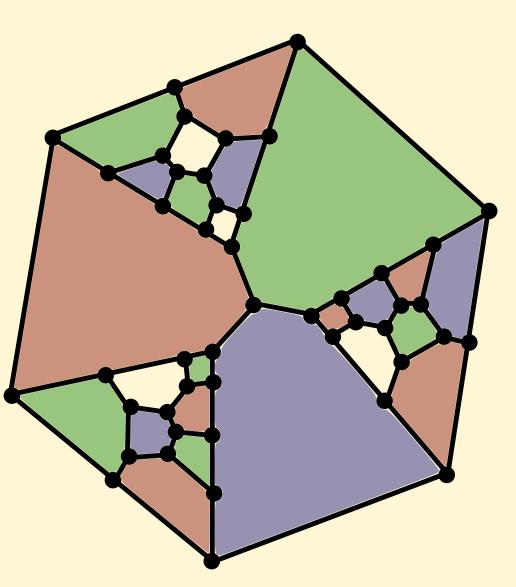
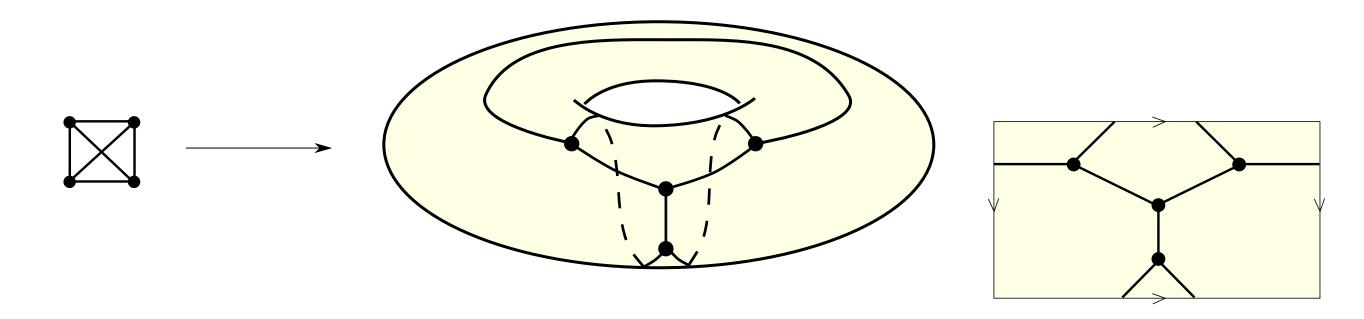


[Background] A few views on maps



Topological definition

map = 2-cell embedding of a graph into a surface^{*}



considered up to deformation of the underlying surface.

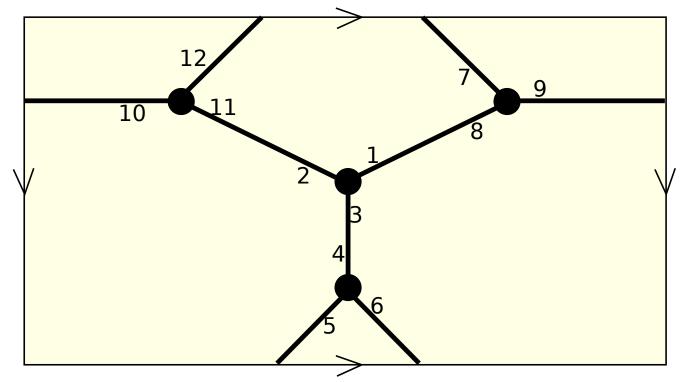
*All surfaces are assumed to be connected and oriented throughout this talk

Algebraic definition

map = transitive permutation representation of the group

$$\mathbf{G} = \langle v, e, f \mid e^2 = vef = 1 \rangle$$

considered up to G-equivariant isomorphism.

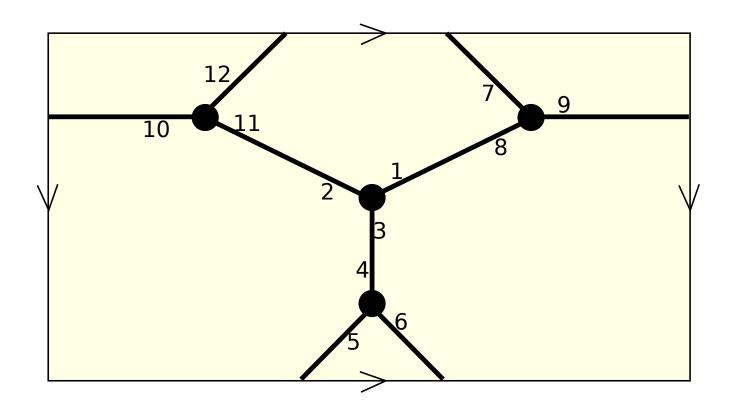


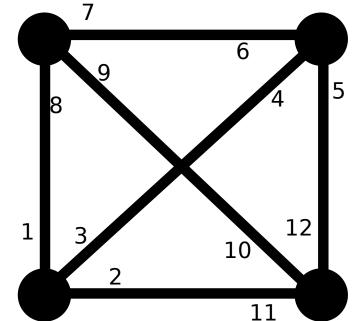
 $v = (1 \ 2 \ 3)(4 \ 5 \ 6)(7 \ 8 \ 9)(10 \ 11 \ 12)$ $e = (1 \ 8)(2 \ 11)(3 \ 4)(5 \ 12)(6 \ 7)(9 \ 10)$ $f = (1 \ 7 \ 5 \ 11)(2 \ 10 \ 8 \ 3 \ 6 \ 9 \ 12 \ 4)$

$$c(v) - c(e) + c(f) = 2 - 2g$$

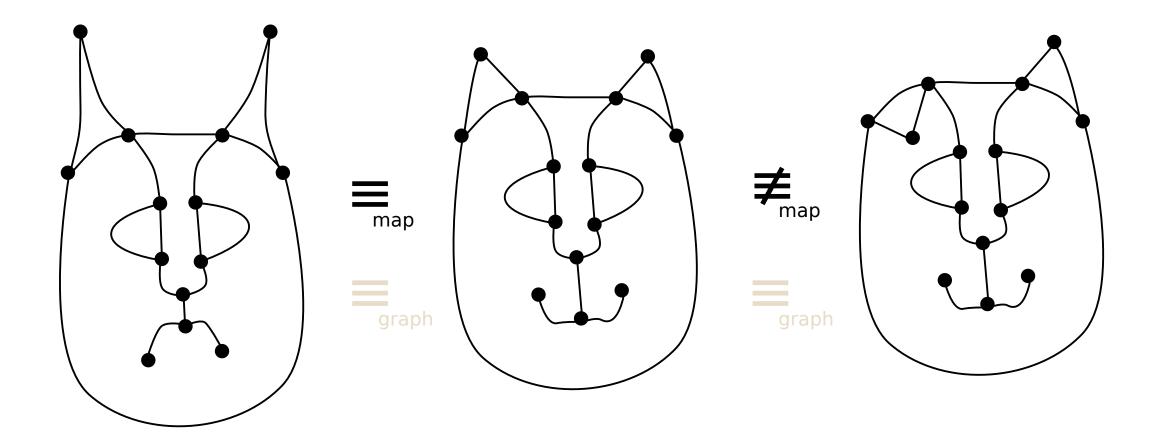
Combinatorial definition

map = connected graph + cyclic ordering of
the half-edges around each vertex (say, as given
by a drawing with "virtual crossings").

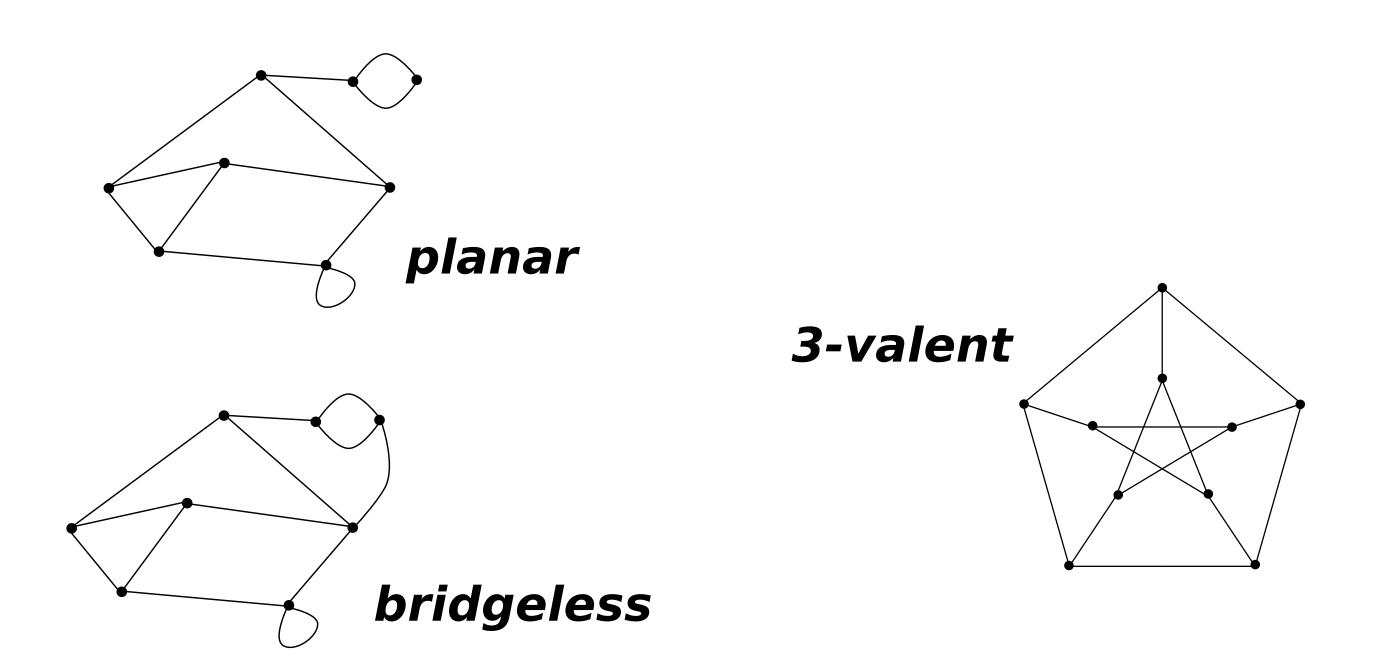




Graph versus Map



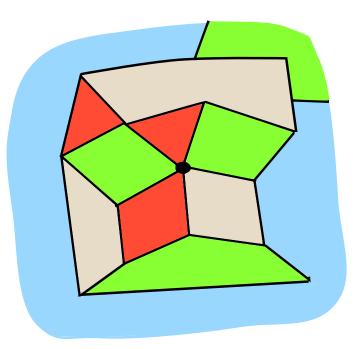
Some special kinds of maps



Four Colour Theorem

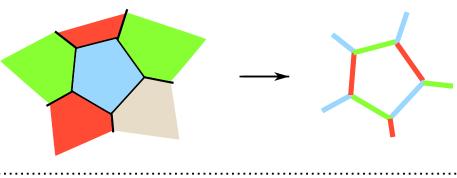
The 4CT is a statement about maps.

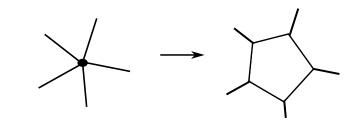
every bridgeless planar map has a proper face 4-coloring



By a well-known reduction (Tait 1880), 4CT is equivalent to a statement about 3-valent maps

every bridgeless planar 3-valent map has a proper edge 3-coloring





Map enumeration

From time to time in a graph-theoretical career one's thoughts turn to the Four Colour Problem. It occurred to me once that it might be possible to get results of interest in the theory of map-colourings without actually solving the Problem. For example, it might be possible to find the average number of colourings on vertices, for planar triangulations of a given size.

One would determine the number of triangulations of 2n faces, and then the number of 4-coloured triangulations of 2n faces. Then one would divide the second number by the first to get the required average. I gathered that this sort of retreat from a difficult problem to a related average was not unknown in other branches of Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It

Map enumeration

Tutte wrote a pioneering series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21-38

W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402-417

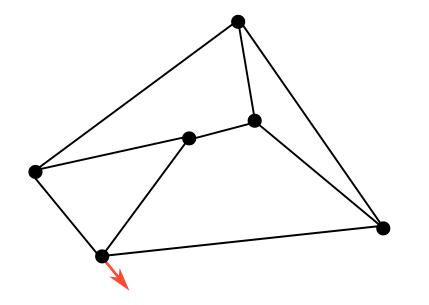
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708-722

W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249-271

W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64-74

W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454-460

One of his insights was to consider *rooted* maps



Key property: rooted maps have no non-trivial automorphisms

Map enumeration

Ultimately, Tutte obtained some remarkably simple formulas for counting different families of rooted planar maps.

(5.1) The number a_n of rooted maps with n edges is

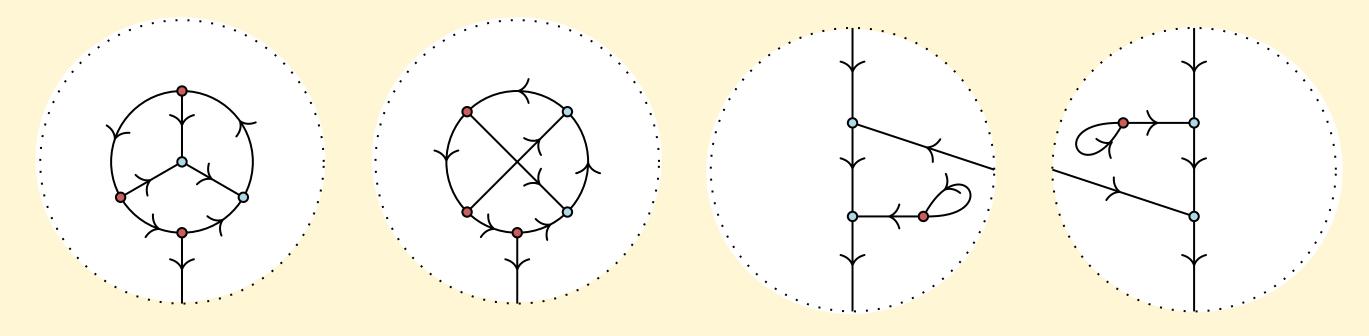
 $\frac{2(2n)!\,3^n}{n!\,(n+2)!}.$

We write

$$A(x) = \sum_{n=1}^{\infty} a_n x^n.$$

Thus $A(x) = 2x + 9x^2 + 54x^3 + 378x^4 + \ldots$ Figure 2 shows the 2 rooted maps with 1 edge, and Figure 3 the 9 rooted maps with 2 edges.

[Background] A few views on linear & planar λ-calculus



 $\lambda x.\lambda y.\lambda z.x(yz)$ $\lambda x.\lambda y.\lambda z.(xz)y$

 $x,y \vdash (xy)(\lambda z.z) \quad x,y \vdash x((\lambda z.z)y)$

Untyped lambda calculus in modern dress

pure lambda terms may be naturally organized into a *cartesian operad* (cf. Hyland, "Classical lambda calculus in modern dress")

linear terms may be naturally organized into an ordinary (symmetric) operad

• $\Lambda(n) = \text{set of } \alpha$ -equivalence classes of linear terms in context $x_1, ..., x_n \vdash t$ $\frac{\Gamma \vdash t \quad \Delta \vdash u}{r, \Delta \vdash t u} = \frac{\Gamma, r \vdash t}{\Gamma \vdash \lambda r, t}$ • $\circ_i : \Lambda(m+1) \times \Lambda(n) \rightarrow \Lambda(m+n)$ defined by (linear) substitution $\frac{\Theta \vdash u \quad \Gamma, r, r, \Delta \vdash t}{\Gamma, \Theta, \Delta \vdash t[u/r]}$

• symmetric action $S_n \times \Lambda(n) \rightarrow \Lambda(n)$ defined by permuting the context

 $\frac{\Gamma, y, x, \Delta \vdash t}{\Gamma, x, y, \Delta \vdash t}$

Ordered & unitless terms

The operad of linear terms also has some natural *suboperads*:

• the *non-symmetric operad* of **ordered** ("planar") terms

 $\lambda x.\lambda y.\lambda z.x(yz)$ but not $\lambda x.\lambda y.\lambda z.(xz)y$

• the *non-unitary operad* of terms with no closed subterms (**unitless**/"bridgeless")

 $x \vdash \lambda y.yx$ but not $x \vdash x(\lambda y.y)$

(Can also combine these two restrictions.)

Linear typing

(NB: multicategory = colored operad)

typed linear terms may be interpreted as morphisms of a closed multicategory

 $\Gamma \vdash t: A \multimap B$ $\Delta \vdash u: A$ $\Gamma, x: A \vdash t: B$ $x: A \vdash x: A$ $\Gamma, \Delta \vdash tu: B$ $\Gamma \vdash \lambda x.t: A \multimap B$

(technically, to get a closed multicategory we need to quotient by $\beta\eta$)

the typed and untyped views are closely related...

- 1. every linear term can be typed
- 2. Λ is isomorphic to the endomorphism operad of a *reflexive object*

reflexive object in a closed (2-)category

Idea (after D. Scott): a linear lambda term may be interpreted as an endomorphism of a **reflexive object** in a (symmetric) closed category.

By a "reflexive object", we mean an object U equipped with a pair of operations

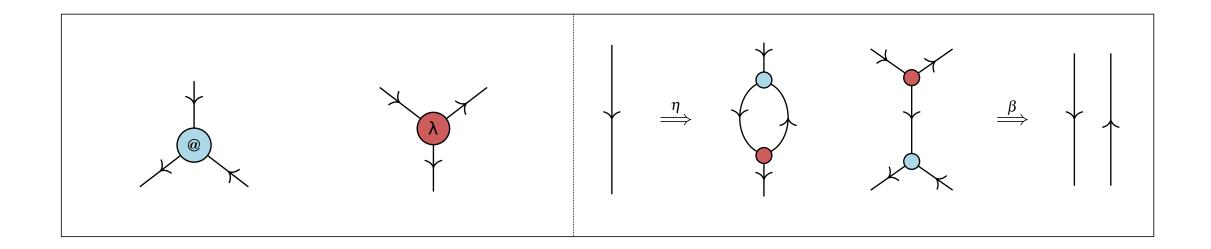
 $U \xrightarrow[lam]{app} U \multimap U$

which need not compose to the identity. Actually, it is natural to work in a closed 2-category and ask that these operations witness an *adjunction* from U to U \rightarrow U. Then the unit and the counit of this adjunction respectively interpret **\eta-expansion** $t \Rightarrow \lambda x.t(x)$ and **\beta-reduction** ($\lambda x.t$)(u) $\Rightarrow t[u/x]$.

λ -graphs as string diagrams

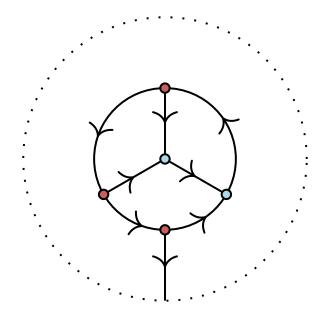
A compact closed (2-)category is a particular kind of closed (2-)category in which $A \rightarrow B \approx B \otimes A^*$. There are many natural examples, such as Rel, the (2-)category of sets and relations.

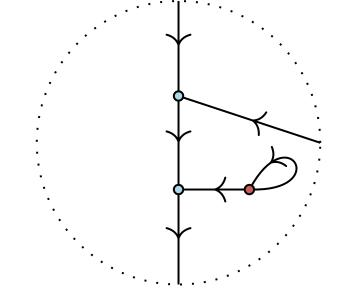
Compact closed categories have a well-known graphical language of "string diagrams". By expressing reflexive objects in this language, we recover the traditional diagram representing a linear term (cf. George's talk).



string diagrams as HOAS

Another way of putting this is that these diagrams are closely related to the representation of λ -terms using *higher-order abstract syntax*

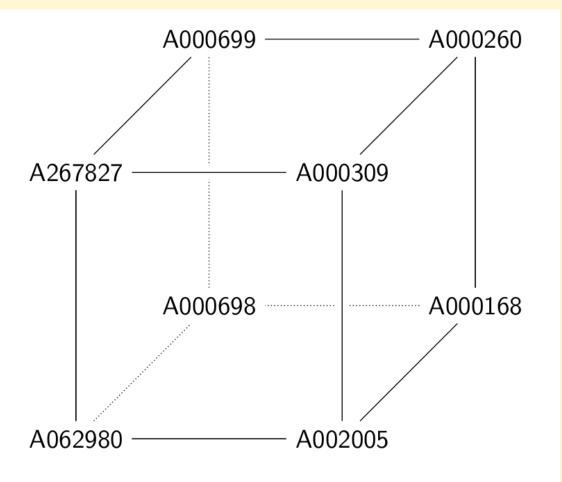




λx.λy.app (app x y)(lam λz.z)

lam λx .lam λy .lam λz .app x (app y z)

[Background] Enumera- & bijective connections



family of rooted maps	family of lambda terms	sequence	OEIS
planar maps	normal ordered terms	1,2,9,54,378,2916,	A000168

Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39

Some enumerative connections

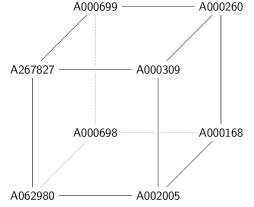
family of rooted maps	family of lambda terms	sequence	OEIS
trivalent maps (genus g≥0)	linear terms	1,5,60,1105,27120,	A062980
planar maps	normal ordered terms	1,2,9,54,378,2916,	A000168

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238 2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39

Some enumerative connections

family of rooted maps	family of lambda terms	sequence	OEIS
trivalent maps (genus g≥0)	linear terms	1,5,60,1105,27120,	A062980
planar trivalent maps	ordered terms	1,4,32,336,4096,	A002005
bridgeless trivalent maps	unitless linear terms	1,2,20,352,8624,	A267827
bridgeless planar trivalent maps	unitless ordered terms	1,1,4,24,176,1456,	A000309
maps (genus g≥0)	normal linear terms (mod ~)	1,2,10,74,706,8162,	A000698
planar maps	normal ordered terms	1,2,9,54,378,2916,	A000168
bridgeless maps	normal unitless linear terms (mod ~)	1,1,4,27,248,2830,	A000699
bridgeless planar maps	normal unitless ordered terms	1,1,3,13,68,399,	A000260

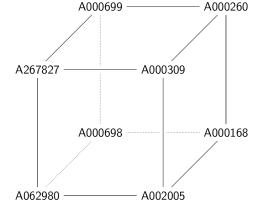
O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238
 Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39
 Z (2015), Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596
 Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J. Functional Programming 26(e21)
 J. Courtiel, K. Yeats, Z (2016), Connected chord diagrams and bridgeless maps, arXiv:1611.04611
 Z (2017), A sequent calculus for a semi-associative law, FSCD



Some enumerative connections

family of rooted maps	family of lambda terms	sequence	OEIS
trivalent maps (genus g≥0)	linear terms	1,5,60,1105,27120,	A062980
planar trivalent maps	ordered terms	1,4,32,336,4096,	A002005
bridgeless trivalent maps	unitless linear terms	1,2,20,352,8624,	A267827
bridgeless planar trivalent maps	unitless ordered terms	1,1,4,24,176,1456,	A000309
maps (genus g≥0)	normal linear terms (mod ~)	1,2,10,74,706,8162,	A000698
planar maps	normal ordered terms	1,2,9,54,378,2916,	A000168
bridgeless maps	normal unitless linear terms (mod ~)	1,1,4,27,248,2830,	A000699
bridgeless planar maps	normal unitless ordered terms	1,1,3,13,68,399,	A000260

O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238
 Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39
 Z (2015), Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596
 Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J. Functional Programming 26(e21)
 J. Courtiel, K. Yeats, Z (2016), Connected chord diagrams and bridgeless maps, arXiv:1611.04611
 Z (2017), A sequent calculus for a semi-associative law, FSCD

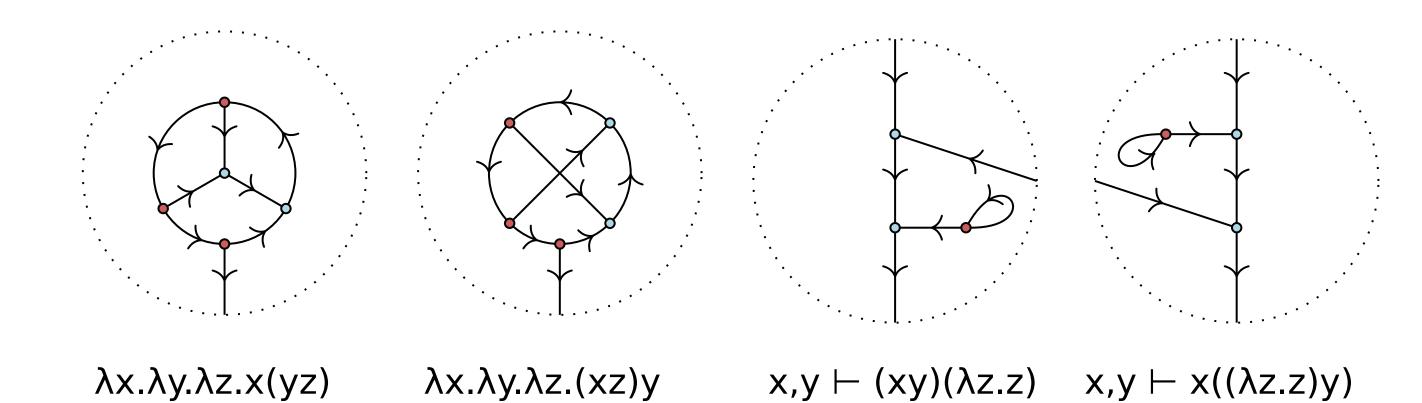


From linear terms to rooted 3-valent maps via string diagrams

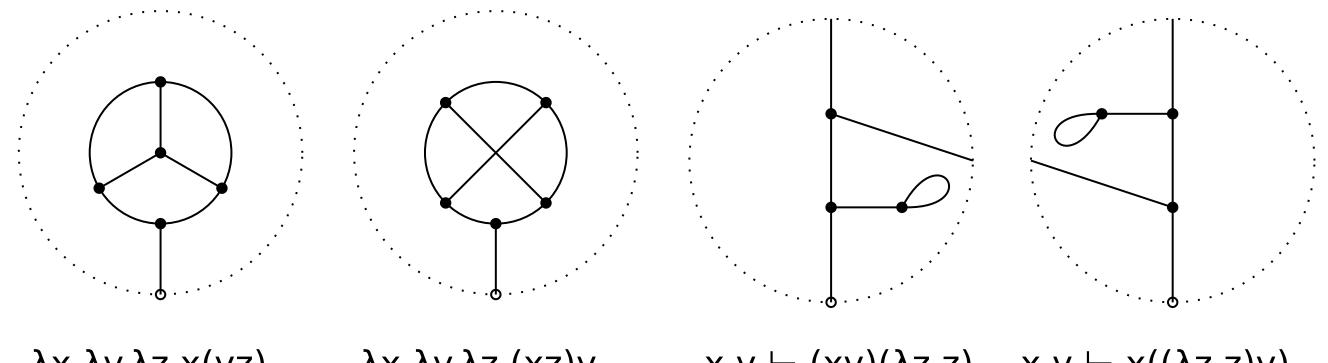
 $\lambda x.\lambda y.\lambda z.x(yz)$ $\lambda x.\lambda y.\lambda z.(xz)y$ $x,y \vdash$

 $x,y \vdash (xy)(\lambda z.z) \quad x,y \vdash x((\lambda z.z)y)$

From linear terms to rooted 3-valent maps via string diagrams



From linear terms to rooted 3-valent maps via string diagrams



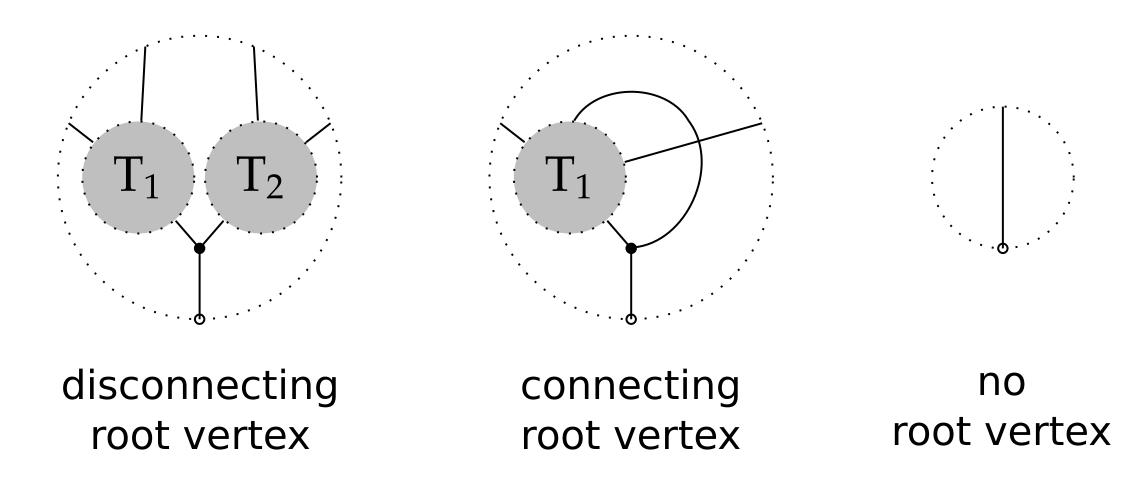
 $\lambda x.\lambda y.\lambda z.x(yz)$

λx.λy.λz.(xz)y

 $x,y \vdash (xy)(\lambda z.z) \quad x,y \vdash x((\lambda z.z)y)$

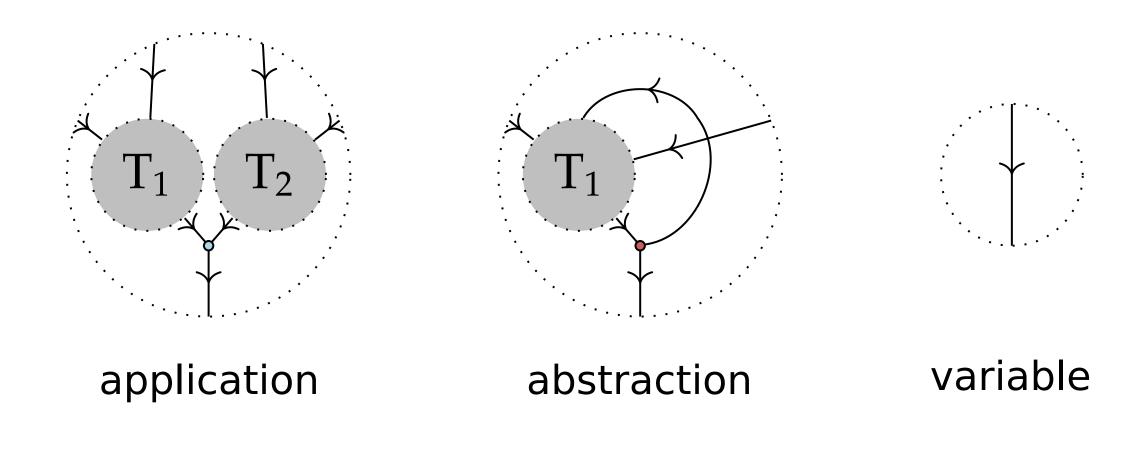
From rooted 3-valent maps to linear terms by induction

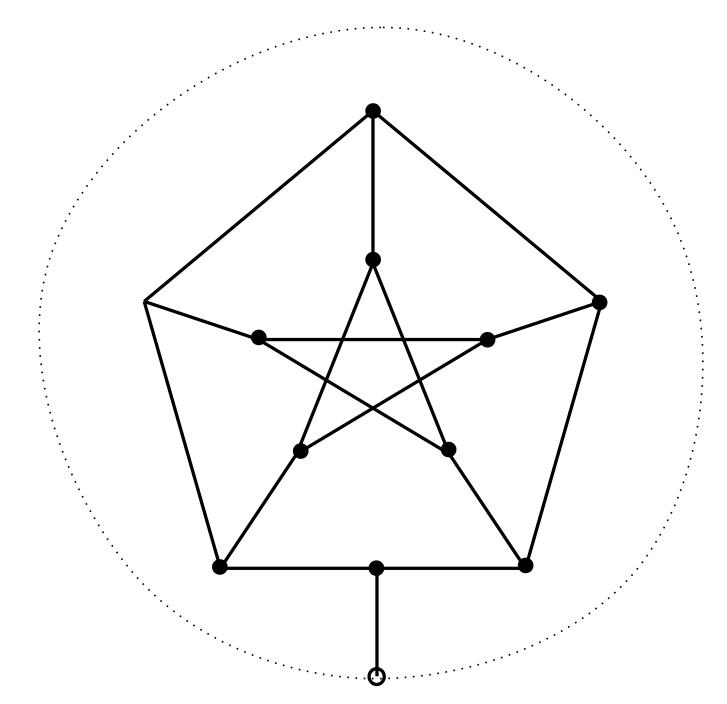
Observation: any rooted 3-valent map must have one of the following forms.

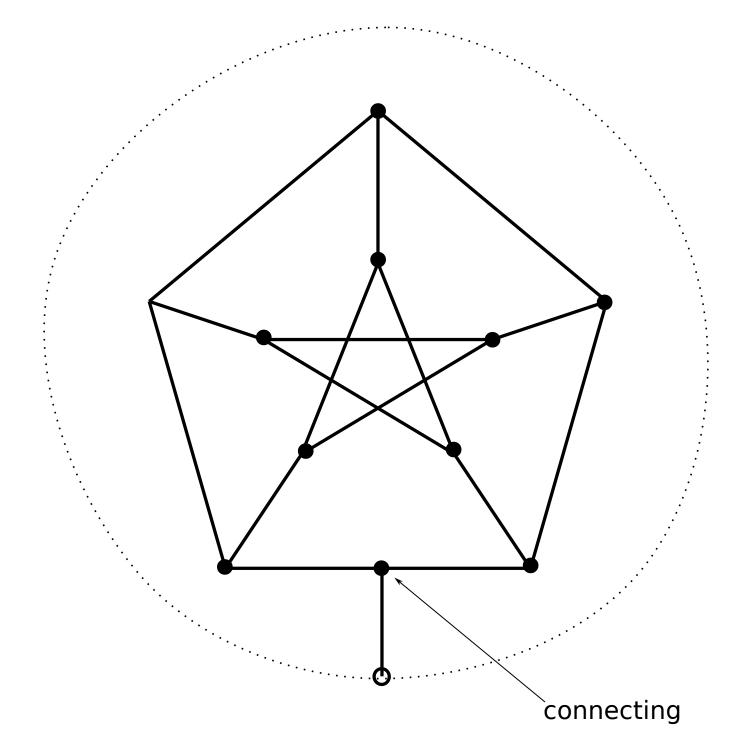


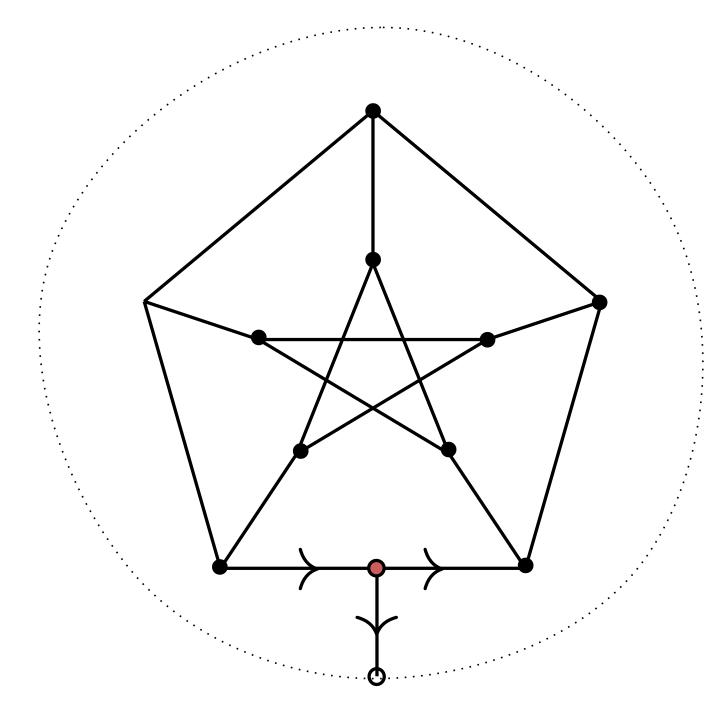
From rooted 3-valent maps to linear terms by induction

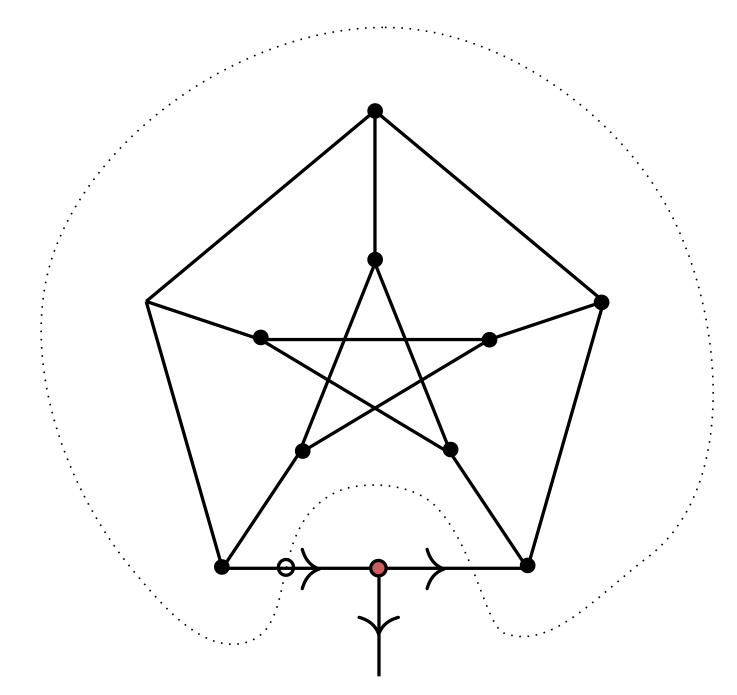
...but this exactly mirrors the inductive structure of linear lambda terms!

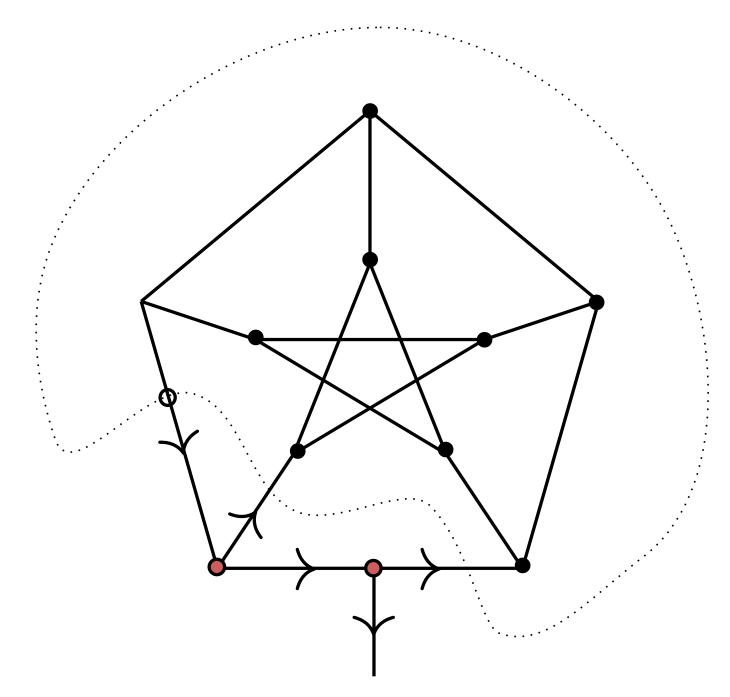


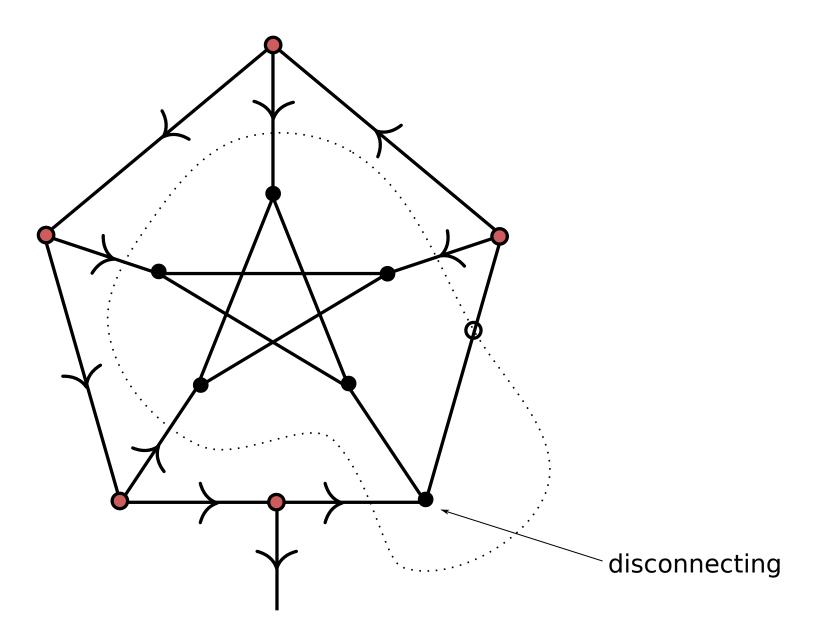


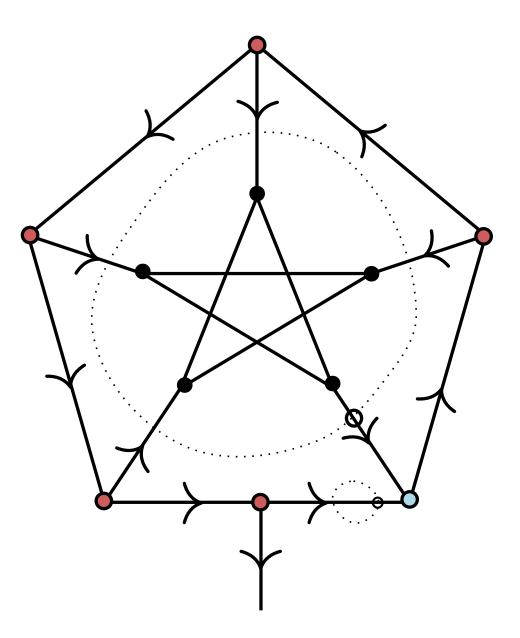


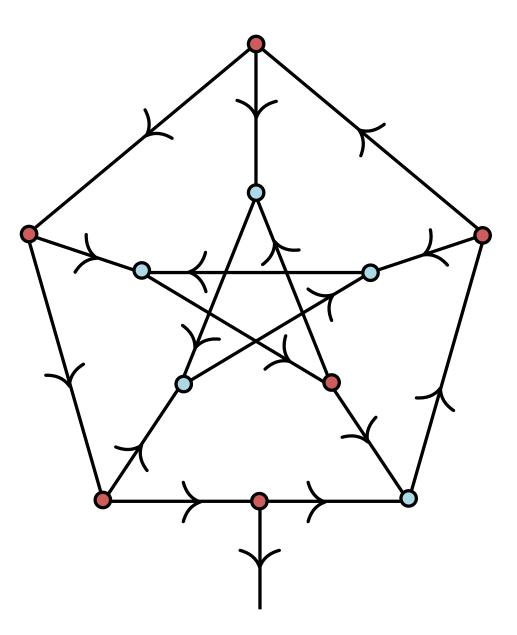






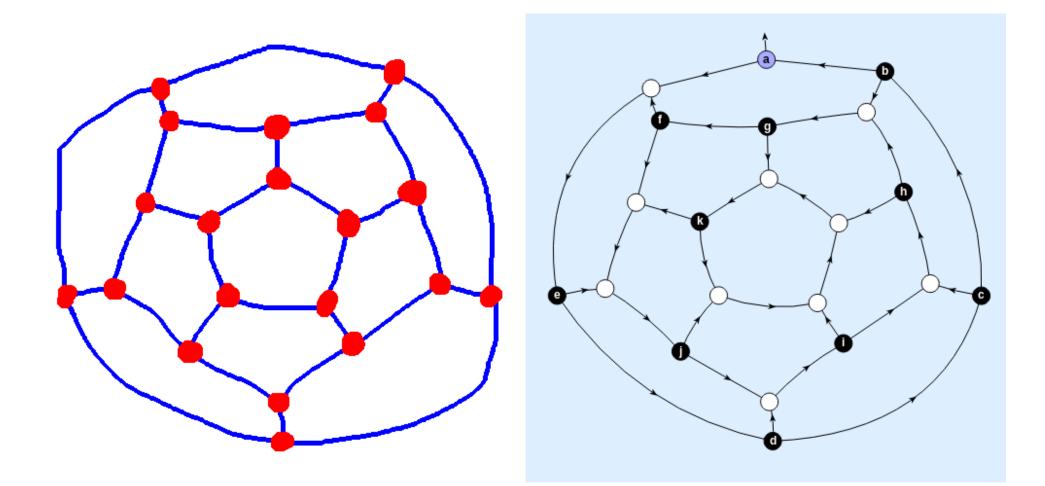






 $\lambda a.\lambda b.\lambda c.\lambda d.\lambda e.a(\lambda f.c(e(b(df))))$

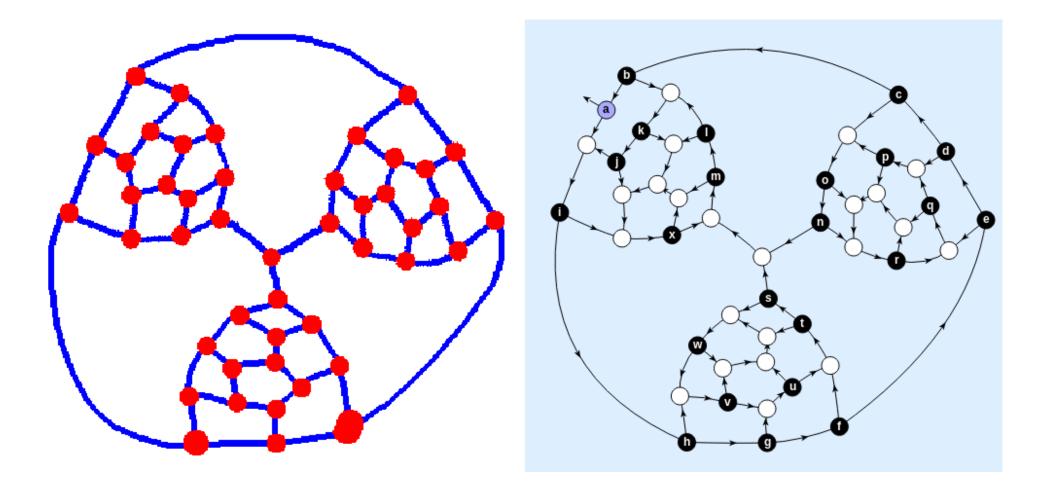
Some more examples*



 λ abcde.a (λ fg.b (λ h.c (λ i.d (λ j.e (f (λ k.g (h (i (j k))))))))

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

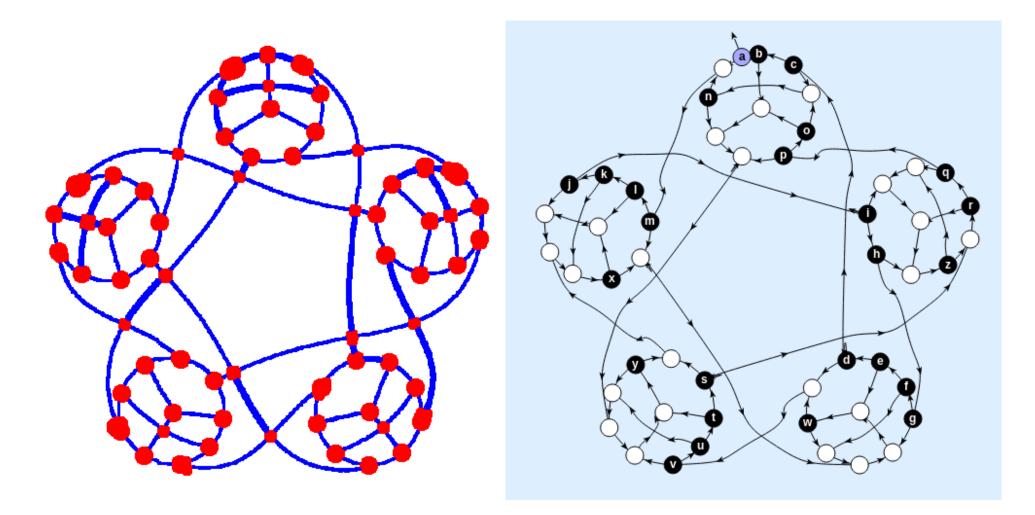
Some more examples*



 $\lambda a b c d e f g h i.a (\lambda j k.b (\lambda l m.(\lambda n o.c (\lambda p.d (\lambda q.e (\lambda r.n (o (p (q r)))))) (\lambda s t.f (\lambda u.g (\lambda v.h (\lambda w.s (t (u (v w))))))) (\lambda x.i (j (k | (m x))))))$

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

Some more examples*



 λ abcdefghijklm.a (λ n.c (λ opqr.(λ stuv.d (λ w.e (g ((λ x.s (λ y.t (v (n (b o) p (y u)))) (j (l x)) k) m (w f))))) (λ z.h (i (q z) r))))

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

Some more analysis

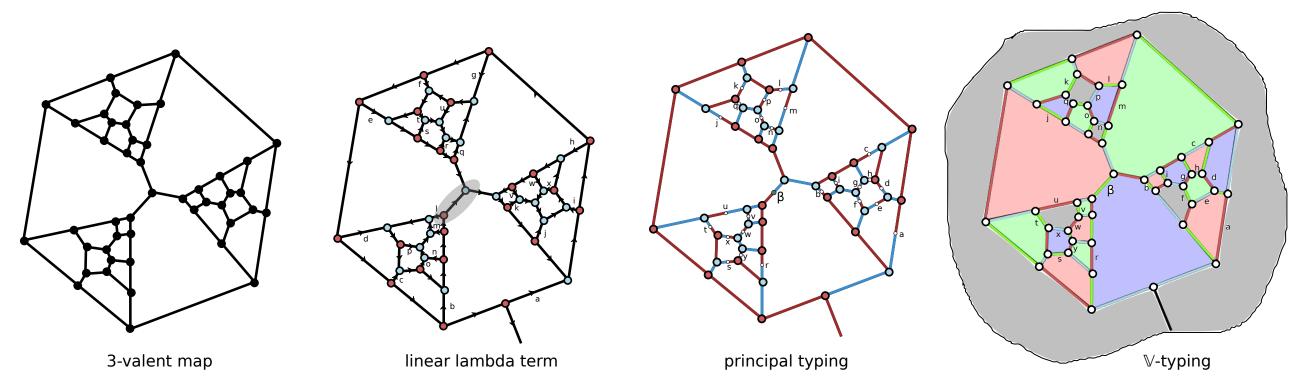
the bijection 3-valent maps ↔ linear terms restricts to the suboperads

planar ↔ ordered

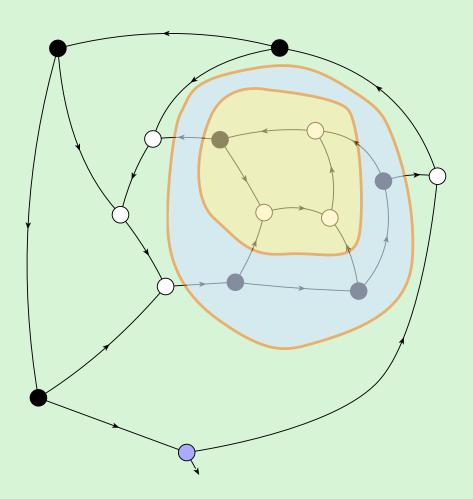
bridgeless ↔ unitless

typing corresponds to edge-coloring (cf. JFP 2016, LICS 2018)

...indeed, there is a natural λ -formulation of 4CT!



[work-in-progress] Connectivity in λ-calculus



k-edge-connection

a graph is **k-edge-connected** if it stays connected after cutting any j < k edges

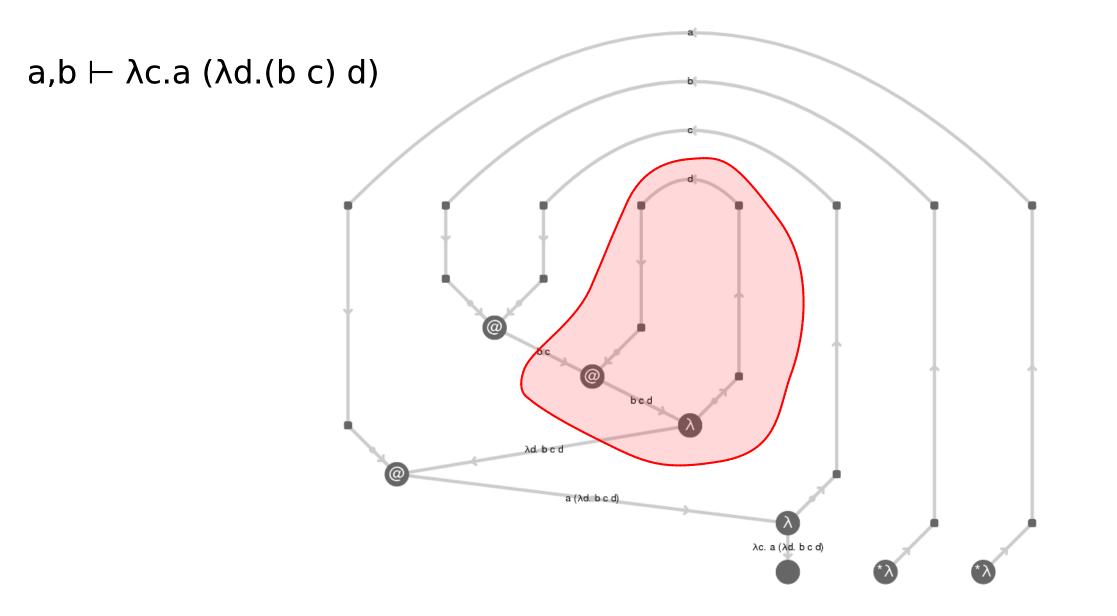
1-edge-connected = connected

2-edge-connected = bridgeless

a 3-valent graph cannot be 4-edge-connected, but it can be **internally** 4-edge-connected (only trivial 3-cuts).

what does it mean for a linear λ -term to be internally k-edge-connected?

a term which is 2- but not 3-edge-connected



*visualized with the help of https://www.georgejkaye.com/pages/fyp/visualiser.html

a 3-edge-connected term



*visualized with the help of https://www.georgejkaye.com/pages/fyp/visualiser.html

A **cut** is a decomposition

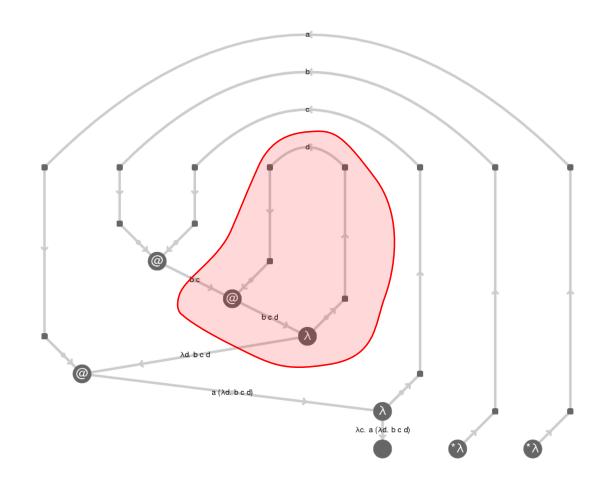
$t = C{u}$

of a term t into a *subterm* u together with its surrounding *context* C. Roughly speaking, a "context" is just a term with a hole/metavariable.

This definition gets a lot more interesting if we represent terms using HOAS and allow subterms to have higher type.

We say that the **type** of a cut $t = C\{u\}$ is the type of u.

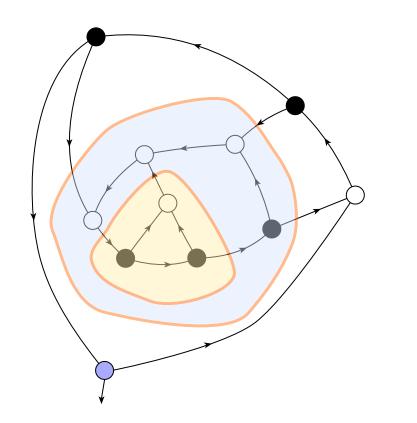
For example, a few slides ago, we saw a term with a cut of type $U \rightarrow U$



t : U ⊸ (U ⊸ U) t = $\lambda a.\lambda b.lam \lambda c.app a (lam \lambda d.app (app b c) d)$ u : U ⊸ U u = $\lambda x.lam \lambda d.app x d$ C : (U ⊸ U) ⇒ (U ⊸ (U ⊸ U)) C = {X} $\lambda a.\lambda b.lam \lambda c.app a (X (app b c))$

a,b $\vdash \lambda c.a (\lambda d.b (c d))$

Here is an example of a term with a yellow cut of type $(U \rightarrow U) \rightarrow U$ and a blue cut of type $U \rightarrow (U \rightarrow U)$



 $\lambda a.\lambda b.\lambda c.a (\lambda d.\lambda e.\lambda f.(b (c d)) (e f))$

t : U t = lam λa .lam λb .lam λc . app a (lam λd .lam λe .lam λf . app (app b (app c d)) (app e f))

> u_1 : (U → U) → U $u_1 = \lambda G.lam \lambda e.lam \lambda f.G$ (app e f)

 $\begin{array}{l} C_1: (U \multimap U) \multimap U \Rightarrow U \\ C_1 = \{X\} \text{lam } \lambda \text{a.lam } \lambda \text{b.lam } \lambda \text{c.} \\ & \text{app a (lam } \lambda \text{d.} \\ & X (\lambda y. \text{app (app b (app c d)) y))} \end{array}$

```
 \begin{aligned} & u_2 : U \multimap (U \multimap U) \\ & u_2 = \lambda b.\lambda c.lam \lambda d.lam \lambda e.lam \lambda f. \\ & app (app b (app c d)) (app e f)) \\ & C_2 : U \multimap (U \multimap U) \Rightarrow U \\ & C_2 = \{X\}lam \lambda a.lam \lambda b.lam \lambda c. app a (X b c) \end{aligned}
```

A term is said to be **k-indecomposable** if it does not have any non-trivial τ -cuts where τ is a type with j < k occurrences of "U".

A cut $t = C\{u\}$ is said to be **trivial** if either C is the identity or u is elementary.

The **elementary** terms are as follows:

$$\lambda x.x : U \multimap U$$
$$app : U \multimap (U \multimap U)$$
$$lam : (U \multimap U) \multimap U$$

Claim: t is k-indecomposable iff t is internally k-edge-connected.

results & questions

3-indecomposable planar terms are counted by A000260, which also counts β -normal 2-indecomposable (= unitless) planar terms. Indeed, 3-indecomposable planar terms admit a direct inductive characterization...

isomorphic to a similar characterization of β -normal unitless planar terms.

Conjecture: β-normal 3-indecomposable planar terms are counted by A000257!

What about non-planar 3-indecomposable terms?

results & questions

Theorem (Tutte 1962): 4-indecomposable planar terms are counted by A000256

Q: Is there a direct inductive construction of 4-indecomposable planar terms?

Theorem (Whitney 1931): every 4-indecomposable planar terms has a Hamiltonian cycle on its faces

Q: Is there a λ -calculus proof of Whitney's theorem?

