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[Background]

A few views on maps



Topological definition

map = 2-cell embedding of a graph into a surface*

considered up to deformation of the underlying surface.

*All surfaces are assumed to be connected and oriented throughout this talk
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Algebraic definition

map = transitive permutation representation of the group

considered up to G-equivariant isomorphism.

G = 



Combinatorial definition

map = connected graph + cyclic ordering of
the half-edges around each vertex (say, as given
by a drawing with "virtual crossings").
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Graph versus Map
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Some special kinds of maps

planar

bridgeless

3-valent



Four Colour Theorem

The 4CT is a statement about maps.

every bridgeless planar map
has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent
to a statement about 3-valent maps

every bridgeless planar 3-valent map
has a proper edge 3-coloring



Map enumeration

From time to time in a graph-theoretical career one's thoughts turn
to the Four Colour Problem. It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings
without actually solving the Problem. For example, it might be
possible to find the average number of colourings on vertices, for
planar triangulations of a given size.
 
One would determine the number of triangulations of 2n faces, and
then the number of 4-coloured triangulations of 2n faces. Then one
would divide the second number by the first to get the required
average. I gathered that this sort of retreat from a difficult problem to
a related average was not unknown in other branches of
Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It



One of his insights was to consider rooted maps

Tutte wrote a pioneering series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21–38
W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402–417
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708–722
W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249–271
W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64–74
W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454–460

Key property: rooted maps have
no non-trivial automorphisms

Map enumeration



Ultimately, Tutte obtained some remarkably simple formulas
for counting different families of rooted planar maps.

Map enumeration



[Background]

A few views on
linear & planar λ-calculus

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



pure lambda terms may be naturally organized into a cartesian operad

Untyped lambda calculus in modern dress

• Λ(n) = set of α-equivalence classes of linear terms in context x₁,...,xₙ ⊢ t

• ∘ᵢ : Λ(m+1) × Λ(n) → Λ(m+n) defined by (linear) substitution

• symmetric action Sₙ × Λ(n) → Λ(n) defined by permuting the context

linear terms may be naturally organized into an ordinary (symmetric) operad

(cf. Hyland, "Classical lambda calculus in modern dress")

x ⊢ x

Γ, x ⊢ t

Γ ⊢ λx.t

Γ ⊢ t Δ ⊢ u

Γ, Δ ⊢ t u

Γ,y,x,Δ ⊢ t

Γ,x,y,Δ ⊢ t

Θ ⊢ u Γ,x,Δ ⊢ t

Γ,Θ,Δ ⊢ t[u/x]



The operad of linear terms also has some natural suboperads:

• the non-symmetric operad of ordered ("planar") terms

Ordered & unitless terms

• the non-unitary operad of terms with no closed subterms (unitless/"bridgeless")

(Can also combine these two restrictions.)

λx.λy.λz.x(yz)   but not   λx.λy.λz.(xz)y

x ⊢ λy.yx   but not   x ⊢ x(λy.y)



Linear typing

typed linear terms may be interpreted as morphisms of a closed multicategory

x : A ⊢ x : A

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B

(technically, to get a closed multicategory we need to quotient by βη)

the typed and untyped views are closely related...
1. every linear term can be typed
2. Λ is isomorphic to the endomorphism operad of a reflexive object

(NB: multicategory = colored operad)



reflexive object in a closed (2-)category

Idea (after D. Scott): a linear lambda term may be interpreted as an
endomorphism of a reflexive object in a (symmetric) closed category.

By a "reflexive object", we mean an object U equipped with a pair of operations

app

which need not compose to the identity.  Actually, it is natural to work in
a closed 2-category and ask that these operations witness an adjunction
from U to U ⊸ U. Then the unit and the counit of this adjunction respectively
interpret η-expansion t ⇒ λx.t(x) and β-reduction (λx.t)(u) ⇒ t[u/x].

lam



λ-graphs as string diagrams

A compact closed (2-)category is a particular kind of closed (2-)category
in which A ⊸ B ≈ B ⊗ A*.  There are many natural examples, such as Rel,
the (2-)category of sets and relations.

λ
@

Compact closed categories have a well-known graphical language of
"string diagrams".  By expressing reflexive objects in this language, we
recover the traditional diagram representing a linear term (cf. George's talk).



string diagrams as HOAS

Another way of putting this is that these diagrams are closely related to
the representation of λ-terms using higher-order abstract syntax

lam λx.lam λy.lam λz.app x (app y z) λx.λy.app (app x y)(lam λz.z)



[Background]

Enumera- & bijective
connections



family of rooted maps family of lambda terms sequence OEIS

trivalent maps (genus g≥0)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps
 
maps (genus g≥0)
planar maps
bridgeless maps
bridgeless planar maps

linear terms
ordered terms
unitless linear terms
unitless ordered terms
 
normal linear terms (mod ~)
normal ordered terms
normal unitless linear terms (mod ~)
normal unitless ordered terms

A062980
A002005
A267827
A000309
 
A000698
A000168
A000699
A000260

1,5,60,1105,27120,...
1,4,32,336,4096,...
1,2,20,352,8624,...
1,1,4,24,176,1456,...
 
1,2,10,74,706,8162,...
1,2,9,54,378,2916,...
1,1,4,27,248,2830,...
1,1,3,13,68,399,...
 

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238
2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39
3. Z (2015), Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596
4. Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J. Functional Programming 26(e21)
5. J. Courtiel, K. Yeats, Z (2016), Connected chord diagrams and bridgeless maps, arXiv:1611.04611
6. Z (2017), A sequent calculus for a semi-associative law, FSCD
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Some enumerative connections
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From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



Observation: any rooted 3-valent map must have one of the following forms.

T1 T2 T1

disconnecting
root vertex

connecting
root vertex

no
root vertex

From rooted 3-valent maps to linear terms
by induction



...but this exactly mirrors the inductive structure of linear lambda terms!

application abstraction variable

T1 T2 T1

From rooted 3-valent maps to linear terms
by induction



An example



An example

connecting



An example



An example



An example



An example

disconnecting



An example



An example

λa.λb.λc.λd.λe.a(λf.c(e(b(df))))



Some more examples*

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

λabcde.a (λfg.b (λh.c (λi.d (λj.e (f (λk.g (h (i (j k)))))))))



Some more examples*

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

λabcdefghi.a (λjk.b (λlm.(λno.c (λp.d (λq.e (λr.n (o (p (q r))))))) (λst.f (λu.g (λv.h (λw.s (t (u (v w))))))) (λx.i (j (k l (m x))))))



Some more examples*

*computed with the help of https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

λabcdefghijklm.a (λn.c (λopqr.(λstuv.d (λw.e (g ((λx.s (λy.t (v (n (b o) p (y u)))) (j (l x)) k) m (w f))))) (λz.h (i (q z) r))))



Some more analysis

planar ↔ ordered bridgeless ↔ unitless

the bijection 3-valent maps ↔ linear terms restricts to the suboperads

typing corresponds to edge-coloring (cf. JFP 2016, LICS 2018)

...indeed, there is a natural λ-formulation of 4CT!
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Connectivity in λ-calculus
[work-in-progress]



a graph is k-edge-connected if it stays connected after cutting any j < k edges

1-edge-connected = connected

2-edge-connected = bridgeless

a 3-valent graph cannot be 4-edge-connected, but it can be internally
4-edge-connected (only trivial 3-cuts).

k-edge-connection

what does it mean for a linear λ-term to be internally k-edge-connected?



a term which is 2- but not 3-edge-connected

a,b ⊢ λc.a (λd.(b c) d)

*visualized with the help of https://www.georgejkaye.com/pages/fyp/visualiser.html

a,b ⊢ λc.a (λd.(b c) d)



a 3-edge-connected term

a,b ⊢ λc.a (λd.b (c d))

*visualized with the help of https://www.georgejkaye.com/pages/fyp/visualiser.html



A cut is a decomposition

towards a general definition

This definition gets a lot more interesting if we represent terms using HOAS
and allow subterms to have higher type.

We say that the type of a cut t = C{u} is the type of u.

of a term t into a subterm u together with its surrounding context C. 
Roughly speaking, a "context" is just a term with a hole/metavariable.

t = C{u}



towards a general definition

t : U ⊸ (U ⊸ U)
t = λa.λb.lam λc.app a (lam λd.app (app b c) d)

u : U ⊸ U
u = λx.lam λd.app x d

C : (U ⊸ U) ⇒ (U ⊸ (U ⊸ U))
C = {X}λa.λb.lam λc.app a (X (app b c))

For example, a few slides ago, we saw a term with a cut of type U ⊸ U

a,b ⊢ λc.a (λd.b (c d))



towards a general definition

t : U
t = lam λa.lam λb.lam λc. app a (lam λd.lam λe.lam λf.
          app (app b (app c d)) (app e f))

u₁ : (U ⊸ U) ⊸ U
u₁ = λG.lam λe.lam λf.G (app e f)

C₁ : (U ⊸ U) ⊸ U ⇒ U
C₁ = {X}lam λa.lam λb.lam λc.
          app a (lam λd.
            X (λy.app (app b (app c d)) y))

Here is an example of a term with a yellow cut of type (U ⊸ U) ⊸ U
and a blue cut of type U ⊸ (U ⊸ U)

λa.λb.λc.a (λd.λe.λf.(b (c d)) (e f))

u₂ : U ⊸ (U ⊸ U)
u₂ = λb.λc.lam λd.lam λe.lam λf.
        app (app b (app c d)) (app e f))
C₂ : U ⊸ (U ⊸ U) ⇒ U
C₂ = {X}lam λa.lam λb.lam λc. app a (X b c)



A term is said to be k-indecomposable if it does not have any non-trivial
τ-cuts where τ is a type with j < k occurrences of "U".

towards a general definition

The elementary terms are as follows:

A cut t = C{u} is said to be trivial if either C is the identity or u is elementary.

λx.x
app
lam

: U ⊸ U
: U ⊸ (U ⊸ U)
: (U ⊸ U) ⊸ U

Claim: t is k-indecomposable iff t is internally k-edge-connected.



3-indecomposable planar terms are counted by A000260, which also counts
β-normal 2-indecomposable (= unitless) planar terms.  Indeed, 3-indecomposable
planar terms admit a direct inductive characterization...

results & questions

t
C

::= x | C{t}
::= λx.C | • u

isomorphic to a similar characterization of β-normal unitless planar terms.

Conjecture: β-normal 3-indecomposable planar terms are counted by A000257!

What about non-planar 3-indecomposable terms?



results & questions

Q: Is there a direct inductive construction of 4-indecomposable planar terms?

Theorem (Tutte 1962): 4-indecomposable planar terms are counted by A000256

Theorem (Whitney 1931): every 4-indecomposable planar terms has a
Hamiltonian cycle on its faces

Q: Is there a λ-calculus proof of Whitney's theorem?
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