
Compacted Binary Trees

Compacted binary trees admit stretched exponentials
CLA 2020 – Online

Andrew Elvey Price, Wenjie Fang, and Michael Wallner

Institute of Discrete Mathematics and Geometry, TU Wien, Austria

October, 2020

Based on the papers:
Compacted binary trees admit a stretched exponential,
JCTA, Vol. 177(105306), Jan. 2021; ArXiv:1908.11181

Asymptotics of minimal deterministic finite automata recognizing a finite binary language,
AofA 2020.

Elvey Price, Fang, Wallner | Bordeaux, Paris, Wien | 13.10.2020 1 / 25

https://doi.org/10.1016/j.jcta.2020.105306
https://arxiv.org/abs/1908.11181
https://doi.org/10.4230/LIPIcs.AofA.2020.11


Compacted Binary Trees | What is a compacted binary tree?

What is a compacted binary tree?

Elvey Price, Fang, Wallner | Bordeaux, Paris, Wien | 13.10.2020 2 / 25



Compacted Binary Trees | What is a compacted binary tree?

Let’s start simple: binary trees

Internal node: Node of out-degree 2 (circle)

Leave: Node of out-degree 0 (square)

Root: Distinguished node (top node)

Left-Right Order of children

A recursive construction

A binary tree is either a leaf,

or it consists of a root and a left and right binary tree.
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Compacted Binary Trees | What is a compacted binary tree?

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.
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Compacted trees

Important property: Subtrees are unique

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990]: A tree of size n has a
compacted form of expected size

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications:

XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
Compilers [Aho, Sethi, Ullman 1986]
LISP [Goto 1974]
Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Reverse question

How many compacted trees of (compacted) size n exist?
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Compacted Binary Trees | What is a compacted binary tree?

Main result compacted trees

A stretched exponential µnσ appears!

Theorem

The number of compacted binary trees satisfy for n→∞

cn = Θ
(
n! 4ne3a1n

1/3

n3/4
)
,

with a1≈−2.338: largest root of the Airy function Ai(x)= 1
π

∞∫
0

cos
(

t3

3 +xt
)
dt.

Conjecture

Experimentally we find

cn ∼ γcn!4ne3a1n
1/3

n3/4,

where

γc ≈ 173.12670485.
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Compacted Binary Trees | What is a DFA?

Deterministic finite automata (DFA)

DFA on alphabet {a, b}
Graph with

two outgoing edges from each
node (state), labelled a and b

An initial state q0

A set F of final states (coloured
green).

Properties

Language: the set of accepted
words

Minimal: no DFA with fewer
states accepts the same language

Acyclic: no cycles (except loops
at unique sink)

q0

q1 q3

q4

a b

b

a a

b

a

a
b b

q2

Figure: A DFA.

This is the minimal DFA recognising the language {a, aa, ba, aba}.
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Counting minimal acyclic DFAs

This work: Asymptotics of the numbers mn of minimal, acyclic DFAs on a binary
alphabet with n + 1 nodes.

Studied by Domaratzki, Kisman, Shallit, and Liskovets between 2002 and
2006

Best bounds were out by an exponential factor

We gave upper and lower bounds differing by a Θ(n1/4) factor, by relating
the DFAs to compacted trees.

q0

q1 q3

q4

a b

b

a a

b

a

a
b b

q2
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Main result minimal DFAs

A stretched exponential µnσ appears again!

Theorem

The number mn of minimal DFAs recognizing a finite binary for n→∞

mn = Θ
(
n! 8ne3a1n

1/3

n7/8
)
,

with a1≈−2.338: largest root of the Airy function Ai(x)= 1
π

∞∫
0

cos
(

t3

3 +xt
)
dt.

Conjecture

Experimentally we find

mn ∼ γn!8ne3a1n
1/3

n7/8,

where

γ ≈ 76.438160702.
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What is the Airy function?

Properties

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt

Largest root a1 ≈ −2.338

limx→∞ Ai(x) = 0

Also defined by Ai′′(x) = xAi(x)

[Banderier, Flajolet, Schaeffer,
Soria 2001]: Random Maps

[Flajolet, Louchard 2001]:
Brownian excursion area
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Elvey Price, Fang, Wallner | Bordeaux, Paris, Wien | 13.10.2020 12 / 25



Compacted Binary Trees | Bijection to decorated paths

Bijection to decorated paths

q0

a

a

a

a

a

a

a b

b

b

b

b

b

b

a, b
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Bijection to decorated paths

a

a

a

a b

b

b

b

a, b

q0

a

a

a
b

b

b

Highlight spanning tree given by depth first search (ignoring the sink)
I.e., black path to each vertex is first in lexicographic order
Colour other edges red
Draw as a binary tree with a edges pointing left and b edges pointing right
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Bijection to decorated paths

q0

a

a

a

a
a

a

a

b

b b

b

b

b

b

a, b

Highlight spanning tree given by depth first search (ignoring the sink)
I.e., black path to each vertex is first in lexicographic order
Colour other edges red
Draw as a binary tree with a edges pointing left and b edges pointing right
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Bijection to decorated paths

2

3 4

5

6

7

8

1

Label nodes in post-order. By construction red edges point from a larger
number to a smaller number
→ Label pointers
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Label nodes in post-order. By construction red edges point from a larger
number to a smaller number
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Bijection to decorated paths

2

3 4

5

6

7

8

1

6

3513

11 1

2

3

4

5

6

7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a
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11 1

2

3

4

5

6

7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

When the tree traversal...
goes up: add up step with colour matching the corresponding node.
passes a pointer:

add horizontal step
mark box corresponding to pointer label
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Decorated paths

1

2

3

4

5

6

7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

Path starts at (−1, 0) and ends at (n, n)
Path stays below diagonal (after first step)
One box is marked below each horizontal step
Each vertical step is colored white or green

By the bijection: The number of these paths is the number dn of acyclic DFAs
with n + 1 nodes.
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Decorated paths
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2 2 2 2 2
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2 2 2 2 2

2 2 2 2

2 2 2

2 2

2

3 3 3 3

4 4 4

5 5

Recurrence: Denote by an,m the number of paths ending at (n,m).

an,m = 2an,m−1 + (m + 1)an−1,m, for n ≥ m

a−1,0 = 1.

By the bijection: dn = an,n is the number of acyclic DFAs with n + 1 nodes.
What about minimality?
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Minimal acyclic DFAs
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3 4
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(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

For the DFA to be minimal, no state can be equivalent to a previous state:
only possible if the new node is a leaf.
If leaf is labeled m + 1, then m choices of pointer labels and state color must
be avoided.
Leaf corresponds to → → ↑ in path.
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Leaf corresponds to → → ↑ in path.
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4

For the DFA to be minimal, no state can be equivalent to a previous state:
only possible if the new node is a leaf.
If leaf is labeled m + 1, then m choices of pointer labels and state color must
be avoided.
Leaf corresponds to → → ↑ in path.
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For the DFA to be minimal, no state can be equivalent to a previous state:
only possible if the new node is a leaf.
If leaf is labeled m + 1, then m choices of pointer labels and state color must
be avoided.
Leaf corresponds to → → ↑ in path.
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Recurrence for minimal DFAs
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2 2 2
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2
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Recurrence: Denote by bn,m the number of paths ending at (n,m).

bn,m = 2bn,m−1 + (m + 1)bn−1,m − mbn−2,m−1, for n ≥ m,

b−1,0 = 1.

Now: mn = bn,n is the number of minimal acyclic DFAs with n + 1 nodes.
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Transforming the recurrence for minimal DFAs

1

2
2

3

4

5

6 6

7

1 1 1 1 1 1
2 2 2 2 2 2

2 2 2 2 2
2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2

2 2

2

3 3 3 3

4 4 4

5 5

Transformation: en+m,n−m =
1

n!2m−1 bn,m.

New recurrence:

en,m =
n −m + 2

n + m
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1.

Now: mn = n!2n−1e2n,0.
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Heuristics

Elvey Price, Fang, Wallner | Bordeaux, Paris, Wien | 13.10.2020 18 / 25



Compacted Binary Trees | Heuristics

Side note: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2−h

h

2n
0
0

Consider paths with max height nα (for 0 < α ≤ 1/2):

Number of paths ≈ 4ne−c1n
1−2α

, Weight = 2−n
α

= e− log(2)nα .

Weighted number of paths is ≈ 4ne−c1n
1−2α−log(2)nα .

Maximum occurs when α = 1/3 and is equal to 4ne−cn
1/3

.
Our case: weights decrease similarly with height so we expect similar behavior
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Heuristics

We want to understand en,m for large n.

20 40 60 80 100

5.0×1022

1.0×1023

1.5×1023

en,m

m + 1
200 400 600 800 1000

5.0×10281

1.0×10282

1.5×10282

2.0×10282

en,m

m + 1

Figure: Plots of en,m against m + 1. Left: n = 100, Right: n = 1000.

Let’s zoom in to the left (small m) where interesting things are happening.
It seems to be converging to something...

Guess: en,m ≈ h(n)f

(
m + 1

g(n)

)
. Moreover, we guess g(n) = 3

√
n.
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Heuristics
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Heuristic analysis of weighted paths

Recurrence:

en,m =
n −m + 2

n + m
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1.

Guess: en,m ≈ h(n)f

(
m + 1

3
√
n

)
.

Substitute into recurrence and set m = κ 3
√
n − 1:

sn :=
h(n)

h(n − 1)
≈ 2 +

f ′′(κ)− 2κf (κ)

f (κ)
n−2/3 + O(n−1)

Solution (assuming equality above):

sn = 2 + cn−2/3 + O(n−1)

⇒

h(n) ≈ 2ne
3c
2 n1/3

f ′′(κ) = (2κ+ c)f (κ)

⇒ f (κ) = Ai(2−2/3(2κ+ c))

Where c is constant

and Ai is the Airy function.

Boundary condition en,−1 = 0. Then f (0) = 0 implies c = 22/3a1, where
a1 ≈ −2.338 satisfies Ai(a1) = 0.
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Proof method

Recall:

en,m =
n −m + 2

n + m
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1

Number of minimal acyclic DFAs is mn = 2n−1n!e2n,0.

Method:
Find sequences An,k and Bn,k with the same asymptotic form, such that

An,k ≤ en,k ≤ Bn,k ,

for all k and all n large enough.

How to find them?

1 Use heuristics

2 Fiddle until they satisfy the recurrence of en,k with the equalities replaced
by inequalities:

= −→ ≤ and ≥
3 Prove An,k ≤ en,k ≤ Bn,k by induction.
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Summary

Enumeration of minimal acyclic DFAs

1 Bijection to decorated paths

2 Recurrence for decorated paths

3 Heuristic analysis of recurrence

4 Inductive proof using heuristics

Lower bound:

mn ≥ γ1 n!8ne3a1n
1/3

n7/8,

for some constant γ1 > 0.

Upper bound (similar proof):

mn ≤ γ2 n!8ne3a1n
1/3

n7/8,

for some constant γ2 > 0.
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The end

Theorem

The number cn compacted binary trees and the number mn of minimal DFAs
recognizing a finite binary language satisfy for n→∞

mn = Θ
(
n! 8ne3a1n

1/3

n7/8
)
,

cn = Θ
(
n! 4ne3a1n

1/3

n
)
,

with a1≈−2.338: largest root of the Airy function Ai(x)= 1
π

∞∫
0

cos
(

t3

3 +xt
)
dt.

Further problems:

Multiplicative constant? Does it exist?

Other statistics: number of words? length of longest word? etc.

Another solved problem by the method: counting the number of tree-child
networks in phylogenomics [Fuchs, Yu, Zhang 2020]
Does anyone have a tricky recurrence to try? (Suggested by referees:
Piece-wise testable)
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Backup
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Other appearances of stretched exponentials

Known exactly:

Pushed Dyck paths (Beaton and Mckay):

∼
(

28/33−1/2π5/6(log 2)1/3
)

4ne−3(
π log 2

2 )2/3
n1/3n−5/6

Cogrowth sequence of lamplighter group (Revelle)

≈ µne−cn
1/3

Cogrowth sequences of other wreath products (Pittet and Saloffe-Coste):

≈ µne−c(log n)
2/3n1/3

Conjectured:

Permutations avoiding 1324 (Conway, Guttmann, and Zinn-Justin):

≈ µne−cn
1/2

Pushed self avoiding walks (Beaton, Guttmann, Jensen, and Lawler):

≈ µne−cn
3/7

Cogrowth sequence of Thompson’s group F (Elvey Price and Guttmann):

≈ µne−cn
0.5(log n)0.5
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Technicalities

Lots of technicalities:
Before induction, we have to remove the negative term from the recurrence,
but we have to do so precisely for asymptotics to stay the same.
We only prove bounds for small m; we prove that large m terms don’t matter
The lower bound is negative for very large m, so we have to be careful with
induction
We only prove the bounds for sufficiently large n, but this only makes a
difference to the constant term. Proof involves colorful Newton polygons:
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Relaxed trees: Proof idea – lower bound

Main idea

Suppose (Xn,m)n≥m≥0 and (sn)n≥1 satisfy

Xn,msn ≤
n −m + 2

n + m
Xn−1,m−1 + Xn−1,m+1, (1)

for all sufficiently large n and all integers m ∈ [0, n].

Define (hn)n≥0 by h0 = 1 and hn = snhn−1; then prove that

Xn,mhn ≤ b0dn,m

for some constant b0 by induction:

Xn,mhn
(1)

≤ n −m + 2

n + m
Xn−1,m−1hn−1 + Xn−1,m+1hn−1

(Induction)

≤ n −m + 2

n + m
b0dn−1,m−1 + b0dn−1,m+1

Rec. dn,m
= b0dn,m.
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for all sufficiently large n and all integers m ∈ [0, n].

Define (hn)n≥0 by h0 = 1 and hn = snhn−1; then prove that

Xn,mhn ≤ b0dn,m

for some constant b0 by induction:

Xn,mhn
(1)

≤ n −m + 2

n + m
Xn−1,m−1hn−1 + Xn−1,m+1hn−1

(Induction)

≤ n −m + 2

n + m
b0dn−1,m−1 + b0dn−1,m+1

Rec. dn,m
= b0dn,m.
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Relaxed trees: Lower bound

Lemma

For all n,m ≥ 0 let

X̃n,m :=

(
1− 2m2

3n
+

m

2n

)
Ai

(
a1 +

21/3(m + 1)

n1/3

)
and

s̃n := 2 +
22/3a1
n2/3

+
8

3n
− 1

n7/6
.

Then, for any ε > 0, there exists an ñ0 such that

X̃n,m s̃n ≤
n −m + 2

n + m
X̃n−1,m−1 + X̃n−1,m+1,

for all n ≥ ñ0 and for all 0 ≤ m < n1−ε.

Define Xn,m := max{X̃n,m, 0}. Then,

1 Xn,m s̃n ≤ n−m+2
n+m X̃n−1,m−1 + X̃n−1,m+1 ≤ n−m+2

n+m Xn−1,m−1 + Xn−1,m+1;

2 Xn,m s̃n = 0 ≤ n−m+2
n+m Xn−1,m−1 + Xn−1,m+1.
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