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with the collaboration of Julien Clément (CNRS)

> ⊥

x2

x1

x3

x2 x2

x1

x4

x3

x1

> ⊥

x2

x3

x4

x2

x3

x2

x4

x2

Figure 1: Two Reduced Ordered Bi-
nary Decision Diagrams associated to
the same Boolean function. Nodes are
labeled with Boolean variables; left dot-
ted edges (resp. right solid edges) are
False links (resp. True links).

The representation of a Boolean function as a binary decision tree has
been used for decades. Its main benefit, compared to other representations
like a truth table or a Boolean circuit, comes from the underlying divide-and-
conquer paradigm. Thirty years ago a new data structure emerged, based
on the compaction of binary decision trees, and hereafter denoted as Binary
Decision Diagrams (or bdds) [Bry86]. Its takeoff has been so spectacular
that many variants of compacted structures have been developed, and called
through many acronyms as presented in [Weg00]. One way to represent the
different diagrams consists in their embedding as directed acyclic graphs (or
dags). One reason for the existence of all these variants of diagrams is
due to the fact that each dag correspondence has its own internal agency
of the nodes and thus each representation is oriented towards a specific con-
straint. For example, the case of Reduced Ordered Binary Decision Diagrams
(robdds) is such that the variables do appear at most once and in the same
order along any path from the source to a sink of the dag, and furthermore,
no two occurrences of the same subgraph do appear in the structure. For
such structures and others, like qobdds or zbdds for example, there is a
canonical representation of each Boolean function.

In his book [Knu11] Knuth proves or recalls combinatorial results, like properties for the profile of a bdd, or the
way to combine two structures to represent a more complex function. However, one notes an unseemly fact. There
are no results about the distribution of the Boolean functions according to their robdd size. In fact in contrast to
(e.g.) binary trees where there is a recursive characterization that allows to well specify the trees, we have no local-
constraint here for robdds ans thus a similar recurrence is unexpected. Very recently, there is a first study exploring
experimentally, numerically, and theoretically the typical and worst-case robdd sizes in [NV19]. We aim at obtaining
the same kind of combinatorial results but here we design a partition of the decision diagrams that allows us to go
much further in terms of size. In particular we obtain an exhaustive enumeration of the diagrams according to their
size up to 9 variables. This was unreachable through the exhaustive approach proposed in [NV19] due to the double

exponential complexity of the problem: there are 22
k

Boolean functions with k variables. Our c++ implementation
fully manages the case of 9 variables (see Fig 2) that corresponds to 2512 ≈ 10154 functions. In particular for 9 Boolean
variables, our implementation shows one seventh of all robdds are of size 132 (the possible sizes range from 3 to 143).
Furthermore, robdds of size between 125 and 143 represents more than 99.8% of all robdds, in accordance with
theoretical results from [VB04, GPS04].

Figure 2: Proportion of BDDs over
9 variables according to their size

Starting from the well-known compaction process (that takes a binary deci-
sion tree and outputs its compacted form, the robdd), our combinatorial study
gives a way of construction for robdds of a given size, but without the com-
paction step. We further define a total order over the set of robdds and we
propose both an unranking and an exhaustive generation algorithm. The first
one gives as a by-product a uniform random sampler for robdds of a given
number of variables and size. One strength of our approach is that it allows to
sample uniformly robdds of “small” size, for instance of linear size w.r.t the
number k of variables, very efficiently in contrast to a naive rejection algorithm.
The usual uniform distribution on Boolean functions [VB04] yields with high
probability robdds of near maximal size of order 2k/k, although robdds en-
countered in applications, when tractable, are smaller. As a perspective, once
the unranking method is well understood, and in particular the poset underlying
the robdds, then we might be able to bias the distribution to sample only in
a specific subclass, e.g. robdds corresponding to a particular class of formulas
(e.g. read-once formulas).
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Our results have practical applications in several contexts, in particular for testing structures and algorithms. The
study given in [DHT03] executes tests for an algorithm whose parameter is a binary decision diagram. It is based
on QuickCheck [CH00], the famous software, taking as an entry a random generator and generating test cases for
test suites. Using our uniform generator, we aim at obtaining statistical testing, in the sense that the underlying
distribution of the samples is uniform, thus allowing to extract statistics thanks to the tests. Another application of
our approach allows to derive exhaustive testing for small structures, like the study in [MAD+03], that we also can
conduct inside QuickCheck.

During the talk we will first describe our new combinatorial specification allowing to describe robdds and then
allowing an efficient enumeration. In a second step we will give the key-points how to obtain an unranking algorithm
to build such structures. As a last part we will present a toy example how to use our generator in the context of
property-based testing.
As a conclusion we will present other decision tree models where the method for which the enumeration and sampling
can be adapted and through which direction we think to improve our approach.

The results are published in the conference paper [CG20].
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