
Submitted to:
CLA’2020

c© Paul Tarau and Valeria de Paiva
This work is licensed under the
Creative Commons Attribution License.

Training Neural Networks as Theorem Provers via the
Curry-Howard Isomorphism

Paul Tarau
Dept. of Computer Science and Engineering

University of North Texas
paul.tarau@unt.edu

Valeria de Paiva
Topos Institute, CA, USA

valeria.depaiva@gmail.com

Overview of the proposed 30 minutes CLA’20 talk
We describe a simple but effective method to train neural networks as theorem provers for an inter-

esting logic language fragment, via combinatorial generation algorithms and the Curry-Howard isomor-
phism between lambda terms and formulas corresponding to their types.

Linear Logic [2] when used as a resource-control mechanism constrains the use of formulas avail-
able as premises in a proof. Its powerful proof mechanism is known to be Turing-complete even in
the propositional case. Our talk will focus on generating all theorems of a given size for a restricted
set of formulas, the Implicational fragment of Propositional Intuitionistic Linear Logic (IPILL), corre-
sponding to principal types of lambda terms in normal form. In its simplest form, the Curry-Howard
isomorphism [3] connects the implicational fragment of propositional intuitionistic logic with types in
the simply typed lambda calculus. A low polynomial type inference algorithm associates a type (when it
exists) to a lambda term. Harder (PSPACE-complete, see [6]) algorithms associate inhabitants to a given
type expression with the resulting lambda term (typically in normal form) serving as a witness for the
existence of a proof for the corresponding tautology.

To train neural networks as theorem provers via the Curry-Howard isomorphism we need to effi-
ciently generate all theorems of a given size in the implicational fragment of propositional intuitionistic
linear logic, with help from their lambda term couterparts.

We start by filtering for linearity the proof terms associated by a Prolog-based theorem prover for
Implicational Intuitionistic Logic. This works, but using for each formula a PSPACE-complete algorithm
limits it to very small formulas. We take a few back and forth walks over the bridge between proof
terms and theorems, provided by the Curry-Howard isomorphism, and derive step-by-step an efficient
algorithm requiring a low polynomial effort per generated theorem. The resulting Prolog program runs in
O(N) space for terms of size N and generates in a few hours 7,566,084,686 theorems in IPILL, together
with their proof terms.

We will explain our results in terms of a size-preserving bijection between linear lambda terms in
normal form and their principal types. The bijection, first proven in [4] and given a geometric interpre-
tation in [7], has been instrumental in deriving the optimal final form of our term/formula pair generator.
It is proven in [7] by exhibiting a reversible transformation of oriented edges in the tree describing the
linear lambda term in normal form, into corresponding oriented edges in the tree describing the linear
implicational formula, acting as its principal type.

Thus, by generating all typable linear lambda terms of in normal form size N, we obtain, for free, a
generator for all corresponding IPILL theorems of size N.

The figure below shows a lambda term normal form and its corresponding linear type (where we
label lambda nodes with l, application nodes with a, linear implication nodes with -o and lambda and

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Lambda Terms and Neural Network Training

type variables with uppercase letters).

λX .(((X λY.Y ) λZ.Z) λU.U)

l

a

l

UU

a

l

ZZ

a

l

YY

X

X

-o

U-o

-o

-o

U-o

ZZ

-o

YY

-o

XX

The dataset, containing generated theorems of several sizes and their proof-terms in postfix form, is
available at http://www.cse.unt.edu/~tarau/datasets/lltaut/ and can be used for correctness,
performance and scalability testing for linear logic theorem provers.

More importantly, we show that the formula/proof-term pairs in the dataset are usable to test if deep-
learning systems can perform a fairly interesting theorem proving task, a topic of growing interest in
deep learning [5, 1]. When trained via a seq2seq algorithm with an LSTM recurrent neural network on
encodings of theorems and their proof-terms, the resulting model performs unusually well when tested
on unseen formula/proof-term pairs.

Our experiments with training Recurrent Neural Networks using our implicational linear logic theo-
rem dataset are available at: https://github.com/ptarau/neuralgs .

References
[1] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li & Denny Zhou (2019): Neural Logic Ma-

chines. Available at https://openreview.net/pdf?id=B1xY-hRctX.
[2] Jean-Yves Girard (1987): Linear logic. Theoretical computer science 50(1), pp. 1–101.
[3] W.A. Howard (1980): The Formulae-as-types Notion of Construction. In J.P. Seldin & J.R. Hindley, editors:

To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London,
pp. 479–490.

[4] Grigori E. Mints (1992): Closed categories and the theory of proofs. In: Selected Papers in Proof Theory,
Bibliopolis.

[5] Tim Rocktäschel & Sebastian Riedel (2017): End-to-end Differentiable Proving. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett, editors: Advances in Neural Information
Processing Systems 30, Curran Associates, Inc., pp. 3788–3800. Available at http://papers.nips.cc/
paper/6969-end-to-end-differentiable-proving.pdf.

[6] Richard Statman (1979): Intuitionistic Propositional Logic is Polynomial-Space Complete. Theor. Comput.
Sci. 9, pp. 67–72, doi:10.1016/0304-3975(79)90006-9.

[7] Noam Zeilberger (2015): Balanced polymorphism and linear lambda calculus, talk at TYPES’15. http:

//noamz.org/papers/linprin.pdf.

http://www.cse.unt.edu/~tarau/datasets/lltaut/
https://github.com/ptarau/neuralgs
https://openreview.net/pdf?id=B1xY-hRctX
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf
http://dx.doi.org/10.1016/0304-3975(79)90006-9
http://noamz.org/papers/linprin.pdf
http://noamz.org/papers/linprin.pdf

