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Problem statement

Problem

Consider Zermelo-Fraenkel set theory zf and its extension zfc

including the axiom of choice. What is the asymptotic density of

theorems provable within zfc? Is it true that zfc is asymptotically

more expressive than zf?

Definition

We define the asymptotic expressiveness of a theory T as the

asymptotic density of its theorems among all possible sentences:

µ(T ) = lim
n→∞

|{ϕ : |ϕ| = n ∧ T ` ϕ}|
|{ϕ : |ϕ| = n}|

. (1)
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Formulae

The language of Zermelo-Fraenkel set theory consists of a single

binary membership predicate (∈) and no function symbols. More

specifically, assume that F is a functionally complete set of

proposition connectives, e.g. {∧,∨,¬}. Then,

I (x ∈ y) is a valid formula for any two variables x and y ,

I if ϕ1, . . . , ϕn are valid formulae, then

so is ◦(ϕ1, . . . , ϕn) for all connectives (◦) ∈ F ,

I if ϕ is a valid formula and x is a variable, then (∀x.ϕ) and

(∃x.ϕ) are valid formulae.

Example

∃x. [∀y. (y 6∈ x)].
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Formulae

In the current work, we adopt the De Bruijn notation for formulae.

Example

∃x. [∀y. (y 6∈ x)] ≡ ∃ [∀ (0 6∈ 1)].

Symbolically, the set Φ∞ of formulae is defined as

Φ∞ = V ∈ V | ∀Φ∞ | ∃Φ∞ |
⋃

(◦)∈F

◦(~Φ∞)

where indices V are represented in unary, i.e. n = S(n)
0.

Consequently V is specified by V = 0 | SV .
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Size model

We assume a natural size notion for formulae. In other words, the

size |ϕ| of a formula ϕ is the number of its building constructors.

Example

|∃ [∀ (0 6∈ 1)]| = 7.

Φ∞ = V ∈ V | ∀Φ∞ | ∃Φ∞ |
⋃

(◦)∈F

◦(~Φ∞)

Therefore

Φ∞(z) = z
(

z
1− z

)
2

+ 2zΦ∞(z) +
∑
(◦)∈F

zΦ∞(z)arity(◦).
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Counting formulae

Proposition

The generating function Φ∞ admits a Puiseux expansion in form of

Φ∞(z) = a− b
√

1− z
ρ

+ O
(∣∣

1− z
ρ

∣∣)
Moreover

[zn]Φ∞(z) ∼ C · ρnn−3/2.

Proof.

By Post’s theorem F must contain a connective of arity k ≥ 2. In

consequence the defining equation of Φ∞ is non-linear in Φ∞.

We can therefore apply the Drmota–Lalley–Woods theorem.
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Counting sentences

Recall that we are interested in sentences rather than formulae.

Hence we want to count formulae in which each index is bound,

i.e. has a corresponding quantifier.

Example

∃ [0 ∧ (∀0→ 2)] is not a sentence as 2 is free.

Definition

We call a formula ϕ m-open if prepending ϕ with m head

quantifiers, be it universal or existential, turns ϕ into a sentence,

i.e. a formula without free indices.

Note that sentences are 0-open (closed) formulae.
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Counting sentences

By symbolic methods, the definition of m-open formulae gives rise

to an infinitely nested system involving all the classes of m-open

formulae Φm:

Φ0 := ∀Φ1 | ∃Φ1 |
⋃

(◦)∈F

◦(~Φ0)

Φ1 := ∀Φ2 | ∃Φ2 |
⋃

(◦)∈F

◦(~Φ1) | V<1 ∈ V<1

Φ2 := ∀Φ3 | ∃Φ3 |
⋃

(◦)∈F

◦(~Φ2) | V<2 ∈ V<2

. . .

Φm := ∀Φm+1 | ∃Φm+1 |
⋃

(◦)∈F

◦(~Φm) | V<m ∈ V<m

. . .
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Counting sentences

Note that Φ0 ( Φ1 ( Φ2 ( · · · ( Φm · · · ( Φ∞ and so, intuitively,

Φm −−−−→
m→∞

Φ∞.

Proposition

For all m ≥ 0, the number of m-open formulae satisfies

[zn]Φm(z) ∼ Cm · ρnn−3/2.

Idea: Re-use tools developed to count closed λ-terms
1
. Note that

Φm(z) = z
(

z (1− zm)

1− z

)
2

+ 2zΦm+1(z) +
∑
(◦)∈F

zΦm(z)arity(◦)

Φ∞(z) = z
(

z
1− z

)
2

+ 2zΦ∞(z) +
∑
(◦)∈F

zΦ∞(z)arity(◦).

1

B., Bodini, Dovgal. "Statistical properties of lambda-terms". EJC. 2019.
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Counting theorems

Plan

Since we can now estimate [zn]Φ0(z), i.e. the number of sentences of

size n, we need to focus on the number of theorems of size n.

Problem

Deciding whether a given sentence ϕ is a theorem of zf (or zfc) is

undecidable. So is to compute |{ϕ : |ϕ| = n ∧ zf ` ϕ}|.
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Interlude — a few intuitions

What does it mean that T ` ϕ?

1. there exists a proof tree whose leaves are (instantiations of)

axioms of T or predicate logic, internal nodes represent valid

inference rules (e.g. modus ponens), and the root represents ϕ.

2. ϕ holds in all models of T .

Definition

A model (structure) of a theory T is a non-empty universe U of

objects and an interpretation I of T ’s signature (i.e. predicates and

function symbols).

1. I(f ) : Un → U if f is an n-ary symbol.

2. I(P) : Un → {false, true} if P is n-ary predicate.
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Interlude — a few intuitions

Definition

A theory T is said be consistent if T 6` ϕ ∧ ¬ϕ for any sentence ϕ or,

equivalently, if T has a model. T is said to be complete if for all

sentences ϕ it holds T ` ϕ or T ` ¬ϕ.

Definition

A sentence ϕ is said to be independent of T if T 6` ϕ nor T 6` ¬ϕ.

Gödel’s incompleteness theorems

Su�iciently expressive theories (such as zf or zfc) cannot be both

consistent and complete. Moreover, su�iciently expressive and

consistent theories cannot prove their own consistency.
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Formulae templates

Definition

A template C is a formula with a single hole [·] instead of some

sub-formula in form of (n ∈ m). To denote the result of substituting

a formula ϕ for [·] in C we write C[ϕ].

Definition

We call a template m-permissive if for each m-open formula ϕ the

resulting C[ϕ] is a sentence, i.e. is 0-open. By analogy to formulae,

the size of a template is the total weight of its building constructors,

assuming that [·] weights zero.

Example

The template C = ∃ ∀ [·] is of size two. The result of substituting

(0 6∈ 1) into C is the formula C[(0 6∈ 1)] = ∃ ∀ (0 6∈ 1). The hole [·] is

proceeded by two quantifiers in C so C is 2-permissive.
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Results

Lemma

Let C be an m-permissive template and L(C) be the language it

generates, i.e. L(C) = {C[ϕ] : ϕ is m-open}. Then, the set L(C) has

positive asymptotic density in the set of all sentences.

Proposition

Let T be a consistent set theory. Then, the set of T -theorems

cannot have a trivial asymptotic density, i.e. neither

µ(T ) 6= 0 nor µ(T ) 6= 1. Moreover, T is inconsistent

if and only if µ(T ) = 1.

Proof.

Let τ be an arbitrary tautology. Consider C = ([·] ∨ τ) and

C = ([·] ∧ ¬τ). Note that these have positive asymptotic density

and consist of tautologies and anti-tautologies, respectively.
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Results

Proposition

Let T be a consistent theory and φ be an sentence independent of

T , i.e. T 6` φ nor T 6` ¬φ. Then, there exists a set of theorems of the

extended T + φ which has positive asymptotic density.

Proof.

Let τ be an arbitrary tautology. Consider the context

C = (τ ∨ [·])→ φ and the set L(C) = {C[ϕ] : ϕ ∈ Φ0} it generates.

Note that L(C) has positive asymptotic density and consists of

sentences which cannot be proven in the weaker theory T .

Corollary

The axiom of choice is an example of a sentence independent of zf

hence zfc and zf cannot share the same asymptotic expressiveness.
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Results

Proposition

Let µ be a predicate definable in zfc such that zfc ` µ(g) if and only

if µ(zfc) exists and is equal to g. Let consistent be the (canonical)

predicate encoding the consistency of zfc. If zfc is consistent and

zfc ` consistent←→ ¬µ(1), (2)

then zfc 6` ¬∃ g : µ(g).

Proof.

Suppose that zfc ` ¬∃ g : µ(g). Equivalently, zfc ` ∀ g : ¬µ(g).

Hence in particular zfc ` ¬µ(1). By (2) it holds zfc ` consistent.

Gödel’s second incompleteness theorem, as instantiated for zfc,

provides the required contradiction.
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Conclusions and remarks

1. zfc 6` consistent along with the assumption that zfc is

consistent imply that zfc has a modelM such thatM � µ(1)
which witnesses the final proposition.

2. It is, however, unclear if the same argumentation can be carried

out for the weaker zf. Our proof of zfc ` consistent↔ ¬µ(1)
uses analytic combinatorics and, most likely, the axiom of

choice.

Open problem

If zfc is consistent, then either:

I zfc has a modelM such thatM � ¬∃ g : µ(g), or

I M � ∃ g : µ(g) holds for each modelM of zfc. A priori these
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Conclusions and remarks

Thank you!


