right: $n=1000$.

- Let's zoom in to the left (small m) where interesting things are happening.

Guess: $e_{n, m} \approx h(n) f$Moreover, we guess $g(n)=\sqrt[3]{n}$.

Heuristics

We want to understand $e_{n, m}$ for large n.

Figure: Plots of $e_{n, m}$ against $m+1$. Left: $n=100$, Right: $n=1000$.

- Let's zoom in to the left (small m) where interesting things are happening.

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)$. Moreover, we guess $g(n)=\sqrt[3]{n}$.

Heuristics

We want to understand $e_{n, m}$ for large n.

Figure: Left: Plot of $e_{n, m}$ against $m+1$ for $n=2000$. Right: Limiting function $f(x)$.

- Let's zoom in to the left (small m) where interesting things are happening.

■ It seems to be converging to something...

Heuristics

We want to understand $e_{n, m}$ for large n.

Figure: Left: Plot of $e_{n, m}$ against $m+1$ for $n=2000$. Right: Limiting function $f(x)$.

- Let's zoom in to the left (small m) where interesting things are happening.
- It seems to be converging to something...

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)$. Moreover, we guess $g(n)=\sqrt[3]{n}$.

Heuristics

We want to understand $e_{n, m}$ for large n.

Figure: Left: Plot of $e_{n, m}$ against $m+1$ for $n=2000$. Right: Limiting function $f(x)$.

- Let's zoom in to the left (small m) where interesting things are happening.
- It seems to be converging to something...

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$. Moreover, we guess $g(n)=\sqrt[3]{n}$.

Heuristic analysis of weighted paths

Recurrence:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

Heuristic analysis of weighted paths

Recurrence:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

- Substitute into recurrence and set $m=\kappa \sqrt[3]{n}-1$:

$$
s_{n}:=\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(\kappa)-2 \kappa f(\kappa)}{f(\kappa)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

Heuristic analysis of weighted paths

Recurrence:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

- Substitute into recurrence and set $m=\kappa \sqrt[3]{n}-1$:

$$
s_{n}:=\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(\kappa)-2 \kappa f(\kappa)}{f(\kappa)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

- Solution (assuming equality above):

$$
\begin{aligned}
s_{n} & =2+c n^{-2 / 3}+O\left(n^{-1}\right) & h(n) \approx 2^{n} e^{\frac{3 c}{2} n^{1 / 3}} \\
f^{\prime \prime}(\kappa) & =(2 \kappa+c) f(\kappa) &
\end{aligned}
$$

Where c is constant

Heuristic analysis of weighted paths

Recurrence:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

- Substitute into recurrence and set $m=\kappa \sqrt[3]{n}-1$:

$$
s_{n}:=\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(\kappa)-2 \kappa f(\kappa)}{f(\kappa)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

- Solution (assuming equality above):

$$
\begin{aligned}
& s_{n}=2+c n^{-2 / 3}+O\left(n^{-1}\right) \quad \Rightarrow \quad h(n) \approx 2^{n} e^{\frac{3 c}{2} n^{1 / 3}} \\
& f^{\prime \prime}(\kappa)=(2 \kappa+c) f(\kappa) \quad \Rightarrow \quad f(\kappa)=\operatorname{Ai}\left(2^{-2 / 3}(2 \kappa+c)\right)
\end{aligned}
$$

Where c is constant and $A i$ is the Airy function.

Heuristic analysis of weighted paths

Recurrence:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Guess: $e_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

- Substitute into recurrence and set $m=\kappa \sqrt[3]{n}-1$:

$$
s_{n}:=\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(\kappa)-2 \kappa f(\kappa)}{f(\kappa)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

- Solution (assuming equality above):

$$
\begin{aligned}
& s_{n}=2+c n^{-2 / 3}+O\left(n^{-1}\right) \quad \Rightarrow \quad h(n) \approx 2^{n} e^{\frac{3 c}{2} n^{1 / 3}} \\
& f^{\prime \prime}(\kappa)=(2 \kappa+c) f(\kappa) \quad \Rightarrow \quad f(\kappa)=\operatorname{Ai}\left(2^{-2 / 3}(2 \kappa+c)\right)
\end{aligned}
$$

Where c is constant and $A i$ is the Airy function.

- Boundary condition $e_{n,-1}=0$. Then $f(0)=0$ implies $c=2^{2 / 3} a_{1}$, where $a_{1} \approx-2.338$ satisfies $\operatorname{Ai}\left(a_{1}\right)=0$.

Inductive proof

Proof method

Recall:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Number of minimal acyclic DFAs is $m_{n}=2^{n-1} n!e_{2 n, 0}$.

Method:

Find sequences $A_{n, k}$ and $B_{n, k}$ with the same asymptotic form, such that

$$
A_{n, k} \leq e_{n, k} \leq B_{n, k}
$$

for all k and all n large enough.

Proof method

Recall:

$$
e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{n-m}{(n+m)(n+m-2)} e_{n-3, m-1}
$$

Number of minimal acyclic DFAs is $m_{n}=2^{n-1} n!e_{2 n, 0}$.

Method:

Find sequences $A_{n, k}$ and $B_{n, k}$ with the same asymptotic form, such that

$$
A_{n, k} \leq e_{n, k} \leq B_{n, k},
$$

for all k and all n large enough.

How to find them?

1 Use heuristics
2 Fiddle until they satisfy the recurrence of $e_{n, k}$ with the equalities replaced by inequalities:

$$
=\quad \longrightarrow \quad \leq \text { and } \geq
$$

3 Prove $A_{n, k} \leq e_{n, k} \leq B_{n, k}$ by induction.

Summary

Enumeration of minimal acyclic DFAs

1 Bijection to decorated paths
2 Recurrence for decorated paths
3 Heuristic analysis of recurrence
4 Inductive proof using heuristics

Lower bound:

$$
m_{n} \geq \gamma_{1} n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}
$$

for some constant $\gamma_{1}>0$.

Summary

Enumeration of minimal acyclic DFAs

1 Bijection to decorated paths
2 Recurrence for decorated paths
3 Heuristic analysis of recurrence
4 Inductive proof using heuristics

Lower bound:

$$
m_{n} \geq \gamma_{1} n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}
$$

for some constant $\gamma_{1}>0$.
Upper bound (similar proof):

$$
m_{n} \leq \gamma_{2} n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}
$$

for some constant $\gamma_{2}>0$.

The end

Theorem

The number c_{n} compacted binary trees and the number m_{n} of minimal DFAs recognizing a finite binary language satisfy for $n \rightarrow \infty$

$$
\begin{aligned}
m_{n} & =\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right), \\
c_{n} & =\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right),
\end{aligned}
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$.

Further problems:

The end

Theorem

The number c_{n} compacted binary trees and the number m_{n} of minimal DFAs recognizing a finite binary language satisfy for $n \rightarrow \infty$

$$
\begin{aligned}
m_{n} & =\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right) \\
c_{n} & =\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right)
\end{aligned}
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$.

Further problems:

■ Multiplicative constant? Does it exist?

- Other statistics: number of words? length of longest word? etc.

■ Another solved problem by the method: counting the number of tree-child networks in phylogenomics [Fuchs, Yu, Zhang 2020]
Does anyone have a tricky recurrence to try? (Suggested by referees: Piece-wise testable)

Backup

Other appearances of stretched exponentials

Known exactly:

■ Pushed Dyck paths (Beaton and Mckay):

$$
\sim\left(2^{8 / 3} 3^{-1 / 2} \pi^{5 / 6}(\log 2)^{1 / 3}\right) 4^{n} e^{-3\left(\frac{\pi \log 2}{2}\right)^{2 / 3} n^{1 / 3}} n^{-5 / 6}
$$

- Cogrowth sequence of lamplighter group (Revelle)

$$
\approx \mu^{n} e^{-c n^{1 / 3}}
$$

- Cogrowth sequences of other wreath products (Pittet and Saloffe-Coste):

$$
\approx \mu^{n} e^{-c(\log n)^{2 / 3} n^{1 / 3}}
$$

Conjectured:

- Permutations avoiding 1324 (Conway, Guttmann, and Zinn-Justin):

$$
\approx \mu^{n} e^{-c n^{1 / 2}}
$$

■ Pushed self avoiding walks (Beaton, Guttmann, Jensen, and Lawler):

$$
\approx \mu^{n} e^{-c n^{3 / 7}}
$$

- Cogrowth sequence of Thompson's group F (Elvey Price and Guttmann):

$$
\approx \mu^{n} e^{-c n^{0.5}(\log n)^{0.5}}
$$

Technicalities

Lots of technicalities:

- Before induction, we have to remove the negative term from the recurrence, but we have to do so precisely for asymptotics to stay the same.
■ We only prove bounds for small m; we prove that large m terms don't matter
- The lower bound is negative for very large m, so we have to be careful with induction
■ We only prove the bounds for sufficiently large n, but this only makes a difference to the constant term. Proof involves colorful Newton polygons:

Relaxed trees: Proof idea - lower bound

Main idea
Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1} \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Relaxed trees: Proof idea - lower bound

Main idea
Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}, \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}, \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

$$
X_{n, m} h_{n} \stackrel{(1)}{\leq} \quad \frac{n-m+2}{n+m} X_{n-1, m-1} h_{n-1}+X_{n-1, m+1} h_{n-1}
$$

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}, \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

$$
\begin{gathered}
X_{n, m} h_{n} \stackrel{\text { (1) }}{\leq} \frac{n-m+2}{n+m} X_{n-1, m-1} h_{n-1}+X_{n-1, m+1} h_{n-1} \\
\quad \stackrel{\text { (Induction) }}{\leq} \frac{n-m+2}{n+m} b_{0} d_{n-1, m-1}+b_{0} d_{n-1, m+1}
\end{gathered}
$$

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}, \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

$$
\begin{aligned}
& X_{n, m} h_{n} \stackrel{(1)}{\leq} \frac{n-m+2}{n+m} X_{n-1, m-1} h_{n-1}+X_{n-1, m+1} h_{n-1} \\
& \quad(\text { Induction) } \frac{n-m+2}{n+m} b_{0} d_{n-1, m-1}+b_{0} d_{n-1, m+1} \\
& \quad \stackrel{\text { Rec. } d_{n, m}}{=} b_{0} d_{n, m} .
\end{aligned}
$$

Relaxed trees: Lower bound

Lemma

For all $n, m \geq 0$ let

$$
\begin{aligned}
\tilde{X}_{n, m} & :=\left(1-\frac{2 m^{2}}{3 n}+\frac{m}{2 n}\right) \mathrm{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right) \quad \text { and } \\
\tilde{s}_{n} & :=2+\frac{2^{2 / 3} a_{1}}{n^{2 / 3}}+\frac{8}{3 n}-\frac{1}{n^{7 / 6}}
\end{aligned}
$$

Then, for any $\varepsilon>0$, there exists an \tilde{n}_{0} such that

$$
\tilde{X}_{n, m} \tilde{s}_{n} \leq \frac{n-m+2}{n+m} \tilde{X}_{n-1, m-1}+\tilde{X}_{n-1, m+1}
$$

for all $n \geq \tilde{n}_{0}$ and for all $0 \leq m<n^{1-\varepsilon}$.

Define $X_{n, m}:=\max \left\{\tilde{X}_{n, m}, 0\right\}$. Then,

Relaxed trees: Lower bound

Lemma

For all $n, m \geq 0$ let

$$
\begin{aligned}
\tilde{X}_{n, m} & :=\left(1-\frac{2 m^{2}}{3 n}+\frac{m}{2 n}\right) \mathrm{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right) \quad \text { and } \\
\tilde{s}_{n} & :=2+\frac{2^{2 / 3} a_{1}}{n^{2 / 3}}+\frac{8}{3 n}-\frac{1}{n^{7 / 6}}
\end{aligned}
$$

Then, for any $\varepsilon>0$, there exists an \tilde{n}_{0} such that

$$
\tilde{X}_{n, m} \tilde{s}_{n} \leq \frac{n-m+2}{n+m} \tilde{X}_{n-1, m-1}+\tilde{X}_{n-1, m+1}
$$

for all $n \geq \tilde{n}_{0}$ and for all $0 \leq m<n^{1-\varepsilon}$.

Define $X_{n, m}:=\max \left\{\tilde{X}_{n, m}, 0\right\}$. Then,
$\llbracket X_{n, m} \tilde{s}_{n} \leq \frac{n-m+2}{n+m} \tilde{X}_{n-1, m-1}+\tilde{X}_{n-1, m+1} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}$;

Relaxed trees: Lower bound

Lemma

For all $n, m \geq 0$ let

$$
\begin{aligned}
\tilde{X}_{n, m} & :=\left(1-\frac{2 m^{2}}{3 n}+\frac{m}{2 n}\right) \mathrm{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right) \quad \text { and } \\
\tilde{s}_{n} & :=2+\frac{2^{2 / 3} a_{1}}{n^{2 / 3}}+\frac{8}{3 n}-\frac{1}{n^{7 / 6}}
\end{aligned}
$$

Then, for any $\varepsilon>0$, there exists an \tilde{n}_{0} such that

$$
\tilde{X}_{n, m} \tilde{s}_{n} \leq \frac{n-m+2}{n+m} \tilde{X}_{n-1, m-1}+\tilde{X}_{n-1, m+1}
$$

for all $n \geq \tilde{n}_{0}$ and for all $0 \leq m<n^{1-\varepsilon}$.

Define $X_{n, m}:=\max \left\{\tilde{X}_{n, m}, 0\right\}$. Then,
$1 X_{n, m} \tilde{s}_{n} \leq \frac{n-m+2}{n+m} \tilde{X}_{n-1, m-1}+\tilde{X}_{n-1, m+1} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}$;
2 $X_{n, m} \tilde{S}_{n}=0$

$$
\leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}
$$

