Distribution of parameters in certain
 fragments of the linear and planar λ-calculus

Alexandros Singh, presenting joint work with Olivier Bodini and Noam Zeilberger.

October 12, 2020

15th Workshop in Computational Logic and Applications

What is the λ-calculus?

- A universal formal system for expressing computation.
- Its terms are formed using the following grammar:

Some examples of terms:
$(\lambda x \cdot(x x))(\lambda x \cdot(x x))$
$\lambda x \cdot \lambda y \cdot(x(x y))$
$\lambda x \cdot(z(\lambda y \cdot y))$

What is the λ-calculus?

- A universal formal system for expressing computation.
- Its terms are formed using the following grammar:
- A variable is a valid term.
- If x a variable and t is a valid term, then so is $(\lambda x . t)$.
- If s and t are valid terms, then so is $(s t)$.
- The λ calculus also provides us with tools to transform terms,
including the operation of β-reduction:

$$
((\lambda x . t) s) \xrightarrow{\beta} t[x:=s]
$$

Some examples of terms:

What is the λ-calculus?

- A universal formal system for expressing computation.
- Its terms are formed using the following grammar:
- A variable is a valid term.
- If x a variable and t is a valid term, then so is ($\lambda x . t)$.
- If s and t are valid terms, then so is $(s t)$.
- The λ calculus also provides us with tools to transform terms, including the operation of β-reduction:

$$
((\lambda x . t) s) \xrightarrow{\beta} t[x:=s]
$$

Some examples of terms:

$$
\begin{gathered}
(\lambda x \cdot(x x))(\lambda x \cdot(x x)) \\
\lambda x \cdot \lambda y \cdot(x(x y)) \\
\lambda x \cdot(z(\lambda y \cdot y))
\end{gathered}
$$

Combinatorics of the λ-calculus

- General terms are quite complicated. Growth is super-exponential, generating functions are not analytic. ${ }^{1}$ Asymptotic number of general terms still (?) unresolved!
- We focus on linear terms: bound variables must appear exactly once:
- We also consider planar terms: bound variables must appear in the order they are introduced

[^0]
Combinatorics of the λ-calculus

- General terms are quite complicated. Growth is super-exponential, generating functions are not analytic. ${ }^{1}$ Asymptotic number of general terms still (?) unresolved!
- We focus on linear terms: bound variables must appear exactly once: $\lambda x .(x x), \lambda x \cdot \lambda y \cdot(a(y x))$.
- We also consider planar terms: bound variables must appear in the order they are introduced

[^1]
Combinatorics of the λ-calculus

- General terms are quite complicated. Growth is
super-exponential, generating functions are not analytic. ${ }^{1}$ Asymptotic number of general terms still (?) unresolved!
- We focus on linear terms: bound variables must appear exactly once: $\lambda x .(x x), \lambda x \cdot \lambda y .(a(y x))$.
- We also consider planar terms: bound variables must appear in the order they are introduced: $\lambda x \cdot \lambda y \cdot(y x), \lambda x \cdot \lambda y \cdot(a(x y))$.

[^2]
The λ-calculus and maps

- Maps: graphs embedded in an oriented surface without boundary.
- Closed linear terms are combinatorially intriguing: they correspond to rooted connected trivalent maps! [1, 2] Closed planar terms correspond to planar such maps. Open terms allow for univalent vertices too

The λ-calculus and maps

- Maps: graphs embedded in an oriented surface without boundary.
- Closed linear terms are combinatorially intriguing: they correspond to rooted connected trivalent maps! [1, 2]
Closed planar terms correspond to planar such maps. Open terms allow for univalent vertices too.

An example of a term and its corresponding map

$\lambda x . \lambda y . y((\lambda z . z) x)$

Where λ annotates abstractions and @ applications.

Purpose of this work

- How do "typical" (random, of large size) linear and planar terms behave?
- How many free variables do they have? How often is a typical term an abstraction?
- Using tools from analytic combinatorics to obtain parameter distributions.

Purpose of this work

- How do "typical" (random, of large size) linear and planar terms behave?
- How many free variables do they have? How often is a typical term an abstraction?
- Using tools from analytic combinatorics to obtain parameter distributions.

Purpose of this work

- How do "typical" (random, of large size) linear and planar terms behave?
- How many free variables do they have? How often is a typical term an abstraction?
- Using tools from analytic combinatorics to obtain parameter distributions.

In this talk

We'll sketch the following results:

Linear λ-Terms
(Differentially Algebraic, Divergent)
> Planar λ-Terms (Algebraic, Analytic)

- Limit distribution of free variables
- Limit distribution of id-subterms in closed terms.
- Limit distribution of closed subterms in closed terms.
- Limit distribution of free variables for regular and bridgless terms.
- Probability that regular or bridgless open term is an abstraction.
- Probability that term is an abstraction.

Free variables in closed linear terms

- Free variables are those not bound by an abstraction. For example: $\lambda x .(a x)$

Proposition

The limit distribution of free variables in linear λ-terms of size n is Gaussian with mean and variance $\mu=\sigma^{2} \sim \sqrt[3]{n}$.

Starting point (follows from definition of combinatorial maps)
where L counts open linear λ-terms with u tagging free variables

Free variables in closed linear terms

- Free variables are those not bound by an abstraction. For example: $\lambda x .(a x)$

Proposition

The limit distribution of free variables in linear λ-terms of size n is Gaussian with mean and variance $\mu=\sigma^{2} \sim \sqrt[3]{n}$.

Starting point (follows from definition of combinatorial maps):

$$
L\left(z^{2}, u\right)=u z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)
$$

where L counts open linear λ-terms with u tagging free variables.

Free variables in closed linear terms

Proof Sketch

Saddle-point analysis of Hadamard product yields:

$$
\begin{gathered}
{\left[z^{n}\right] \exp \left(z^{3} / 3+u z\right)=\left(\frac{1}{6} \frac{\sqrt{2} \sqrt{3} n^{-\frac{1}{2}}}{\sqrt{\pi}}-\frac{1}{36} \frac{\sqrt{2} \sqrt{3} u^{2} n^{-\frac{5}{6}}}{\sqrt{\pi}}+O\left(n^{-\frac{7}{6}}\right)\right) e^{u n^{1 / 3}+n / 3} n^{-n / 3}} \\
{\left[z^{n}\right] \exp \left(z^{2} / 2\right) \sim \frac{1}{2} \frac{\mathrm{e}^{1 / 2+n / 2}}{(\sqrt{1+n})^{1+n} \sqrt{\pi}}-\frac{1}{2} \frac{\mathrm{e}^{1 / 2+n / 2}}{(-\sqrt{1+n})^{1+n} \sqrt{\pi}}}
\end{gathered}
$$

While an application of Bender's theorem [3, Thm. 1] gives
$2\left[z^{n}\right] \frac{d}{d z} \ln \left(A\left(z^{1 / 2}, u\right)\right)=n\left(\left[z^{n}\right] A(z, u)-\frac{1}{2}\left[z^{n-2}\right] A(z, u)\right)+O\left(\left[z^{n-4}\right] h(z, u)\right)$
for $A(x, u)=\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)$

Distribution of identity-subterms in closed linear terms

- Identity terms: terms which are α-equivalent to $\lambda x . x$. For example: $\lambda x .(x(\lambda y \cdot y))$.
- They appear as loops in the corresponding map.

Distribution of identity-subterms in closed linear terms

- Identity terms: terms which are α-equivalent to λx.x. For example: $\lambda x .(x(\lambda y \cdot y))$.
- They appear as loops in the corresponding map.

$$
(\lambda x . x)(\lambda y . y(\lambda z . z(\lambda w . w)))
$$

Distribution of identity-subterms in closed linear terms

Proposition

The limit distribution of identity-subterms in closed linear λ-terms is Poisson of parameter $\lambda=1$.

Proof Sketch: Use moment pumping on

$$
G=(u-1) z^{2}+z G^{2}+\frac{\partial}{\partial u} G
$$

where G counts closed linear terms with u tagging id-subterms.

Distribution of identity-subterms in closed linear terms

Justification for

$$
G=(u-1) z^{2}+z G^{2}+\frac{\partial}{\partial u} G
$$

Terms are either id-terms, applications, or

Distribution of identity-subterms in closed linear terms

For the pumping, note that the k-th derivative of the eq. may be written as

$$
\frac{\partial^{k}}{\partial u^{k}} G-S-2 z G \frac{\partial^{k}}{\partial u^{k}} G=\frac{\partial^{k+1}}{\partial u^{k+1}} G
$$

with S, depending on the parity of k, being as follows

$$
\begin{aligned}
& \sum_{I=1}^{\left\lfloor\frac{k}{2}\right\rfloor} 2 z\binom{k}{l} \frac{\partial^{\prime}}{\partial u^{l}} G \frac{\partial^{k-l}}{\partial u^{k-l}} G, \text { for odd } k \\
& \sum_{l=1}^{\left\lfloor\frac{k}{2}\right\rfloor-1} 2 z\binom{k}{l} \frac{\partial^{\prime}}{\partial u^{l}} G \frac{\partial^{k-l}}{\partial u^{k-l}} G+z\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor}\left(\frac{\partial^{\left\lfloor\frac{k}{2}\right\rfloor}}{\partial u^{\left\lfloor\frac{k}{2}\right\rfloor}} G\right)^{2}, \text { for even } k
\end{aligned}
$$

Distribution of closed subterms in closed linear terms

- Closed subterms: subterms having no free variables.
- Correspond to bridges in the respective map.

Distribution of closed subterms in closed linear terms

- Closed subterms: subterms having no free variables.
- Correspond to bridges in the respective map.

$$
\lambda x \cdot x(\bar{\lambda} \bar{y} \cdot \bar{y}(\bar{\lambda} \bar{z} . z))
$$

Distribution of closed subterms in closed linear terms

Proposition

The limit distribution of closed subterms in closed linear λ-terms is Poisson of parameter $\lambda=1$.

Proof Sketch: Use moment pumping on

$$
\frac{\partial W}{\partial v}=\frac{-\left(z v^{2} W^{2}+z^{2}-W\right) W}{z v^{2}(v-1) W^{2}+(1-v) W+v z^{2}}
$$

where W counts closed linear terms with v tagging identity-subterms.

Probability that a closed linear term is an abstraction

Proposition

Asymptotically almost surely a random closed linear λ-term is an abstraction.

Proof Sketch:

It can be shown that $\left[z^{n}\right] L_{c} \sim k \cdot 6^{n} \cdot n$! for some constant k.
Compare the coefficients of L_{c} and $2 z^{4} \frac{\partial}{\partial z} L_{c}$ in

$$
L_{c}=z^{2}+z L_{c}^{2}+2 z^{4} \frac{\partial}{\partial z} L_{c} .
$$

where L_{c} enumerates closed linear λ-terms.

Distribution of identity-subterms in closed linear terms

Justification for

$$
G=L_{c}=z^{2}+z L_{c}^{2}+2 z^{4} \frac{\partial}{\partial z} L_{c} .
$$

Terms are either identity-terms, applications, or
 terms

Proposition

The limit distribution of free variables in planar λ-terms of size n is Gaussian with mean $\mu=\frac{n}{8}$ and variance $\sigma^{2}=\frac{9 n}{32}$.

Proposition

The limit distribution of free variables in bridgeless planar λ-terms of size n is Gaussian with mean $\mu=\frac{n}{5}$ and variance $\sigma^{2}=\frac{9 n}{25}$.

Distribution of free variables in planar and bridgeless planar

 termsBoth results follow similar steps.
Our starting points are the following two equations

$$
\begin{aligned}
& P(z, u)=u z+z Q(z, u)^{2}+\frac{z(P(z, u)-P(z, 0))}{u} \\
& Q(z, u)=u z+z Q(z, u)^{2}+\frac{z\left(Q(z, u)-u\left[u^{1}\right] Q(z, u)\right)}{u}
\end{aligned}
$$

with P and Q counting planar and bridgeless planar terms respectively and u tagging free variables.

Sketch: use elimination and the quadratic method to obtain closed form solutions. Proceed by applying, [4, Prop. IX.17].

Distribution of free variables in planar and bridgeless planar
 terms

$$
\begin{aligned}
Q(z, u) & =1 / 2 z^{-1}-1 / 2 u^{-1} \\
& +\frac{1}{2} \frac{1}{u z}\left(\frac{1}{3} u^{2} \sqrt[3]{-1458 z^{6}+6 \sqrt{3} \sqrt{19683 z^{8}-4374 z^{5}+324 z^{2}-8 z^{-1}} z^{2}-270 z^{3}+1}\right. \\
& +36 u^{2} z^{3} \frac{1}{\sqrt[3]{-1458 z^{6}+6 \sqrt{3} \sqrt{19683 z^{8}-4374 z^{5}+324 z^{2}-8 z^{-1}} z^{2}-270 z^{3}+1}} \\
& +\frac{1}{3} u^{2} \frac{1}{\sqrt[3]{-1458 z^{6}+6 \sqrt{3} \sqrt{19683 z^{8}-4374 z^{5}+324 z^{2}-8 z^{-1}} z^{2}-270 z^{3}+1}} \\
& \left.+\frac{1}{3} u^{2}-4 u^{3} z^{2}-2 u z+z^{2}\right)^{1 / 2} .
\end{aligned}
$$

Distribution of free variables in planar and bridgeless planar terms

While $P(z)=A(z, u)+B(z, u) \cdot C(z, u)^{-1 / 2}$ with

$$
\begin{aligned}
A(z, u) & =\frac{1}{2 z}-\frac{1}{2 u}, B(z, u)=\frac{1}{2 u z} \\
C(Z, u) & =-4 u^{3} z^{2} \\
& +\frac{1}{48} \frac{u \sqrt[3]{1492992 z^{12}+8640 z^{6}+96 \sqrt{3} \sqrt{80621568 z^{18}-559872 z^{12}+1296 z^{6}-1} z^{3}-1}}{z^{2}} \\
& +72 \frac{u z^{4}}{\sqrt[3]{1492992 z^{12}+8640 z^{6}+96 \sqrt{3} \sqrt{80621568 z^{18}-559872 z^{12}+1296 z^{6}-1} z^{3}-1}} \\
& +\frac{1}{48} \frac{u}{z^{2} \sqrt[3]{1492992 z^{12}+8640 z^{6}+96 \sqrt{3} \sqrt{80621568 z^{18}-559872 z^{12}+1296 z^{6}-1} z^{3}-1}} \\
& -\frac{1}{48} \frac{u}{z^{2}}+u^{2}+z^{2}
\end{aligned}
$$

Probability that an open planar or bridgeless planar term is an

 abstraction
Proposition

Asymptotically, the probability that a random open planar (bridgeless planar) term is an abstraction is $\rho_{P}=\frac{\sqrt{2}}{4}\left(\rho_{P B}=\frac{2}{5}\right)$.

Proof Sketch: Estimate

$$
\frac{\left[z^{n}\right] z(P(z, 1)-P(z, 0))}{\left[z^{n}\right] P(z, 1)} \text { and } \frac{\left[z^{n}\right] z\left(Q(z, 1)-\left.\left(\left[u^{1}\right] Q(z, u)\right)\right|_{u=1}\right)}{\left[z^{n}\right] Q(z, 1)}
$$

Both $P(z, 0)$ and $\left.\left[u^{1}\right] Q(z, u)\right|_{u=1}$ are analytic at the respective singularities ρ_{P} and $\rho_{P B}$ of P and Q. Use the singular expansions of P, Q at the corresponding singularities to obtain the desired result.

Conclusions

- Clear distinctions between the divergent/differentially-algebraic case of linear terms and the algebraic one of planar terms.
- Need for: more tools to handle divergent combinatorial classes, algebraicity results for closed planar terms.
- Future directions: study of β-reduction, typing of linear terms.
Thank you!

Conclusions

- Clear distinctions between the divergent/differentially-algebraic case of linear terms and the algebraic one of planar terms.
- Need for: more tools to handle divergent combinatorial classes, algebraicity results for closed planar terms.
- Future directions: study of β-reduction, typing of linear terms.
Thank you!

Conclusions

- Clear distinctions between the divergent/differentially-algebraic case of linear terms and the algebraic one of planar terms.
- Need for: more tools to handle divergent combinatorial classes, algebraicity results for closed planar terms.
- Future directions: study of β-reduction, typing of linear terms.

Thank you!

Bibliography

(R. O. Bodini, D. Gardy, and A. Jacquot, "Asymptotics and random sampling for BCI and BCK lambda terms," Theoretical Computer Science, vol. 502, pp. 227-238, 2013.
囯 N. Zeilberger, "Linear lambda terms as invariants of rooted trivalent maps," Journal of Functional Programming, vol. 26, 2016.
E. E. A. Bender, "An asymptotic expansion for the coefficients of some formal power series," Journal of the London Mathematical Society, vol. 2, no. 3, pp. 451-458, 1975.

囲 P. Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University Press, 2009.

[^0]: ${ }^{1}$ For the notion of term size given recursively by: $|v a r|=1,|(s t)|=|s|+|t|+1,|\lambda x . t|=|t|+1$.

[^1]: ${ }^{1}$ For the notion of term size given recursively by: \mid var $|=1,|(s t)|=|s|+|t|+1,|\lambda x . t|=|t|+1$.

[^2]: ${ }^{1}$ For the notion of term size given recursively by: \mid var $|=1,|(s t)|=|s|+|t|+1,|\lambda x . t|=|t|+1$.

