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MOTIVATION

A simply-typed term can have a very long B-reduction
sequence.
k-EXP in the size of terms of order k [Beckmann 2001].
e.g. (Twice)” Twice--- Twice(Ax.bxx)((Ax.T)c)
ﬁ—/

k—2 times

where Twice = A\f. \x.f(f x)

How many terms have such long B-reduction
sequences?



BACKGROUND

The work has been motivated by quantitative analysis
of the complexity of higher-order model checking

(HOMC).

HIGHER-ORDER MODEL CHECKING [Ong 2006]

Input : tree automaton A and AY-term t.
Output : YES it A accepts the infinite tree

represented by t, NO otherwise.
Complexity: k-EXPTIME-complete for order-k AY-terms.

We want to (dis)prove: HOMC can be eftficiently
solved for almost every input.
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NUMBER OF DISTINCT VARIABLES

#V (t): the # of variables in t excluding unused
variables.

For an &t-equivalence class [t]a,
#Val([tlo) = min{#V (') | ' € [t]o}

Example

#Va(l(Az.2)Ay.7la) =1

HV((\z.x)\y.x) = #{z} =1




OUR RESULT [FOSSACS2017]

Fork,..¢ >2and k < 4,

#ltla € A (K, 1, €)1 | 6(

lim

N—> 00 #AO‘(

AD (K, t, &) the set of &x-equivalence classes of size-n
terms such that:
(1) the order is at most k.
(2) the number of arguments (internal arity) is at most L.

(3) the number of distinct variables is at most & .

#Vo([tla) <& forevery [t]a € AL (K, 1, §)
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OVERVIEW OF OUR PROOF

Almost every term contains a certain “context”

that has a very long B-reduction sequence.

Inspired by Infinite Monkey Theorem: for any word x,
almost every word contains x as a subword.
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IDEAT: PARAMETERISING MONKEY THEOREM

For any family of words(Tn )n over A such that
2| = [log'? (n)],

ﬂ . #{w e A" | x, T w} _
n— 00 H A

L.

[log(2>(n) = log(log(n)) ]




IDEA2: EXTENDING IDEAT TO TERMS

For any family of contexts (Cy,), such that
Cn| = [log? (n)],

#H[t]o € A2 (K, 0,6} | O, ? 2

)
—— #Aa (k1 €)
if k,u,&> 2.

[ C <t & t=C'[C[t']|for some context C’and term t’.]
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For parameters n and k, we define the explosive

context gbk of order-k as:

n

Az ((Twice)™ Twice - - - Twice Dup(1d []))
——r

k—2 times
where Twice = Af. x.f(f x)
Dup = Mx.(A\y.Az.y)xx and Id = Az.x

It has the following “explosive property”:

@ <t = HEXP(n) < B(1).

n —
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HARVEST

Fork,..&€ >2and k <,

#{(the € A2 (k) [ @z 6}
n—00 HAX(k, 1, &) |

lim

\U/ A direct corollary of the explosive property:

’gbﬁ oy 1= (k= 2)-EXP(n) < 5(1)

Almost every term of size n and order at most k
has a B-reduction sequence of length (k-2)-EXP(n).
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PROOF IDEA

[ Parameterising Infinite Monkey Theorem.)

A ,
We first give a proof of

[ Extending (1) to A-termsJ (1), because it clarify
A the overall structure of

[ Most technical part ] the proof of (2).

Constructing “explosive context” that generates
a long B-reduction sequence.
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PROOF OF MONKEY THEOREM FOR WORDS

For any word  over an alphabet A,

#{w e A" | x C w}

= 1.

lim

n— 00 H A

It suffice to show that:

#Hiw € A" |z L wj
nyw — 0

(n — 00)
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PROOF OF MONKEY THEOREM FOR WORDS

"o Let £ =|x|,w e A".

/
w = W1 W9 ---wLn/ng

Fiw e A" [z Zwp 7

myw 0 (n — o0)



PROOF OF MONKEY THEOREM FOR WORDS
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/
#lwe A" |z L w} 7
AT 7
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PROOF OF MONKEY THEOREM FOR WORDS

. Let £ = ||, w € A™ (nmod £)<t
~ =
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\/\/ N
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PROOF OF MONKEY THEOREM FOR WORDS

' Let £ = |z, w € A™. (n mod £)<t
w =(wiwy) - W2 )
"~ ~~
#{w € Av \ v L w}
H# A"
#{w c A" |[w)# @ for all + < [n/l]}

7 A"

N /e
:(1 #Af) — 0 (n — o)




DECOMPOSITION OF WORDS

(n mod £)</
cf. 7
A" 5w =(wqfwg) - - ‘@Utn/fﬂ@
Y Y

Previous proof is based on a “good” decomposition of words.
This good decomposition is induced by the following

| R

w/EA(n mod ¥£) 1< I_n/gj

A’n

¢

This point of view forms the basis of the later extensions.
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MONKEY THEOREM FOR WORDS

For any family of words (z»)n over A such that
2| = [log"? (n)],

#{wEA”\:En;w}:

o H#H{we A" |z, L w}

7 A"
- #{w € A™ | every decomposed part # x}
< YT

. |/ Nog™ (n)]]
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CHALLENGE IN PROVING PARAMETERISED
MONKEY THEOREM FOR TERMS

* How to obtain such a “good” decomposition for the

set of A-terms A, (k,1,&)?

* Non-trivial since terms have various shapes:
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DECOMPOSITION OF TERMS

=xample AT AL (Ay.( Az A x.2)(Ax.(Ax.y)Az.2))x
‘ decomposition size m = 3
AY X ‘
\ NINCVARE:
a \
/T 3 Q
AZ AT — T
c T}
A‘x /@\ AZAT.2 I
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DECOMPOSITION OF TERMS
AT

| |(second-order context)

AL (AYy.( Az x.2)(Ax.(Ax.y)Az.2))x

decomposition size m = 3

| [Residual part




ANALOGY BETWEEN
THE DECOMPOSITION OF TERMS AND WORDS

AY X
|
@
/ \ (I)S
AT @
/ \
2 TT Az
Yy oz
decompose

abracadabra F—— \abr}{acal(dab){ra]

** Decomposed part * Residual part



®,,(NT".t1) = {

(
(
Dy (t1ta) = <
(
(

A FORMAL DEFINITION OF

THE DECOMPOSITION FUNCTION

If |t| < m, then ®,,(t) = ([],¢,¢€).
If [t| > m, then:

(El,)\ZIZ‘ ul,Pl) 1f
(LILEAL ], (AT uq) - Pr)  if

AT .U

AT uq

where (El, ui, Pl) = @m(tl).

LICE [na]) (B2 lu])] L], Py - Po) if [ts] =2 m (i = 1,2)

El,uth,Pl) it tl >m, tz
LI1EL ], (urte) - Py)  if [t > m, |ts

EQ,t]_UQ,PQ) if |t < m, |t1u9
L1E2], 1], (truz) - P2) if [t1] < m, |[t1us

< m,

< m,

where (EZ,UZ,PZ) — ém(tz) (Z — 1, 2)

u1lo

u1lo

<m

> m

<m

> m
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For k,.,é >0and n > m > 2,

SCYRIE=N || B R
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DECOMPOSITION LEMMA

For k,.,é >0and n > m > 2,

A (k,e, €)= ]

EeB™ i<shn(E)

H UEz

g —
some set of
' second-order contexts ‘the set of “good” contexts

the number of holes II]] in E

ct. A"

10

[

that can be filled in the
i-th hole of E.

[l A

weA(n mod m) ZS\_%J




DECOMPOSITION LEMMA

For k,.,é >0and n > m > 2,

HZ

A (k, e, &)

I IT (v

EeB i<shn(F) /\

does NOT depend on the
residual part W

ct. A"

10

Fach decomposed part A™

'Each decomposed part U7,
DOES depend on the
residual part /£

(and also on the index 1)

T

\

1@

we A(n mod m) ZS\_%J
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PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

For any family of contexts (Cy,), of A, (k,¢,§)such
that|C,,| = [log'® (n)],

: #{[t]a = Ag(k,a,g)} ‘ Ch = t}
o NS (F, 1, €)
if kv, &> 2.

= 1.

" It is suffice to show that

#{[t]a = A%(k,L,f) ‘ Chn A t}
# A5 (K, 0, €)




PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

[t € A5 (k1. | Co 21} 2
A (k. 0.

0 (n— o0)

of. Axko6)x [T [ v ™
EEB%)g(Q)(n) 1<shn(F)

W W W
] s B & (u1,ug, - '7ushn(E))
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(o € A% (k,1,) | Cy £ 1)

H#AG (K, L, €)
#1ltla € AL (K, 0, 8) | O

for every i}

#AL (K51, 8)

SN CCYRSE N | B | S

log(z) (n) ’LSShIl(E)

EeB
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| shn( ) >n/4 [log(z)( )| for any E e Bﬁogm(”ﬂ

#{[] € Aa(k L f) | C, 2 u; fo every z}
FAshnE) |

#11 I {wevks N cnzw)

EchB |_log(2> (n)] ’LSShH(E)

#AG (kL §) _\
mn O (2) mn
<(1- 1/m2nog<2><nﬂ) /4710 ® ()]
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PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

| Shn( ) > n/4|lo 2)( )| for any E e Bﬂog(Z)(nﬂ |

#{[ ] < AO‘( . : ) \ C’ ﬁ uz fo every z}

Lemma

o2 (n o2 (n ' n il‘f '-“{
#ngg (M1 — O(ey2Moa® 1y | ,, C. £ u}

fm’ some canstants c and vy /j:

# v (k,1,6)

n/4f10g(2) (nﬂ
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PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

For any family of contexts (Cy,)nof Ay (k,t,&)such
that|C,,| = [log'® (n)],

[l € A2k, 1,0} | Co <1}

n—00 # A5 (K, 0, €)
if kv, &> 2.

1.

lim

#{[t]a = A%(k,L,f) ‘ Chn A t}
# A5 (K, 0, €)




SUMMARY OF THE MAIN PROOF

the probability that a term [t|o € Ay(k, ¢, &) has a
p-reduction sequence of length (k-2)-EXP(n)

("." explosive property)

> the probability that

k

ﬂog@)(nﬂ j t holds

("." Patermeterised Monkey Theorem)

—1 (n — o0)
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OUR RECENT PAPER [LMCS2019]

We have strengthened and generalised the result of
[FoSSacs2017]

Strengthen: we prove that almost every A-term of order-k
has a (k-1)-EXP long B-reduction sequence.

Generalise: we prove the parameterised monkey theorem
for trees generated by any (unambiguous and strongy-
connected) reqgular tree grammar, not only for A-terms

Ak, L, ).



RELATED WORK

Quantitative analysis of untyped terms:

Almost every A-term is strongly normalising (SN), but

almost every SK-combinatory term is not SN
[David et al. 2009].

Almost every de Bruijn A-term is not SN
[Bendkowski et al. 2015].

Empirical results: almost every A-term is not B-normal,
untypable [Grygiel-Lescanne 2013].
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Quantitative analysis of untyped terms:

Almost every A-term is strongly normalising (SN), but

almost every SK-combinatory term is not SN
[David et al. 2009].

Almost every de Bruijn A-term is not SN
[Bendkowski et al. 2015].

Empirical results: almost every A-term is not B-normal,
untypable [Grygiel-Lescanne 2013].

Quantitative analysis of typed terms: little is known.
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FUTURE WORK

Quantitative analysis of simply typed A-terms in different
settings:

with an unbounded number of variables.
this makes # of terms super-exponential growth.
Quantitative analysis of the complexity of HOMC:

We are trying to prove the following kind
, ({[r]a e AV | HOMC(t, - ) is k-EXP-hard})
lim

n— 00 (Ag)

for a certain fragment of AY-terms (on-going work).

= 1.




CONCLUSION

We want to know the typical-case complexity of
HOMC.

Analysis of the length of B-reduction sequence of
STLC as a first step.

Result: almost every terms of order at most k has a
(k-1)-exponentially long B-reduction sequence.

The core of our proof is a non-trivial extension of well-
known Monkey Theorem.

The parameterised Monkey Theorem for regular tree
languages may be of independent interest.






APPENDIX



UNUSED VARIABLE

Our syntax has special symbol *, an unused variable:
tu=x | Ax.t |Ox.t) tt

% is never used, appeared only in A binder.

o-equivalence is defined naturally.

Example AY.x /2, A%.2




SUPER-EXP. GROWTH

Quantitative analysis of simply typed A-terms in different
settings:

with an unbounded number of variables.
this makes # of terms super-exponential growth.

The number of term of the form below is n!:

Azy 70y et (- (za) <)

In the fragment of A-terms with super-exponential growth,
(classical) Monkey Theorem does not hold (cf. David et al.).



ANALOGY BETWEEN DECOMPOSITION OF
WORDS AND TERMS (m = [log® (n)])

Residual part

Decomposed
part

# of decomposed
parts

Size of each
decomposed part

A mod [log(z)(nﬂé |_10g<2) (nﬂ Z n Al_log(Q) (TL)_I
Words E A : [log(Q)(nﬂ i #
BMog™ ()] ;7 Mog® (n)1]} > T; EO( 2Mlog® ()1
Terms [|~'n Y E.q i 4[10g( )(nﬂ i R
i | for some ~y

|

A

[The set of “"good” contextsj

|

[Some set of second-order contexts J [Upper bound of #nggm (nﬂj




ANALOGY BETWEEN DECOMPOSITION OF
WORDS AND TERMS (m = [log® (n)])

Size of each

Residual part Decoprgftosed # of de;c;rptsposition de°°mp§ft5iti°"
Words A" mod flog(z)(nﬂ; Al_lOg<2) (n)_| E Z n E #Al_lOg(Q) (n)]
5 - logP(n)]
5 : n 5
log(®) (n)]!: [1o (2)(7?/)15 > 5 2(log(?) (n
i | for some ~y

|

A

[The set of “"good” contextsj

|

[Some set of second-order contexts J [Upper bound of #nggm (nﬂj




A FORMAL DEFINITION OF
THE DECOMPOSITION FUNCTION

We define ®,,, by:
o If |T| < m, then ®,,(T) = ([],T,¢).

o If |T'|>m, T =a(Ty,..

y

\

(Ha a(Ul[E1]7°°°7U2(a)[EE(a)])a Pl"'PZ(a))
if there exist ¢, j such that 1 <¢ < j <¥(a) and |1;|,|T;]| > m
(Hv [H]?[EZL a(Tla"'ana--'aTE(a)) PZ)
if |T;] < m for every j # ¢, |T;| > m, and
n=la(Th,...,Us, ..., Taw)| = m
((Z(Tl,...,U@‘,..-,TE(a)), E’i? P’L)
if |T;| < m for every j # ¢, |T;| > m, and
a(Ty, ..., Uy ..., Tx)| <m
(LI, o> T)

if |T;| < m for every i < X(a), and n = |T|

5 Txay), and @, (T;) = (U;, By, P;) (for each i < 3(a)), then:



RELATION BETWEEN
THE DECOMPOSITION OF TERMS AND WORDS

)\‘x
@ A
é@ LI (Ay.[D=
S~ % )
‘ 11 )\‘x
A /@\ AZ.AT.2 [T
. N Az (Az.y)Az.2
a4 y =
| — Q14
a13 (i . _———T1- —[]— 913
B 100110412
! H as aA40a50¢g a7agdg



PROOF OF MONKEY THEOREM (FORMAL)
"' Let £ = |x|.
Pr |z [Z w holds for a randomly chosen word w € A"]
< Pr |z # w; holds for every decomposed part w; of w]

#( I 11 (M{x}))

w/EA(n mod £) ZSI_R/EJ

A"

N—IBHTAZEIEZEW

> #( 11 (AN{w}))

w/EA(n mod £) 1< \_n/éJ

7+ A"




PROOF OF INFINITE MONKEY THEOREM (FORMAL)
"' Let £ = |x|.
Pr |z [Z w holds for a randomly chosen word w € A"]

< Pr |z # w; holds for every decomposed part w; of w]

#( I 11 (M{x}))

w/EA(n mod £) ZSI_R/EJ

A"

> [ (#4°-1)

w/EA(n mod £) 1 < Ln/gJ

7 A"
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"' Let £ = |x|.
Pr |z [Z w holds for a randomly chosen word w € A"]

< Pr |z # w; holds for every decomposed part w; of w]

#( I 11 (M{x}))

w/EA(n mod £) ZSI_R/EJ

A"
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"' Let £ = |x|.
Pr |z [Z w holds for a randomly chosen word w € A"]

< Pr |z # w; holds for every decomposed part w; of w]

#( I 11 (M{x}))

w/EA(n mod £) ZSI_R/EJ

A"




PROOF OF INFINITE MONKEY THEOREM (FORMAL)
"' Let £ = |x|.
Pr |z [Z w holds for a randomly chosen word w € A"]

< Pr |z # w; holds for every decomposed part w; of w]

#( I 11 (M{x}))

w/EA(n mod £) ZSI_R/EJ

A"

(#Af _ 1) [n /L] 4 A(n mod &)
A"




PROOF OF INFINITE MONKEY THEOREM (FORMAL)
"' Let £ = |x|.
Pr |z [Z w holds for a randomly chosen word w € A"]

< Pr |z # w; holds for every decomposed part w; of w]

— #( I 11 (M{x}))

w/EA(n mod £) ZSI_R/EJ

A"

(#AK B 1) [n/4] 4 A(n mod &)
(#AK) n/2] #A(n mod /)




PROOF OF INFINITE MONKEY THEOREM (FORMAL)
"' Let £ = |x|.
Pr |z [Z w holds for a randomly chosen word w € A"]

< Pr |z # w; holds for every decomposed part w; of w]

#( I 11 (M{x}))

w/EA(n mod £) ZSI_R/EJ

A"

[n /4] [n/4]
:(#A£_1> :(1 : )%O(n%oo)

myy. myy.



PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

(o € A% (k,1,) | Cy £ 1)

# AL (K51, 6)

B #{t|lo € AS(k,1,&) | C,, A u; for every ¢}

3 = =P o = = e
< S PO P O ST O T oy N
3
(]
U
D

\ pepfos® o]

#AL (K51, 8)

og(® (n
# TT {wevbE ™ Cn 2uy

{  i<shn(E)

#AL (K, 1, €)



PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
B #{t|lo € AS(k,1,&) | C,, A u; for every ¢}
- H#AG (K, 1, €)

Z 4 H {uz c nggm)(nﬂ \Cn y uz}

Ech log(2)(n)] 1<shn(F)

#AL (K, 1, €)



PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
#{t|lo € AS(k,1,&) | C,, A u; for every ¢}

<
N #AL (K, ¢, €)

Z # H { hog<2>(nﬂ '

EEBl_lOg(Z)(n)_| z<shn(E)




PROOF OF PARAMETERISED
MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
#{t|lo € AS(k,1,&) | C,, A u; for every ¢}

<
¢ #AR(R L E)

# H { flog<2>(nﬂ .

EEBl_lOg(2)('n,)_| z<shn(E)

T



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
#{t|lo € AS(k,1,&) | C,, A u; for every ¢}

= 4 (F, 1, €)

Z # H { hog<2>(nﬂ '

EEBl_lOg(2)('n,)_| z<shn(E)

TN E—



(s

PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for details):

og? (n
7 H {uieU,Q,z-g ()] \Cnﬁuz}

1<shn(F)

n/4[log® (n)]
11 U]BO.%(”W) (1 : ) g
1 o0 (2) (n
i<shn(E) cnyH g/ (n)]

> | H {uzeU“‘)g””"” C, ﬁuz}

EEBl_lOg(Z)(n)_| z<shn(E)

4 (k,1,6)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for detaﬂs)

0o () (1) B
# H {uz ~ ngg ( ﬂ ‘ C ﬁ uz}

"Q. z<shn(E) | j"

< (#

N e T n/4[lo (2)(”1)1
I1 U[log<2)<”ﬂ> (1 : ) |

oc(2) (n
AL cry2[10gt?) (n)]

> | H {uzeU“‘)g””’”’” C, ﬁuz

EEBl_lOg(2)('n,)_| z<shn(E)

4 (k,1,6)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
B #{t|lo € AS(k,1,&) | C,, A u; for every ¢}
- H#AG (K, 1, €)

Z 4 H {uz c nggm)(nﬂ \Cn y uz}

Ech log(2)(n)] 1<shn(F)

#AL (K, 1, €)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
#{t|lo € AS(k,1,&) | C,, A u; for every ¢}

= 4 (F, 1, €)

Z # H { hog<2>(nﬂ '

EEBl_lOg(2)('n,)_| z<shn(E)

TN E—



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for detaﬂs)

#

0o (@ ()
H {uz Engg 1 | C, ﬁuz}

"'*; <Shn(E) o

<(1

n/afllog® ()] ,
1 og(?) (n
B H Ugl g ( ﬂ
c~2[log'?) (n)] ’
i 1<shn(FE)

)

> | H {uzeU“‘)g””’”’” C, ﬁuz

EEBl_lOg(2)('n,)_| z<shn(E)

4 (k,1,6)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for details):

og? (n
7 H {uiEUg,,;g ()] \Cnﬁuz}

| z<shn(E) o

¢

H U[log(Z)(nﬂ 1 L e ﬂ
cy2logt®) (n)] '

t "~ 1<shn(FE) | -

Z 4 H {uz c nggm)(nﬂ \Cn y uz}

Ech log(2)(n)] 1<shn(F)

#AL (K, 1, €)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
B #{t|lo € AS(k,1,&) | C,, A u; for every ¢}
- H#AG (K, 1, €)

Z 4 H {uz c nggm)(nﬂ \Cn y uz}

Ech log(2)(n)] 1<shn(F)

#AL (K, 1, €)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
B #{t|lo € AS(k,1,&) | C,, A u; for every ¢}
- H#AG (K, 1, €)

Z 4 H {uz c nggm)(nﬂ \Cn y uz}

Ech log(2) (n)]1t 2<shn(F)

#AL (K, 1, €)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, 1, 6)
B #{t|lo € AS(k,1,&) | C,, A u; for every ¢}
B >< #A%(kvbaf)

Z 4 H {uz c nggm)(nﬂ \Cn y uz}

Ech log(2) (n)]1t 2<shn(F)

#AL (K, 1, €)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

HH{[ta € AZ(k,1,6) | Cu £ )
H#AG (K, L, €)
B #{t|lo € AS(k,1,&) | C,, A u; for every ¢}
- H#AG (K, 1, €)

# H H {uz c ngg@)(nﬂ | Cn ﬁ Uz}

Ech log(2) (n)] 1<shn(FE)

# AL (K1, 6)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for details):
For every F & B}fg(z)(”) and ¢ < shn(F),

og'? (n oc(?) (n

(2)
i.e. there exists u; € ngg W such that C,, = u;

# H H {uz c ngg@)(nﬂ | Cn ﬁ Uz}

Ech og(2) (n)] t<shn(FE)

# AL (K1, 6)




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for details):
For every F & B}fg(2>(”) and ¢ < shn(F),

og'? (n oc(?) (n

(2)
i.e. there exists u; € ngg W such that C,, = u;

# H H {uz c ngg@)(nﬂ | Cn ﬁ Uz}

Beplos® ()] i<shn () s

# AL (K1, 6)




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for details):
For every F & B}fg(2>(”) and ¢ < shn(F),

og'? (n oc(?) (n
fus € ULEON [ €, i) < pufis 00 g

(2)
i.e. there exists u; € U gzg W such that C,, = u;

#11 [1 (pofeson 1)

EcB |—10g(2) (n) ] 'LSShH(E)

#AG (K1, 6)

<



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

Lemma (see our paper for details):
For every F & B}fg(2>(”) and ¢ < shn(F),

#11  I1 (wuke 1)

EcB |—log(2) (n) ] ’LSShH(E)

#AG (K1, 6)

<



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

#{[t]a < Ag(ka va) | Cn f t}
#A5 (K, &)
= Pr[ C,, £ t holds for a randomly chosen term ¢ in AS (K, L, & )]

< Pr[C,, £ u;holds for every decomposed part u; of ]

> #( I1 {uiGUEgi(z)(”)Cnﬁu})

EEBIOg(z) (n) ZSShH(E)

> #( I] UE.%@)(”))

EEBIOg(Z) (n) ZSShH(E)



= Pr[C,, 4t hold =shn(E) log2 (n)
Ap = H Ug.i
<Pr[C, £ u;hold ™™ i<shn(E)

PROOF OF PARAMETERISED
INFINITE MO

Notation:

A oc(?) (n
Ap=[[fuevgs ™ C,2u)

log(2) (n) iS) o




PROOF OF PARAMETERISED
INFINITE MO

Notation:

vy O (2) n
Ap=[[{wevys ™ c, 24}
~ i<shn(E)

og? (n
Ap =[] U5 "

1<shn(F)




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

*/ Lemma (see our paper for details):
There exist constants ¢ and ") such that

1 )N/4Cf10g(2) (1) ]

2c[log(®) (n)]

=P Ap < #Ap x (1
<P

cry
holds for every F ¢ B}fgm(”),




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

*/ Lemma (see our paper for details):

There exist constants ¢ and ") such that

1

=B 4Ap < #Ap x (1
7y

<D
<F holds for every F ¢ Bifgm(”).

2c[log(®) (n)]

)[n/4crlog<2><nﬂ]

\

Lower bound of the 1
# of holes

(decomposed parts)

of every [ ¢ Br}fgm(”)




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

*/ Lemma (see our paper for details):
There exist constants ¢ and ") such that

; ) | (n/4cflog(2)(n)D
= < T o ) T
#Ag < #Ap X (1 C,Y2cﬂog(2)(nﬂ) /\

<P log(2) . ,
holds for every ' € B, . Lower bound of the
- # of holes
Z #Ag (decomposed parts)
og?) (n
- EEB},?g(Q)(n) hof every F ¢ Br}lg ( )J
r O (2) n ﬁ
Z #AE | Asymptotic upper bound of #U S ™

Ech, og(?) (n 2
c ( 4771987 (M) _ ) (py2elog ><n>1)>




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

*/ Lemma (see our paper for details):
There exist constants ¢ and ") such that

1 )N/4Cf10g(2) (1) ]

2c[log(®) (n)]

=B 4Ap < #Ap x (1

C
<P )

holds for every F < B}fgm(”),

1 n/4clog!® (n)]
A 1
Z #Ap X ( C”yzcﬂog(2>(nﬂ>




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

*/ Lemma (see our paper for details):
There exist constants ¢ and ") such that
b B 1 n/4c[log'® (n)]
= I Ag < #Ag x |1
whp = i ( cy2elog® (n)] )

<D
<F holds for every F ¢ Bifgm(”).

( L\ n/dellog® (m)])

Ap x}(1

Z:<2> e ( C”Yzcmogm(nﬂ> |

EcBes (n) N




PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

‘[ Lemma (see our paper for details):
There exist constants ¢ and ") such that

1 )N/4Cf10g(2) (1) ]

A <
#Ap < #AEg X (1 C”yQC“Og(Q)(nH

holds for every F < B}fgm(”),

; n/4c[log'? (nﬂ log(2) ()
(1 : ) |, EeBn”
| oy

2c[log(®) (n)]



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

‘[ Lemma (see our paper for details):
There exist constants ¢ and ") such that

1 )n/46f10g(2> (1) ]

A <
#Ap < #AEg X (1 C,Ychlog@)(nﬂ

holds for every F < Bilog@)(n).

1 n/4c[log!® (n)]
< |1
o ( Cﬂ)/ZCHOg@)(”ﬂ )



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

‘[ Lemma (see our paper for details):
There exist constants ¢ and ") such that

1 )n/46f10g(2> (1) ]

A <
#Ap < #AEg X (1 C,Ychlog@)(nﬂ

holds for every F < Bilog@)(n).

1 n/4cllog® (n)]
< |1
~ ( CAYZCHOg@) (n)—l ) — O (n — OO)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

‘[ Lemma (see our paper for details):
There exist constants ¢ and ") such that

1 )N/4C[10g(2> (n) ]

Ap <
#AE ~ #AE X (1 C,Y2c(log(2)(nﬂ

holds for every F < Bk)gm(”),

1 n/4clog'® (n)]
< (1 ) — 0 (n — o00)

C,-)/ZC [log(?) (n)]
This convergence can be proved with
elementary analysis (see our paper)



PROOF OF PARAMETERISED
INFINITE MONKEY THOREM FOR TERMS

#{[t]a < Ag(kv va) | Cn ﬁ t}
#A5 (K, &)
= Pr[ C,, £ t holds for a randomly chosen term ¢ in AS (K, L, & )]

< Pr[C,, £ u;holds for every decomposed part u; of ]

1 n/4clog'® (n)]
< (1 ) — 0 (n — o00)

Cﬂy2c[log(2> (n) ] . .
This convergence can be proved with
elementary analysis (see our paper)



