o-property of B-terms*

Keisuke Nakano (Tohoku University) Joint work with Mirai Ikebuchi (MIT)

* B-term is a combinator built from $B = \lambda xyz.x(yz)$ alone.

Open Problem Session in CLA 2020

*o***-property of combinators Definition of** $(X)_n$ (self right application of n X's). Let *X* be a combinator.

Formally, $(X)_1 = X$ and $(X)_{n+1} = (X)_n X$ for $n \ge 1$.

Definition (*o***-property).** $\beta\eta$ -equivalence.

Example (o-property of B and BB) $(BB)_{52} = \beta_{\eta} (BB)_{32}$

 $(X)_n \stackrel{\text{\tiny def}}{=} XXX...X$ where application is left-associative

A combinator *X* has *o*-property if $\{(X)_n | n \in \mathbb{N}\}$ is finite up to

$(B)_{10} = \beta_{\eta} (B)_{6}$ (which implies $(B)_{10+k} = \beta_{\eta} (B)_{6+k}$ for all $k \ge 0$)

Conjecture on *o*-property

Nakano conjectured in 2008 that: where $B^0 B = B$ and $B^{k+1} B = B(B^k B)$ for $k \ge 0$.

(if part) Known only for $n \le 6$ by computation. $(B^3 B)_{10036} =_{\beta\eta} (B^3 B)_{4240} \quad (B^4 B)_{622659} =_{\beta\eta} (B^4 B)_{191206}$ $(B^5 B)_{1000685878} = \beta_{\eta} (B^5 B)_{766241307}$ $(B^6 B)_{2980054085040} =_{\beta\eta} (B^6 B)_{2641033883877}$ See [Ikebuchi&N. 2020] for the detail.

- B-term X has *o*-property iff $X =_{\beta\eta} B^n B$ for some $n \ge 0$
- $(B^0 B)_6 =_{\beta\eta} (B^0 B)_{10} \quad (B^1 B)_{32} =_{\beta\eta} (B^1 B)_{52} \quad (B^2 B)_{294} =_{\beta\eta} (B^2 B)_{258}$
- Visit https://github.com/ksk/Rho for the implementation.
- (only if part) Known only for some special forms of *B*-terms.

Reference

[Ikebuchi&N. 2020] Mirai Ikebuchi and Keisuke Nakano "On Properties of *B*-terms" where a motivational story for the problem is included.

- Logical Methods in Computer Science, 16(2), 2020.

