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Goals

Explore connections between Logic and Combinatorics.

• Logic of provability:
mainly ordered algebraic structures related to logic
(Heyting algebras, residuated lattices, quantales . . . )

• Combinatorics:
of words, bijective, enumerative, . . . a bit of geometry, as well.

Thesis:

• it is relevant,

• it is fun.

Content available here:
• L. Santocanale and M. J. Gouveia. The continuous weak order. Submitted. Dec. 2018. Link to Hal.

• L. Santocanale. On discrete idempotent paths. To appear in Words 2019, Loughborough, United Kingdom, Sept.
2019. Link to Hal.

2/37

https://hal.archives-ouvertes.fr/hal-01944759
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The weak Bruhat order, i.e. the permutohedron P(n)

Theorem (Santocanale & Wehrung, 2018)
The equational theory of the lattices P(n) is decidable and non-trivial.
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The multinomial lattice P(n1, n2, . . . , nd)
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Are there continuous multinomial lattices?
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Motivations: discrete geometry and Christoffel words

Christoffel words are images of the diagonal via right/left adjoints:

Are there generalizations of these ideas in dimensions ≥ 3?
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A category P of words/discrete-paths

• Objects : natural numbers 0, 1, . . . , n, . . .

• Arrows:

P(n,m) := {w ∈ { x, y }∗ | |w |x = n, |w |y = m }

• Composition:

xyxyyx ⊗ yxxyxy :

ε y xx y x y ε

ε x y x yy x ε

 ε|xxy|xyy|ε  xxyxyy

10/37
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The standard bijection(s)

Let [n] := { 1, . . . , n }, In := { 0, 1 . . . , n }.

Standard bijection (cf. also compositions of n):

xxyxyyxxy ∈ P(5, 4): f : [5] −−−−→ I4:

f(1) = f(2) = 0

f(3) = 1

f(4) = f(5) = 3

That is:

P(n,m) ' Pos([n], Im) ' SLat∨(In, Im) .
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It is a category

• The correspondence

[n] 7−→ In

is a monad on the category of finite ordinals and monotone
functions.

• Under the bijection, composition is function composition.

• Thus:

P ' Kleisli(FiniteOrdinals, I)
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Counting factorizations
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Properties of P

• P(n,m) is a finite distributive lattice (under the dominance ordering),

• . . . whence, an Heyting algebra
(algebraic model of Intuitionist Logic).

• P(n, n) is a non-commutative quantale/involutive residuated lattice
(algebraic model of non-commutative cyclic classical linear logic):

(
∨

i

wi) ⊗ (
∨

j

wj) =
∨
i,j

wi ⊗ wj ,

w1 ⊗ w2 ≤ w3 iff w2 ≤ w1 ( w3 iff w1 ≤ w3 � w2 ,

(w?)? = w ,

w1 ⊕ w2 := (w?
2 ⊗ w?

1 )
? ,

w1 ( w2 = w?
1 ⊕ w2 = (w?

2 ⊗ w1)
? ,

w1 � w2 = w1 ⊕ w?
2 = (w2 ⊗ w?

1 )
? .
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Properties of P

More generally:

• P is a quantaloid (sup-lattice enriched):

P(n,m) ' SLat∨(In, Im) .
• The correspondence

f 7→ f∧ , f∧(x) :=
∧
x<y

f(y) ,

yields isomorphisms

SLat∨(In, Im) ' SLat∧(In, Im) ' SLatop∨ (Im, In) .
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?-autonomous structure

f? := left-adjoint-of(f∧) (= (right-adjoint-of(f))∨ ) .

On words: exchanges xs and ys.

That is:

Proposition
P is a ?-autonomous quantaloid.

Dual composition:

g ⊕ f := (f? ◦ g?)? = (g∧ ◦ f∧)∨ .
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Word reconstruction problem

For which triple

w1,2 ∈ P(3, 2)x,y , w2,3 ∈ P(2, 4)y,z , w1,3 ∈ P(3, 4)x,z ,

there exists word w ∈ P(3, 2, 4)x,y,z such that:

w1,2 = w �x,y , w2,3 = w �y,z , w1,3 = w �x,z ?

A word exists (and is unique) iff (w1,2,w2,3,w1,3) satisfies

w1,2 ⊗ w2,3 ≤ w1,3 ≤ w1,2 ⊕ w2,3 .
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Clopen families
Let

[d]2 := { (i, j) | 1 ≤ i < j ≤ d } ,

pick

(v1, . . . , vd) ∈ N
d ,

and consider

w : [d]2 −−→
⋃
n,m

P(n,m) such that wi,j ∈ P(vi , vj) .

We say that

• closed if

wi,j ⊗ wj,k ≤wi,k , for each i < j < k ,

• open if

wi,k ≤ wi,j ⊕ wj,k , for each i < j < k ,

• clopen if it is both closed and open.
18/37
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The poset of clopens
Standard theory:

• Clopens form a poset: w ≤ w′ iff wi,j ≤ w′i,j (1 ≤ i < j ≤ d)

• Closed (resp., open) tuples form a lattice.

Proposition
Clopens form a lattice as well.
Proof. Use the rule MIX:

g ⊗ f ≤ g ⊕ f .

Proposition
Clopens bijectively correspond to

• maximal chains in the product lattice
∏

i=1,...,d Ivi ,

• words in the multinomial lattice P(v1, . . . , vd).

Under this bijection, the lattice of clopens is the multinomial lattice
P(v1, . . . , vd).

19/37
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Algebraic remarks

The construction of the multinomial lattices P(v1, . . . , vd) only
depends on the algebraic properties of the quantaloid P.

Proposition
For every ?-autonomous quantale Q satisfying MIX (and each
d ≥ 3), the poset of clopens Q(d) is a lattice.

Proposition
For every ?-autonomous quantaloid Q satisfying MIX, each d ≥ 3,
and (v1, . . . , vd) ∈ Obj(Q), the poset Q(v1, . . . , vd) of clopens is a
complete lattice.

20/37
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A larger category P+ of words/paths

• Objects: extended natural numbers 0, 1, . . . , n, . . . ,∞.

• Arrows: P+(n,m) = SLat∨(In, Im), where

I∞ := [0, 1] .

22/37
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Join-continuous functions as continuous words
Lemma
Bijection/equality between the following kind of data:

• maximal chains in [0, 1]2,

• images of continuous monotone functions π : [0, 1] −→ [0, 1]2

preserving endpoints,

• join-continuous (or meet-continuous) functions from [0, 1] to [0, 1].
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• maximal chains in [0, 1]2,

• images of continuous monotone functions π : [0, 1] −→ [0, 1]2

preserving endpoints,

• join-continuous (or meet-continuous) functions from [0, 1] to [0, 1].
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Generalized results

Proposition
P+ is a ?-autonomous quantaloid (satisfying mix: ⊗ ≤ ⊕).

Let ~v = (v1, . . . , vd) with vi ∈ N ∪ {∞ }, so v : [d] −→ (P+)0.

Proposition
Clopens over ~v bijectively correspond to maximal chains in the
product lattice

∏
i=1,...,n Ivi . Therefore, these maximal chains can

be ordered so they form a lattice.

Remark. Bijection/equality between the following kind of data:

• images of continuous monotone functions π : [0, 1] −→ [0, 1]d

preserving endpoints,

• maximal chains in [0, 1]d /clopens over ~v = (∞, . . . ,∞).
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The continuous Bruhat order of dimension d

• The lattice structure of P+(~ω), ~ω := (∞, . . . ,∞︸     ︷︷     ︸
d−times

),

• For every ~v ∈ Nd and every collection of lattice embeddings
ι = { Ivi −→ I∞ | i = 1, . . . , d }, there is a lattice embedding

P(~v , ι) : P(~v) −−−−→ P+(~∞)

• P+(~∞) is the Dedekind-MacNeille completion of the colomit of
these embeddings.
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Generation and discrete approximations

• Canonical cocone ιv , with ιvi (k) =
k
vi

.

• P+(~∞) is a
∨∧

-completion of the colomit of the P(~v).

• The diagonal lives in P+(~∞), it is a join of elements of thos
colimit.

• Open problem: characterize those elements from P+(~∞) that
are a join of elements of this colimit.
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Open problems

• determine the largest class of chains extending P into a
?-autonomous quantaloid . . .

• equational theories of the lattices P(~v), ~v ∈ Nd ,

• equational theories of the residuated lattices P(n, n),
n = 0, 1, . . .∞,

• congruences of the residuated lattices P(n, n),

• . . . and their idempotents
(actually, not so open, see next slides),

• . . .
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Idempotents as emmentalers3

Definition
Le A be a complete join-semilattice. An emmentaler on A is a
collection { [yi , xi] | i ∈ I } of pairwise disjoint intervals of A such that

• { yi | i ∈ I } closed under meets,

• { xi | i ∈ I } closed under joins.

Lemma
Let A be a complete join-semilattice, let f ∈ SLat∨(A ,A) be
idempotent, and let f a g. Then { [f(x), g(f(x))] | x ∈ A } is an
emmentaler of A.
This sets up a bijective correspondence between idempotents and
emmentalers.

3Thanks to Daniela Muresan
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An emmentaler on In

. . . is a sequence

0 = y0 ≤ x0 < y1 ≤ x1 < . . . yk ≤ xk = n
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Characterizations of idempotent paths

• Bijection with words w ∈ { 1,−1, 0 }∗, |w | = n, w avoids
−10∗ − 1,

• Geometric characterization:
Every NE-turn is above y = x + 1

2 , every EN-turn is below this
line.

Let fn be the sequence of Fibonacci numbers.

Proposition
The number of idempotents in SLat∨(In, In) equals f2n+1.
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Counting idempotents

Remark:

Pos([n], [n]) = strict maps in SLat∨(In, In)
Pos([n], [n]) is a submonoid of SLat∨(In, In).
Bijective proofs of the following results:

Proposition (Howie 1971)
The number of idempotents in Pos([n], [n]) equals f2n.

Proposition (Laradji and Umar 2006)
The number of idempotents in f ∈ Pos([n], [n]) such that f(n) = n
equals f2n−1.
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Thank you !!!
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ψn = φn + ψn−1 , φn = ψn−1 + φn−1 .
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