
Statistical Analysis of Non-Deterministic Fork-Join Processes
Analyzing the state-space of concurrent programs is a notoriously difficult task, if only because
of the infamous state explosion problem. Several techniques have been developed to “fight” this
explosion: symbolic encoding of the state-space, partial order reductions, exploiting symmetries,
etc. An alternative approach is to adopt a probabilistic point of view, for example by developing
statistical analysis techniques such as [1]. The basic idea is to generate random executions from
program descriptions, sacrificing exhaustiveness for the sake of tractability. However, there is an
important difference between generating an arbitrary execution and generating a random execution
according to a known (typically the uniform) distribution. Only the latter allows to estimate the
coverage of the state-space of a given analysis.

As a preliminary, I will present a combinatorial interpretations for the fundamental constructions
of concurrent programs. To this end, I will introduce a class of programs that uses a fork-join
model of synchronization, together with loops and a choice construct for non-determinism. This is a
simple formalism but it is non-trivial in terms of the concurrency features it provides. Based on this
combinatorial interpretation, I will derive in a systematic way a combinatorial specification of the
possible executions of a program. This specification is a good source of algorithmic investigations
and the starting point for the rest of this work.

The first problem I will cover is that of counting the number of executions (of bounded length) of the
programs. This is the problem one has to tackle to precisely quantify the so-called state “explosion”,
and it is also an important building block for the algorithms I will described later. Unfortunately,
counting executions of concurrent programs is in fact hard in the general case. It is shown in [2]
that even for simple programs allowing barrier synchronization (no loops, no choices), counting
is a ]P -complete problem. Fork-join parallelism enables a good balance between tractability and
expressivity by enforcing some structure in the state-space.

Of course counting executions has no direct practical application, but it is an essential requirement
for two complementary and more interesting analysis techniques I will discuss. First, I will describe
an efficient uniform random generator of executions of given bounded length for a given process.
Without prior knowledge of the state-space, the uniform distribution yields the best coverage, which
makes this random generator a good default candidate for random testing for instance. The second
algorithm generates uniform random prefixes, which allows the user to introduce some bias in the
statistical exploration strategy, e.g. towards regions of interest of the state-space, while still giving
a good coverage and most importantly still giving control over the distribution. A fundamental
characteristics of these algorithms is that they work on the syntactic representation of the program
and do not require the explicit construction of the state-space, hence enabling the analysis of systems
of a rather large size.

An implementation of all the algorithms presented here can be found at https://gitlab.com/ParCo
mb/libnfj

[1] Gaudel, M., Denise, A., Gouraud, S., Lassaigne, R., Oudinet, J., Peyronnet, S.:Coverage-biased
random exploration of models. Electr. Notes Theor. Comput. Sci.220(1), 3–14 (2008)

[2] Bodini, O., Dien, M., Genitrini, A., Peschanski, F.: The Combinatorics of BarrierSynchronization.
In: International Conference Petri Nets. pp. 386–405. Springer(2019)

https://gitlab.com/ParComb/libnfj
https://gitlab.com/ParComb/libnfj

	Statistical Analysis of Non-Deterministic Fork-Join Processes

