
Distribution of parameters in certain

fragments of the linear and planar λ-calculus

Alexandros Singh, presenting joint work with Olivier Bodini and Noam

Zeilberger.

October 12, 2020

15th Workshop in Computational Logic and Applications

1



What is the λ-calculus?

• A universal formal system for expressing computation.
• Its terms are formed using the following grammar:

• A variable is a valid term.

• If x a variable and t is a valid term, then so is (λx .t).

• If s and t are valid terms, then so is (s t).

• The λ calculus also provides us with tools to transform terms,

including the operation of β-reduction:

((λx .t) s)
β→ t[x := s]

Some examples of terms:

(λx .(xx))(λx .(xx))

λx .λy .(x (x y))

λx .(z (λy .y))
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Combinatorics of the λ-calculus

• General terms are quite complicated. Growth is

super-exponential, generating functions are not analytic. 1

Asymptotic number of general terms still (?) unresolved!

• We focus on linear terms: bound variables must appear

exactly once: λx .(x x), λx .λy .(a (y x)).

• We also consider planar terms: bound variables must appear in

the order they are introduced: λx .λy .(y x), λx .λy .(a (x y)).

1For the notion of term size given recursively by:

|var |= 1, |(s t)|= |s|+|t|+1, |λx .t|= |t|+1.
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The λ-calculus and maps

• Maps: graphs embedded in an oriented surface without

boundary.

• Closed linear terms are combinatorially intriguing: they

correspond to rooted connected trivalent maps! [1, 2]

Closed planar terms correspond to planar such maps. Open terms

allow for univalent vertices too.
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An example of a term and its corresponding map

λx.λy.y((λz.z) x)
λ

λ

@

@

λ

Where λ annotates abstractions and @ applications.
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Purpose of this work

• How do ”typical” (random, of large size) linear and planar

terms behave?

• How many free variables do they have? How often is a typical

term an abstraction?

• Using tools from analytic combinatorics to obtain parameter

distributions.
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In this talk

We’ll sketch the following results:

Linear λ-Terms
(Differentially Algebraic, Divergent)

• Limit distribution of free

variables

• Limit distribution of

id-subterms in closed terms.

• Limit distribution of closed

subterms in closed terms.

• Probability that term is an

abstraction.

Planar λ-Terms
(Algebraic, Analytic)

• Limit distribution of free

variables for regular and

bridgless terms.

• Probability that regular or

bridgless open term is an

abstraction.
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Free variables in closed linear terms

• Free variables are those not bound by an abstraction. For

example: λx .(a x)

Proposition

The limit distribution of free variables in linear λ-terms of size n

is Gaussian with mean and variance µ = σ2 ∼ 3
√
n.

Starting point (follows from definition of combinatorial maps):

L(z2, u) = uz2 + z4 + z5
∂

∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))
where L counts open linear λ-terms with u tagging free variables.
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Free variables in closed linear terms

Proof Sketch

Saddle-point analysis of Hadamard product yields:

[zn ] exp
(
z3/3 + uz

)
=

 1

6

√
2
√
3 n

− 1
2

√
π

−
1

36

√
2
√
3u2n

− 5
6

√
π

+ O

(
n
− 7

6

) eun
1/3+n/3n−n/3

[zn ] exp
(
z2/2

)
∼

1

2

e1/2+n/2(√
1 + n

)1+n √π
−

1

2

e1/2+n/2(
−
√
1 + n

)1+n √π

While an application of Bender’s theorem [3, Thm. 1] gives

2[zn]
d

dz
ln(A(z1/2, u)) = n

(
[zn]A(z , u)− 1

2
[zn−2]A(z , u)

)
+O

(
[zn−4]h(z , u)

)
for A(x , u) = exp(z2/2)� exp(z3/3 + uz)
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Distribution of identity-subterms in closed linear terms

• Identity terms: terms which are α-equivalent to λx .x . For

example: λx .(x (λy .y)).

• They appear as loops in the corresponding map.
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Distribution of identity-subterms in closed linear terms

• Identity terms: terms which are α-equivalent to λx .x . For

example: λx .(x (λy .y)).

• They appear as loops in the corresponding map.

(λx.x)(λy.y(λz.z(λw.w)))
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Distribution of identity-subterms in closed linear terms

Proposition

The limit distribution of identity-subterms in closed linear

λ-terms is Poisson of parameter λ = 1.

Proof Sketch: Use moment pumping on

G = (u − 1)z2 + zG 2 +
∂

∂u
G

where G counts closed linear terms with u tagging id-subterms.
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Distribution of identity-subterms in closed linear terms

Justification for

G = (u − 1)z2 + zG 2 +
∂

∂u
G

Terms are either id-terms, applications, or

tt ↔
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Distribution of identity-subterms in closed linear terms

For the pumping, note that the k-th derivative of the eq. may be

written as

∂k

∂uk
G − S − 2z G

∂k

∂uk
G =

∂k+1

∂uk+1
G

with S , depending on the parity of k , being as follows

b k
2
c∑

l=1

2z

(
k

l

)
∂ l

∂ul
G
∂k−l

∂uk−l
G , for odd k

b k
2
c−1∑

l=1

2z

(
k

l

)
∂ l

∂ul
G
∂k−l

∂uk−l
G + z

(
k

bk2 c

)(
∂b

k
2
c

∂ub
k
2
c
G

)2

, for even k
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Distribution of closed subterms in closed linear terms

• Closed subterms: subterms having no free variables.

• Correspond to bridges in the respective map.
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λx.x(λy.y(λz.z))
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Distribution of closed subterms in closed linear terms

Proposition

The limit distribution of closed subterms in closed linear λ-terms

is Poisson of parameter λ = 1.

Proof Sketch: Use moment pumping on

∂W

∂v
=

−(zv2W 2 + z2 −W )W

zv2(v − 1)W 2 + (1− v)W + vz2

where W counts closed linear terms with v tagging

identity-subterms.
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Probability that a closed linear term is an abstraction

Proposition

Asymptotically almost surely a random closed linear λ-term is an

abstraction.

Proof Sketch:

It can be shown that [zn]Lc ∼ k · 6n · n! for some constant k.

Compare the coefficients of Lc and 2z4 ∂
∂z Lc in

Lc = z2 + zL2c + 2z4
∂

∂z
Lc .

where Lc enumerates closed linear λ-terms.
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Distribution of identity-subterms in closed linear terms

Justification for

G = Lc = z2 + zL2c + 2z4
∂

∂z
Lc .

Terms are either identity-terms, applications, or

→
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Distribution of free variables in planar and bridgeless planar

terms

Proposition

The limit distribution of free variables in planar λ-terms of size n

is Gaussian with mean µ = n
8 and variance σ2 = 9n

32 .

Proposition

The limit distribution of free variables in bridgeless planar λ-terms

of size n is Gaussian with mean µ = n
5 and variance σ2 = 9n

25 .
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Distribution of free variables in planar and bridgeless planar

terms

Both results follow similar steps.

Our starting points are the following two equations

P (z , u) = uz + zQ (z , u)2 +
z (P (z , u)− P(z , 0))

u

Q (z , u) = uz + zQ (z , u)2 +
z
(
Q (z , u)− u[u1]Q(z , u)

)
u

with P and Q counting planar and bridgeless planar terms

respectively and u tagging free variables.

Sketch: use elimination and the quadratic method to obtain closed

form solutions. Proceed by applying, [4, Prop. IX.17].
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Distribution of free variables in planar and bridgeless planar

terms

Q(z, u) = 1/2 z−1 − 1/2 u−1

+
1

2

1

uz

(
1

3
u2

3
√
−1458 z6 + 6

√
3
√

19683 z8 − 4374 z5 + 324 z2 − 8 z−1z2 − 270 z3 + 1

+ 36 u2z3
1

3
√
−1458 z6 + 6

√
3
√

19683 z8 − 4374 z5 + 324 z2 − 8 z−1z2 − 270 z3 + 1

+
1

3
u2

1

3
√
−1458 z6 + 6

√
3
√

19683 z8 − 4374 z5 + 324 z2 − 8 z−1z2 − 270 z3 + 1

+
1

3
u2 − 4 u3z2 − 2 uz + z2

)1/2
.
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Distribution of free variables in planar and bridgeless planar

terms

While P(z) = A(z, u) + B(z, u) · C(z, u)−1/2 with

A(z, u) =
1

2z
−

1

2u
, B(z, u) =

1

2uz

C(Z , u) = −4 u3z2

+
1

48

u
3
√

1492992 z12 + 8640 z6 + 96
√

3
√

80621568 z18 − 559872 z12 + 1296 z6 − 1z3 − 1

z2

+ 72
uz4

3
√

1492992 z12 + 8640 z6 + 96
√
3
√

80621568 z18 − 559872 z12 + 1296 z6 − 1z3 − 1

+
1

48

u

z2
3
√

1492992 z12 + 8640 z6 + 96
√
3
√

80621568 z18 − 559872 z12 + 1296 z6 − 1z3 − 1

−
1

48

u

z2
+ u2 + z2
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Probability that an open planar or bridgeless planar term is an

abstraction

Proposition

Asymptotically, the probability that a random open planar

(bridgeless planar) term is an abstraction is ρP =
√
2
4 (ρPB = 2

5).

Proof Sketch: Estimate

[zn] z(P(z , 1)− P(z , 0))

[zn] P(z , 1)
and

[zn] z(Q(z , 1)− ([u1]Q(z , u))|u=1)

[zn] Q(z , 1)

Both P(z , 0) and [u1]Q(z , u)|u=1 are analytic at the respective

singularities ρP and ρPB of P and Q. Use the singular expansions

of P,Q at the corresponding singularities to obtain the desired

result.
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Conclusions

• Clear distinctions between the

divergent/differentially-algebraic case of linear terms and the

algebraic one of planar terms.

• Need for: more tools to handle divergent combinatorial

classes, algebraicity results for closed planar terms.

• Future directions: study of β-reduction, typing of linear terms.

Thank you!
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