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1 Introduction
Structural properties of large random λ-terms may be gleaned by studying the asymptotic dis-
tributions of various parameters of interest, such as the number of free variables, abstractions
and applications, and so on. Such properties have been studied for general λ-terms under
various considerations such as different notions of size and various structural restrictions (for
examples, see [1, 2, 3, 3, 4]).

Linear λ-terms, that is, terms where each variable occurs exactly once, form an interesting
subsystem of λ-calculus with various combinatorial connections to much-studied classes of
objects such as trivalent maps [5, 6].

The purpose of this work is to help shed some light on what the “typical” terms of certain
fragments of the linear λ calculus look like. The fragments we deal with in this work may be
roughly partitioned into two major categories, the algebraic and the differentially-algebraic
one, according to the nature of the specifications they admit.

This qualitative difference in specification also manifests itself on the level of parameter
distributions, where we observed markedly different typical behaviours for parameters such
as free-variable distributions.

Following this pattern, we present our results in two sections, each devoted to one of the
corresponding aforementioned categories.

2 Algebraic Classes
The results presented in this section concern the classes of planar terms, that is terms in
which variables are used in the same order they are bound.

Interestingly, the planarity restriction leads to algebraicity of the generating functions,
since the specifications are amenable to the kernel method and elimination techniques.

We study both general planar terms and an interesting subclass of them consisting of
terms having no proper closed subterms, called bridgeless.

These classes exhibit moderate growth and as such are amenable to analysis using stan-
dard tools of analytic combinatorics.

For example, the following two results on the Gaussian distributions of free variables in
open planar and bridgeless planar terms are typical of such algebraic classes.
Proposition 2.1. The limit distribution of free variables in planar λ-terms of size n is
Gaussian with mean µ = n

8
and variance σ2 = 9n

32
.
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Proposition 2.2. The limit distribution of free variables in bridgeless planar λ-terms of size
n is Gaussian with mean µ = n

5
and variance σ2 = 9n

25
.

The starting point for proving these propositions is the following two equations charac-
terising our classes

P (z, u) = uz + zP (z, u)2 +
z (P (z, u)− P (z, 0))

u
(1)

Q (z, u) = uz + zQ (z, u)2 +
z (Q (z, u)− u[u1]Q(z, u))

u
(2)

where P (z, 0) counts closed planar λ-terms and [u1]Q(z, u) counts bridgeless planar terms
with one free variable. The well-behaved nature of both P and Q proves very useful in
obtaining the following results too.

Proposition 2.3. Asymptotically, the probability that a random open planar term is an
abstraction is ρP =

√
2
4

.

Proposition 2.4. Asymptotically, the probability that a random open bridgeless planar term
is an abstraction is ρPB = 2

5
.

3 Differentially-Algebraic Classes
The results presented in this section concern classes whose growth is factorial. Accordingly,
the tools used to analyse these classes are of a markedly different nature than the ones used
to analyse planar terms in the previous section. Much of the analysis presented here relies
on coming up with various different specifications for the classes considered, each of which
allows us to access different parameters of interest.

Proposition 3.1. The limit distribution of free variables in linear λ-terms of size n is
Gaussian with mean and variance µ = σ2 ∼ 3

√
n.

Proposition 3.2. The limit distribution of identity-subterms in closed linear λ-terms is
Poisson of parameter λ = 1.

Proposition 3.3. The limit distribution of closed subterms in closed linear λ-terms is a
shifted Poisson distribution of parameter λ = 1.

For example, Proposition 3.3 implies that as n → ∞, the probability that a random
closed linear λ-term of size n contains no closed proper subterms approaches 1/e. This
further implies that bridgeless linear terms may be uniformly generated in expected linear
time by rejection sampling, by adapting Algorithm 1 of [5].

The rapid growth of closed linear λ-terms leads to results such as the following.

Proposition 3.4. Asymptotically almost surely a random closed linear λ-term is an abstrac-
tion.
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