Almost Every Simply Typed λ -Term Has a Long β -reduction Sequence

Ryoma Sin'ya (Akita University)

Computational Logic and Applicatdions @Versaille 2019/7/2

THE CONTENTS OF THIS TALK:

- [FoSSaCS2017]
 R. Sin'ya, K. Asada, N. Kobayashi, T. Tsukada:
 "Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence", FoSSaCS 2017
- [LMCS2019]
 K. Asada, N. Kobayashi, R. Sin'ya, T. Tsukada:
 "Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence", LMCS Vol. 15 Issue 1, 2019

- A simply-typed term can have a very long β -reduction sequence.
 - k-EXP in the size of terms of order k [Beckmann 2001].

$$0-\text{EXP}(n) = n$$

$$(m+1)-\text{EXP}(n) = 2^{m-\text{EXP}(n)}$$

- A simply-typed term can have a very long β -reduction sequence.
 - k-EXP in the size of terms of order k [Beckmann 2001].

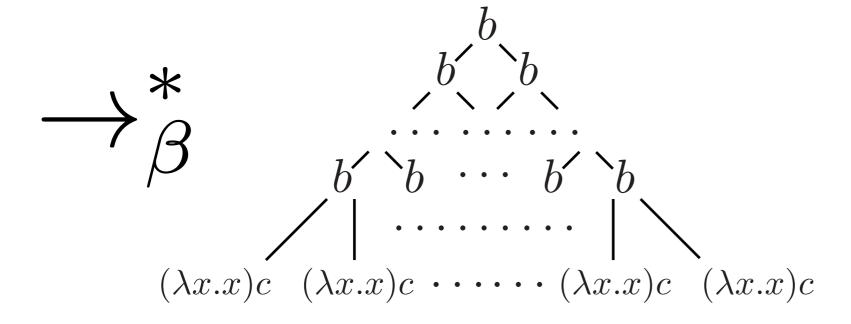
e.g.
$$(Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} (\lambda x.bxx)((\lambda x.x)c)$$

where
$$Twice = \lambda f.\lambda x.f(f x)$$

- A simply-typed term can have a very long β -reduction sequence.
 - k-EXP in the size of terms of order k [Beckmann 2001].

e.g.
$$(Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} (\lambda x.bxx)((\lambda x.x)c)$$

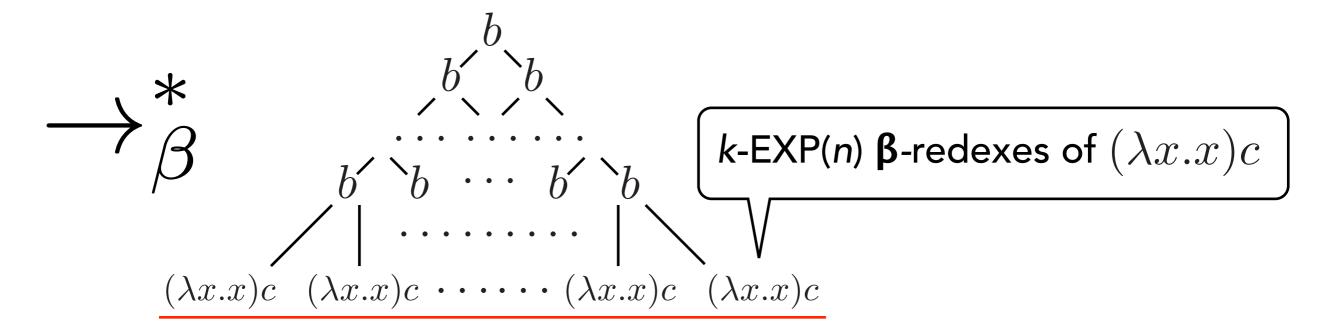
where
$$Twice = \lambda f.\lambda x.f(f x)$$



- A simply-typed term can have a very long β -reduction sequence.
 - k-EXP in the size of terms of order k [Beckmann 2001].

e.g.
$$(Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} (\lambda x.bxx)((\lambda x.x)c)$$

where
$$Twice = \lambda f.\lambda x.f(f x)$$



- A simply-typed term can have a very long β -reduction sequence.
 - k-EXP in the size of terms of order k [Beckmann 2001].

e.g.
$$(Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} (\lambda x.bxx)((\lambda x.x)c)$$

where
$$Twice = \lambda f.\lambda x.f(fx)$$

• How many terms have such long β -reduction sequences?

BACKGROUND

 The work has been motivated by quantitative analysis of the complexity of higher-order model checking (HOMC).

HIGHER-ORDER MODEL CHECKING [Ong 2006]

• Input : tree automaton A and λY -term t.

Output : YES if A accepts the infinite tree

represented by t, NO otherwise.

Complexity: k-EXPTIME-complete for order- $k \lambda Y$ -terms.

• We want to (*dis*)prove: HOMC can be efficiently solved for *almost every input*.

OUTLINE

Introduction

Our result

Proof of our result

Related&future work

Conclusion

$$\begin{aligned} & \textit{For } k, \iota, \xi \geq 2 \textit{ and } k \leq \iota, \\ & \lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid \beta(t) \geq (k-2)\text{-EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1. \end{aligned}$$

- $\Lambda_n^{\alpha}(k,\iota,\xi)$: the set of α -equivalence classes of size-n terms such that:
 - (1) the order is at most k.
 - (2) the number of arguments (internal arity) is at most ℓ .
 - (3) the number of distinct variables is at most ξ .

$$\begin{aligned} & \textit{For } k, \iota, \xi \geq 2 \textit{ and } k \leq \iota, \\ & \lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid \beta(t) \geq (k-2)\text{-EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1. \end{aligned}$$

- $\Lambda_n^{\alpha}(k,\iota,\xi)$: the set of α -equivalence classes of size-n terms such that:
 - (1) the order is at most k.
 - (2) the number of arguments (internal arity) is at most ℓ .
 - (3) the number of distinct variables is at most ξ .

the maximum length of β -reduction sequences of t.

For
$$k, \iota, \xi \geq 2$$
 and $k \leq \iota$,

For
$$k, \iota, \xi \geq 2$$
 and $k \leq \iota$, β -reduction sequences of t .
$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid \beta(t) \geq (k-2)\text{-EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$

- $\Lambda_n^{\alpha}(k,\iota,\xi)$: the set of α -equivalence classes of size-nterms such that:
 - (1) the order is at most k.
 - (2) the number of arguments (internal arity) is at most ℓ .
 - (3) the number of distinct variables is at most ξ .

the maximum length of β or $k \in \mathcal{E} > 2$ and k < 1 β -reduction sequences of t.

For
$$k, \iota, \xi \geq 2$$
 and $k \leq \iota$, β -reduction sequences of t .
$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid \beta(t) \geq (k-2)\text{-EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$

- $\Lambda_n^{\alpha}(k,\iota,\xi)$: the set of α -equivalence classes of size-n terms such that:
 - (1) the order is at most k.
 - (2) the number of arguments (internal arity) is at most ℓ .
 - (3) the number of distinct variables is at most ξ .

the maximum length of β -reduction sequences of t.

$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid \beta(t) \ge (k-2)\text{-EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1$$

Almost every term of size n and order at most k has a β -reduction sequence of length (k-2)-EXP(n).

 $\Lambda_n^{\alpha}(k,\iota,\xi)$: the set of α -equivalence classes of size-n terms such that:

- (1) the order is at most k.
- (2) the number of arguments (internal arity) is at most ℓ .
- (3) the number of distinct variables is at most ξ .

$$\begin{split} & \textit{For } k, \iota, \xi \geq 2 \textit{ and } k \leq \iota, \\ & \lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi) \mid \beta(t) \geq (k-2)\text{-EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1. \end{split}$$

- $\Lambda_n^{\alpha}(k,\iota,\xi)$: the set of α -equivalence classes of size-n terms such that:
 - (1) the order is at most k.
 - (2) the number of arguments (internal arity) is at most ℓ .
 - (3) the number of distinct variables is at most ξ .

NUMBER OF DISTINCT VARIABLES

- #V(t): the # of variables in t excluding unused variables.
- For an $oldsymbol{lpha}$ -equivalence class $[t]_{lpha}$,

$$\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$$

NUMBER OF DISTINCT VARIABLES

- #V(t): the # of variables in t excluding unused variables.
- For an $oldsymbol{lpha}$ -equivalence class $[t]_{lpha}$,

$$\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$$

NUMBER OF DISTINCT VARIABLES

- #V(t): the # of variables in t excluding unused variables.
- For an $oldsymbol{lpha}$ -equivalence class $[t]_{lpha}$,

$$\#\mathbf{V}_{\alpha}([t]_{\alpha}) \triangleq \min\{\#\mathbf{V}(t') \mid t' \in [t]_{\alpha}\}$$

Example

$$\#\mathbf{V}_{\alpha}([(\lambda z.z)\lambda y.x]_{\alpha}) = 1$$

$$#\mathbf{V}((\lambda z.z)\lambda y.x) = \#\{x, z\} = 2$$

$$\#\mathbf{V}((\underline{\lambda x.x})\lambda y.x) = \#\{x\} = 1$$

$$\begin{aligned} & \textit{For } k, \iota, \xi \geq 2 \textit{ and } k \leq \iota, \\ & \lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid \beta(t) \geq (k-2)\text{-EXP}(n)\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1. \end{aligned}$$

- $\Lambda_n^{\alpha}(k,\iota,\xi)$: the set of α -equivalence classes of size-n terms such that:
 - (1) the order is at most k.
 - (2) the number of arguments (internal arity) is at most ℓ .
 - (3) the number of distinct variables is at most ξ .

$$\#\mathbf{V}_{\alpha}([t]_{\alpha}) \leq \xi$$
 for every $[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k,\iota,\xi)$

OUTLINE

Introduction

Our result

Proof of our result

Related&future work

Conclusion

OVERVIEW OF OUR PROOF

• Almost every term contains a certain "context" that has a very long β -reduction sequence.

OVERVIEW OF OUR PROOF

• Almost every term contains a certain "context" that has a very long β -reduction sequence.

OVERVIEW OF OUR PROOF

• Almost every term contains a certain "context" that has a very long β -reduction sequence.

 Inspired by Infinite Monkey Theorem: for any word x, almost every word contains x as a subword.

OUTLINE

- Introduction
- Our result
- Proof of our result
 - Idea
 - Infinite Monkey Theorem
 - Decomposition of terms
 - Sketch of the proof
- Related&future work
- Conclusion

PROOF IDEA

1. Parameterising Infinite Monkey Theorem.

2. Extending (1) to λ -terms.

3. Constructing "explosive context" that generates a long β -reduction sequence.

MONKEY THEOREM

For any word x over an alphabet A,

$$\lim_{n \to \infty} \frac{\#\{w \in A^n \mid x \sqsubseteq w\}}{\#A^n} = 1.$$

 $x \sqsubseteq w \Leftrightarrow w = uxv \text{ for some words } u, v \in A^*.$

MONKEY THEOREM

For any word x over an alphabet A,

$$\lim_{n \to \infty} \frac{\#\{w \in A^n \mid x \sqsubseteq w\}}{\#A^n} = 1.$$

 $x \sqsubseteq w \Leftrightarrow w = uxv \text{ for some words } u, v \in A^*.$

IDEA1: PARAMETERISING MONKEY THEOREM

For any family of words $(x_n)_n$ over A such that

$$|x_n| = \lceil \log^{(2)}(n) \rceil,$$

$$\lim_{n \to \infty} \frac{\#\{w \in A^n \mid x_n \sqsubseteq w\}}{\#A^n} = 1.$$

$$\log^{(2)}(n) = \log(\log(n))$$

IDEA2: EXTENDING IDEA1 TO TERMS

For any family of contexts $(C_n)_n$ such that

$$|C_n| = \lceil \log^{(2)}(n) \rceil,$$

$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid C_n \leq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1$$

if $k, \iota, \xi \geq 2$.

$$C \leq t \iff t = C'[C[t']]$$
 for some context C' and term t' .

IDEA3: CONSTRUCTING "EXPLOSIVE" CONTEXT

• For parameters n and k, we define the explosive context of order-k as:

$$\lambda x. ((Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} Dup(Id[]))$$
where $Twice = \lambda f. \lambda x. f(f x)$

$$Dup = \lambda x. (\lambda y. \lambda z. y) xx \text{ and } Id = \lambda x. x$$

IDEA3: CONSTRUCTING "EXPLOSIVE" CONTEXT

• For parameters n and k, we define the explosive context of order-k as:

$$\lambda x. ((Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} Dup(Id []))$$
where $Twice = \lambda f. \lambda x. f(f x)$

$$Dup = \lambda x. (\lambda y. \lambda z. y) xx \text{ and } Id = \lambda x. x$$

It has the following "explosive property":

$$\beta(n) \ge k - \text{EXP}(n)$$

IDEA3: CONSTRUCTING "EXPLOSIVE" CONTEXT

• For parameters n and k, we define the explosive context of order-k as:

$$\lambda x. ((Twice)^n \underbrace{Twice \cdots Twice}_{k-2 \text{ times}} Dup(Id []))$$
where $Twice = \lambda f. \lambda x. f(f x)$

$$Dup = \lambda x. (\lambda y. \lambda z. y) xx \text{ and } Id = \lambda x. x$$

• It has the following "explosive property":

$$\sum_{n=0}^{k} t \Rightarrow k\text{-EXP}(n) \leq \beta(t).$$

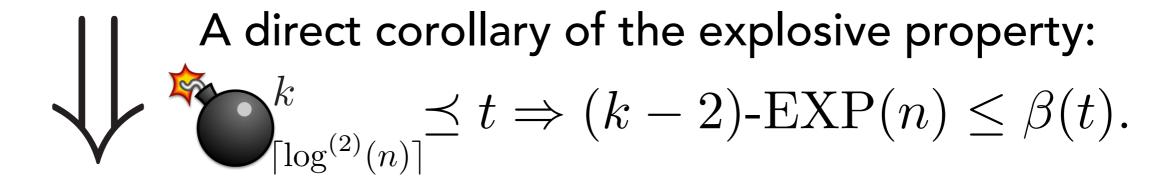
HARVEST

For
$$k, \iota, \xi \geq 2$$
 and $k \leq \iota$,
$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} | \bigcap_{\log^{(2)}(n)} \stackrel{k}{\succeq} t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$

HARVEST

For
$$k, \iota, \xi \geq 2$$
 and $k \leq \iota$,

$$\begin{aligned} & \text{For } k, \iota, \xi \geq 2 \text{ and } k \leq \iota, \\ & \lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \, | \, \bigcap_{\log^{(2)}(n)} \stackrel{k}{ \, \bigsqcup} \, t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1. \end{aligned}$$



Almost every term of size n and order at most khas a β -reduction sequence of length (k-2)-EXP(n).

PROOF IDEA

1. Parameterising Infinite Monkey Theorem.

2. Extending (1) to λ -terms.

3. Constructing "explosive context" that generates a long β -reduction sequence.

PROOF IDEA

1. Parameterising Infinite Monkey Theorem.

2. Extending (1) to λ -terms.

Most technical part

3. Constructing "explosive context" that generates a long β -reduction sequence.

PROOF IDEA

1. Parameterising Infinite Monkey Theorem.

2. Extending (1) to λ -terms.

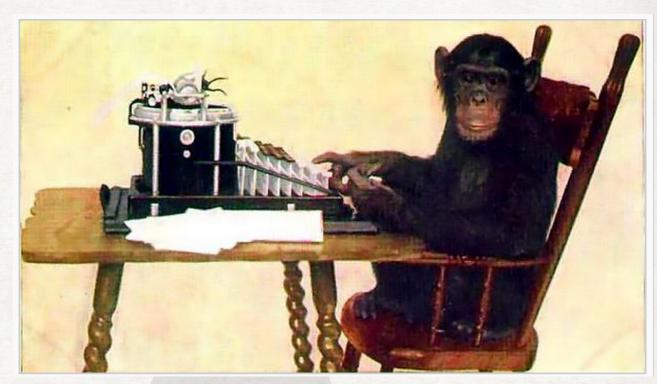
Most technical part

We first give a proof of (1), because it clarify the overall structure of the proof of (2).

3. Constructing "explosive context" that generates a long β -reduction sequence.

OUTLINE

- Introduction
- Our result
- Proof of our result
 - Idea
 - Infinite Monkey Theorem
 - Decomposition of terms
 - Sketch of the proof
- Related&future work



http://en.wikipedia.org/wiki/ Infinite_monkey_theorem

For any word x over an alphabet A,

$$\lim_{n \to \infty} \frac{\#\{w \in A^n \mid x \sqsubseteq w\}}{\#A^n} = 1.$$

•

It suffice to show that:

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \to 0 \ (n \to \infty)$$

• •

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \stackrel{?}{\to} 0 \ (n \to \infty)$$

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \stackrel{?}{\to} 0 \ (n \to \infty)$$

$$w = w_1 w_2 \cdots w_{\lfloor n/\ell \rfloor} w'$$

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \stackrel{?}{\to} 0 \ (n \to \infty)$$

$$w = \underbrace{w_1}_{\ell} w_2 \cdot \cdots \cdot w_{\lfloor n/\ell \rfloor} w'$$

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \stackrel{?}{\to} 0 \ (n \to \infty)$$

$$w = \underbrace{w_1 w_2}_{\ell} \cdots w_{\lfloor n/\ell \rfloor} w'$$

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \stackrel{?}{\to} 0 \ (n \to \infty)$$

$$w = \underbrace{w_1 w_2}_{\ell} \cdots \underbrace{w_{\lfloor n/\ell \rfloor}}_{\ell} w'$$

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \stackrel{?}{\to} 0 \ (n \to \infty)$$

$$\begin{array}{c}
\therefore \text{ Let } \ell = |x|, w \in A^n. \\
w = \underbrace{w_1 w_2} \cdots \underbrace{w_{\lfloor n/\ell \rfloor} w'}_{\ell}
\end{array}$$

$$\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \stackrel{?}{\to} 0 \ (n \to \infty)$$

$$\begin{array}{c}
 \text{Let } \ell = |x|, w \in A^n. \\
 w = \underbrace{w_1 w_2} \cdots \underbrace{w_{\lfloor n/\ell \rfloor} w'} \\
 \frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \\
 \leq \frac{\#\{w \in A^n \mid w_i \neq x \text{ for all } i \leq \lfloor n/\ell \rfloor\}}{\#A^n}
\end{array}$$

$$\begin{array}{c}
\therefore \text{ Let } \ell = |x|, w \in A^n. \\
w = \underbrace{w_1 w_2} \cdots \underbrace{w_{\lfloor n/\ell \rfloor} w'} \\
\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \\
\leq \frac{\#\{w \in A^n \mid w_i \neq x \text{ for all } i \leq \lfloor n/\ell \rfloor\}}{\#A^n} \\
= \left(1 - \frac{1}{\#A^\ell}\right)^{\lfloor n/\ell \rfloor}
\end{array}$$

$$\begin{array}{c}
\therefore \text{ Let } \ell = |x|, w \in A^n. \\
w = \underbrace{w_1 w_2} \cdots \underbrace{w_{\lfloor n/\ell \rfloor} w'} \\
\frac{\#\{w \in A^n \mid x \not\sqsubseteq w\}}{\#A^n} \\
\leq \frac{\#\{w \in A^n \mid w_i \neq x \text{ for all } i \leq \lfloor n/\ell \rfloor\}}{\#A^n} \\
= \left(1 - \frac{1}{\#A^\ell}\right)^{\lfloor n/\ell \rfloor} \to 0 \ (n \to \infty)
\end{array}$$

DECOMPOSITION OF WORDS

cf. $A^n \ni w = \underbrace{w_1 w_2}_{\ell} \cdots \underbrace{w_{\lfloor n/\ell \rfloor} w'}_{\ell}$

- Previous proof is based on a "good" decomposition of words.
 - This good decomposition is induced by the following coproduct-product form:

$$A^{n} \cong \prod_{w' \in A^{(n \bmod \ell)}} A^{\ell}$$

$$w' \in A^{(n \bmod \ell)} i \leq \lfloor n/\ell \rfloor$$

This point of view forms the basis of the later extensions.

PROOF OF PARAMETERISED MONKEY THEOREM FOR WORDS

For any family of words $(x_n)_n$ over A such that

$$|x_n| = \lceil \log^{(2)}(n) \rceil,$$

$$\lim_{n \to \infty} \frac{\#\{w \in A^n \mid x_n \sqsubseteq w\}}{\#A^n} = 1.$$

$$\frac{\#\{w \in A^n \mid x_n \not\sqsubseteq w\}}{\#A^n} \\
\leq \frac{\#\{w \in A^n \mid \text{every decomposed part } \neq x\}}{\#A^n}$$

$$= \left(1 - \frac{1}{A^{\lceil \log^{(2)}(n) \rceil}}\right)^{\lfloor n/\lceil \log^{(2)}(n) \rceil \rfloor} \to 0 \ (n \to \infty) \quad .$$

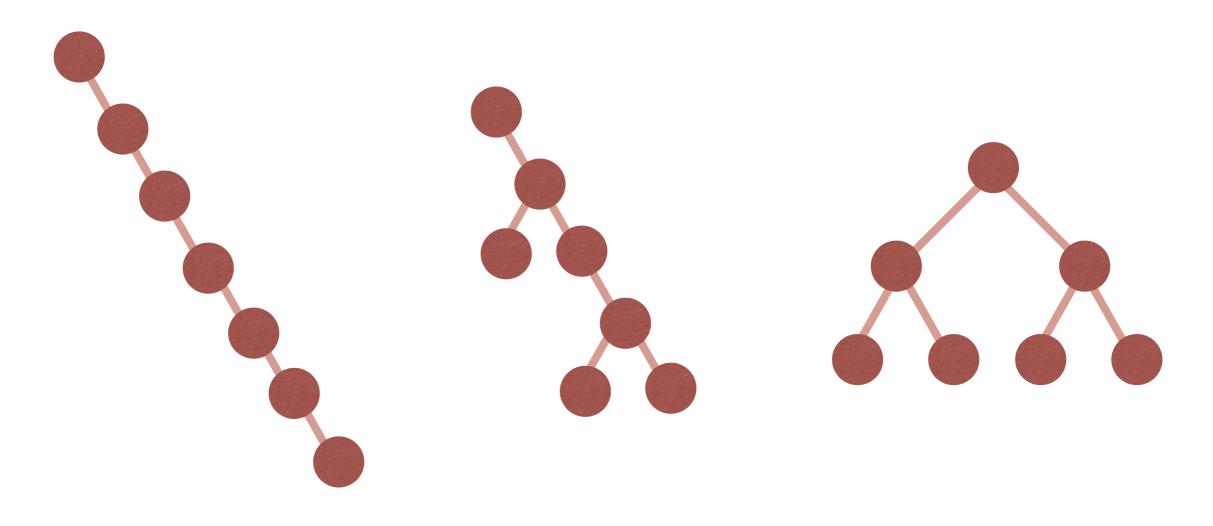
OUTLINE

- Introduction
- Our result
- Proof of our result
 - Idea
 - Infinite Monkey Theorem
 - Decomposition of terms
 - Sketch of the proof
- Related&future work
- Conclusion

CHALLENGE IN PROVING PARAMETERISED MONKEY THEOREM FOR TERMS

• How to obtain such a "good" decomposition for the set of $\pmb{\lambda}$ -terms $\Lambda_n^{\alpha}(k,\iota,\xi)$?

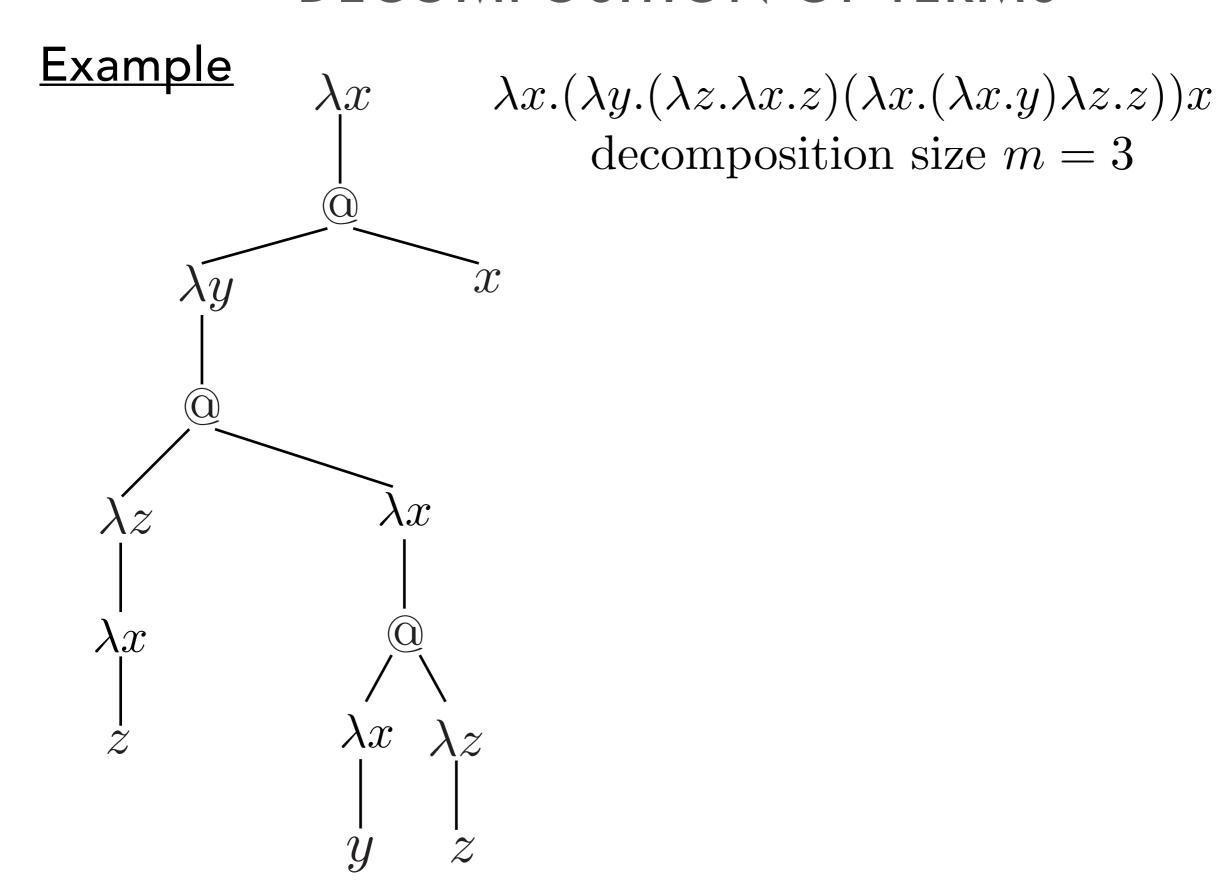
Non-trivial since terms have various shapes:

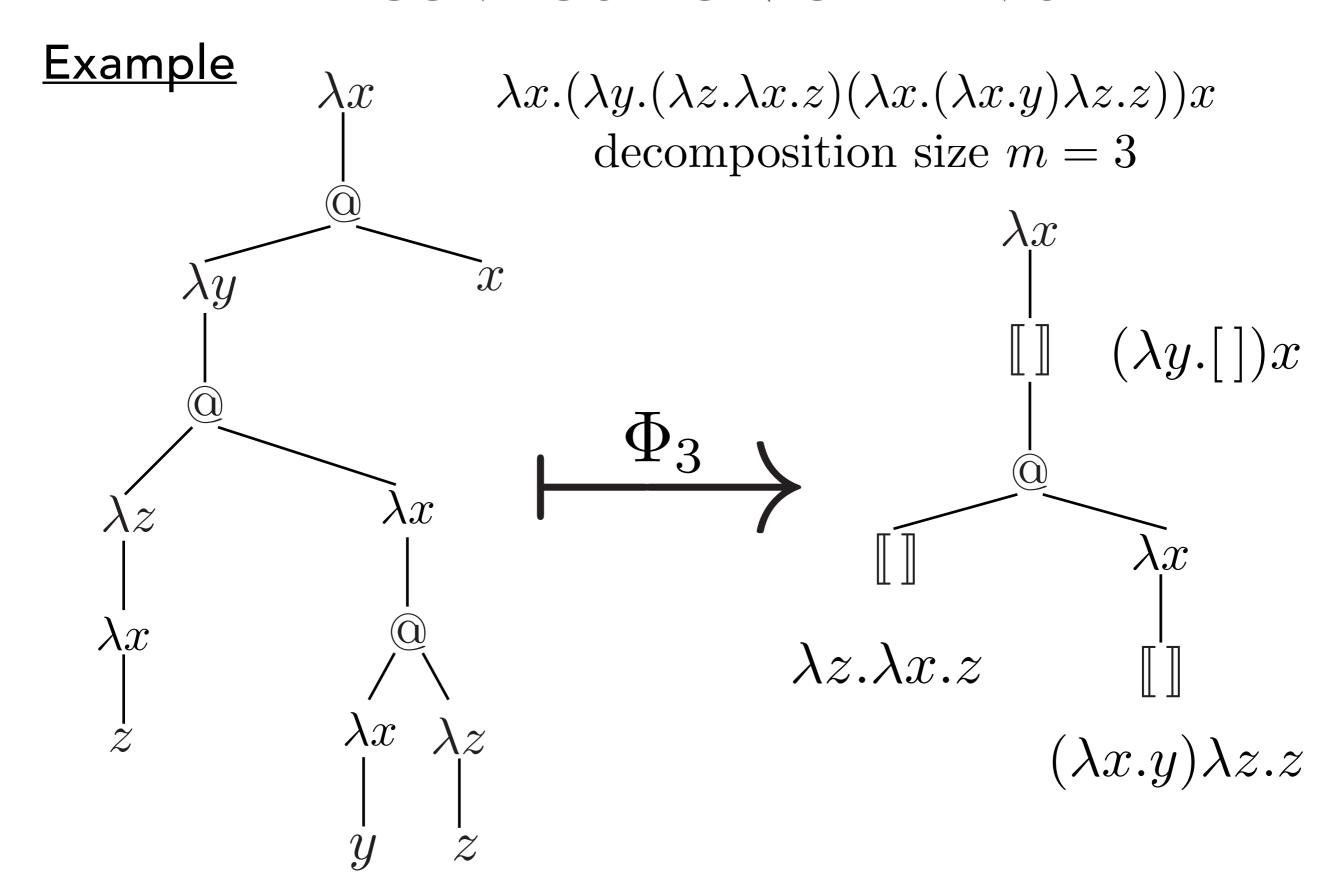


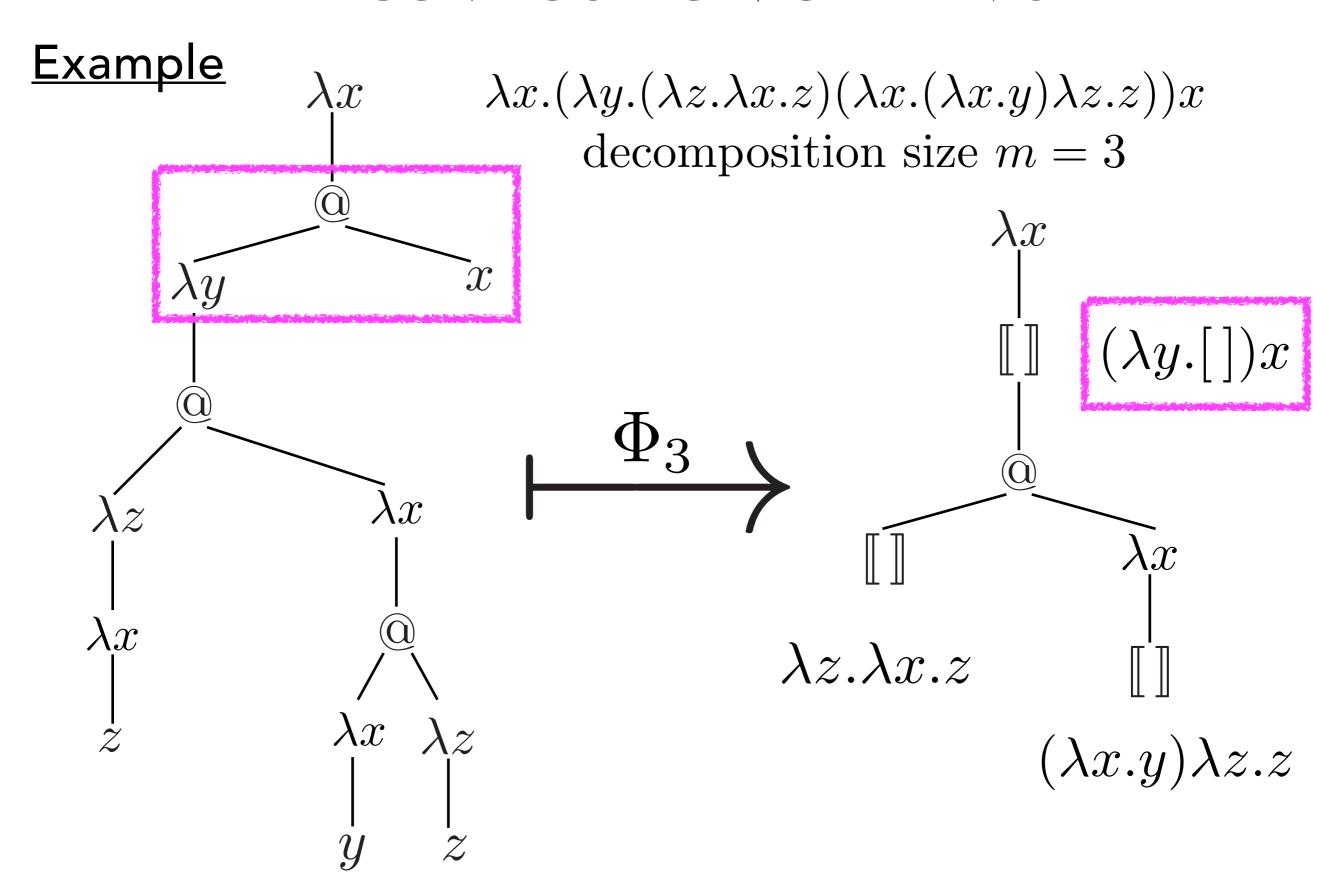
Example

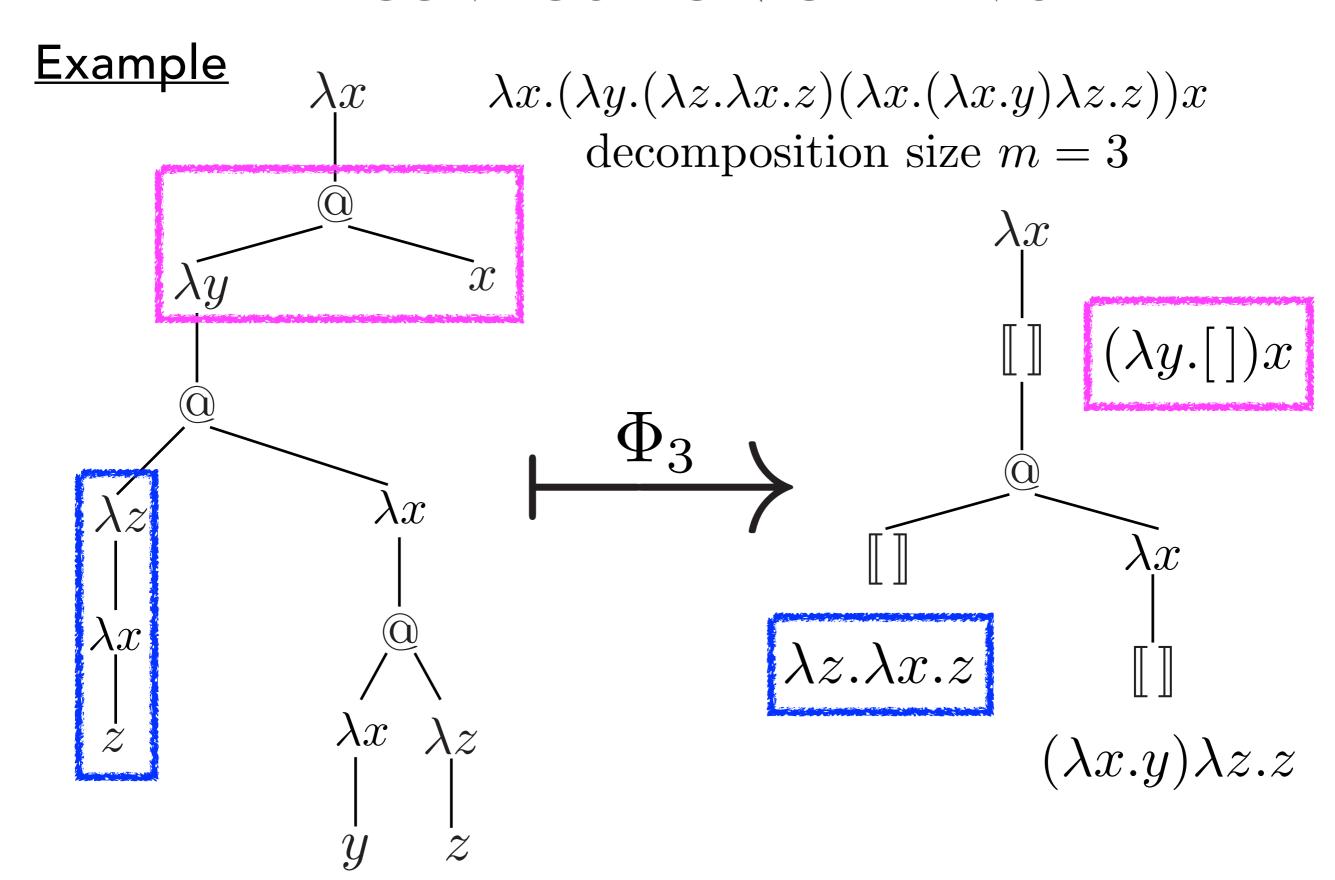
$$\lambda x.(\lambda y.(\lambda z.\lambda x.z)(\lambda x.(\lambda x.y)\lambda z.z))x$$

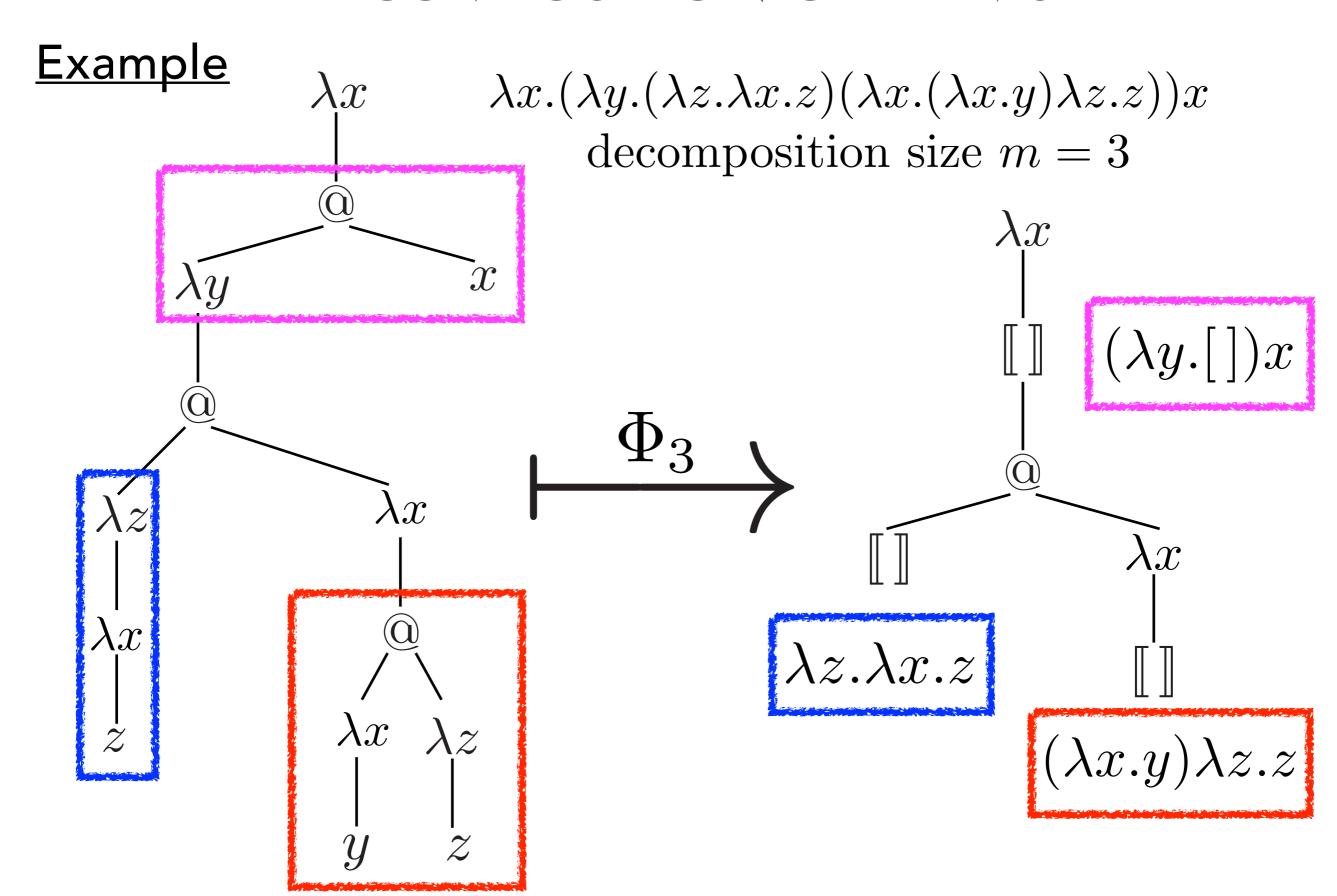


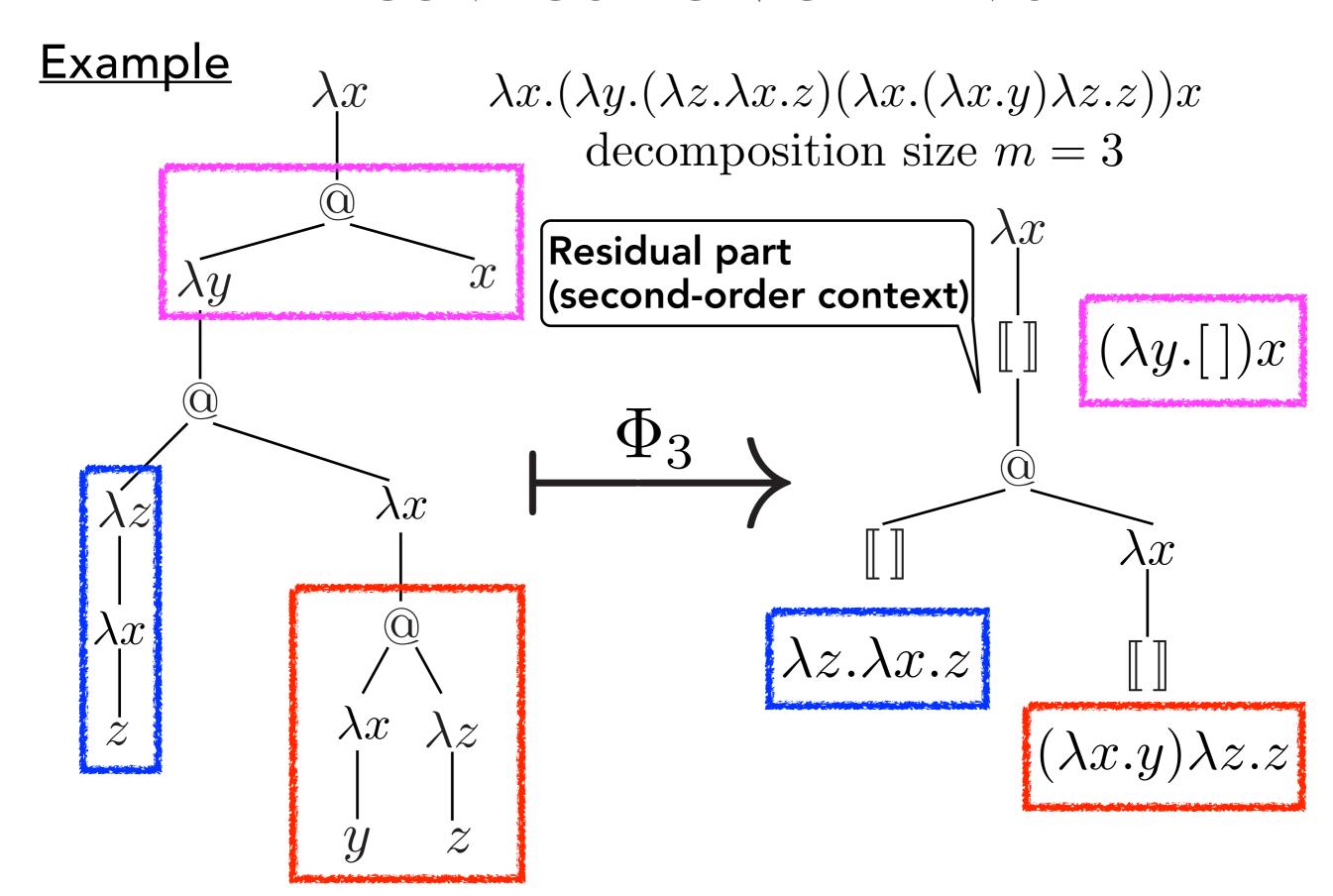




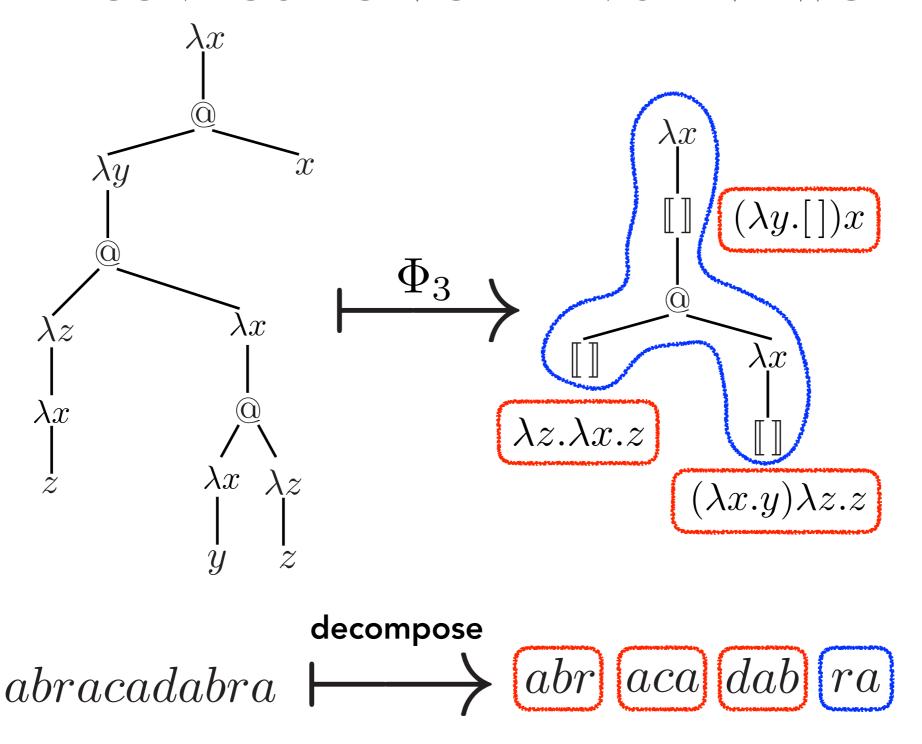








ANALOGY BETWEEN THE DECOMPOSITION OF TERMS AND WORDS



* Decomposed part

* Residual part

A FORMAL DEFINITION OF THE DECOMPOSITION FUNCTION

If |t| < m, then $\Phi_m(t) \triangleq (\llbracket \rrbracket, t, \epsilon)$. If $|t| \ge m$, then:

$$\Phi_{m}(\lambda \overline{x}^{\tau}.t_{1}) \triangleq \begin{cases}
(E_{1}, \lambda \overline{x}^{\tau}.u_{1}, P_{1}) & \text{if } |\lambda \overline{x}^{\tau}.u_{1}| < m \\
(\llbracket \rrbracket[E_{1}], \llbracket], (\lambda \overline{x}^{\tau}.u_{1}) \cdot P_{1}) & \text{if } |\lambda \overline{x}^{\tau}.u_{1}| = m \\
\text{where } (E_{1}, u_{1}, P_{1}) = \Phi_{m}(t_{1}).
\end{cases}$$

$$\Phi_{m}(t_{1}t_{2}) \triangleq
\begin{cases}
(\llbracket \rrbracket[(E_{1}\llbracket u_{1}\rrbracket)(E_{2}\llbracket u_{2}\rrbracket)], [\rbrack, P_{1} \cdot P_{2}) & \text{if } |t_{i}| \geq m \ (i = 1, 2) \\
(E_{1}, u_{1}t_{2}, P_{1}) & \text{if } |t_{1}| \geq m, |t_{2}| < m, |u_{1}t_{2}| < m \\
(\llbracket \rrbracket[E_{1}], [\rbrack, (u_{1}t_{2}) \cdot P_{1}) & \text{if } |t_{1}| \geq m, |t_{2}| < m, |u_{1}t_{2}| \geq m \\
(E_{2}, t_{1}u_{2}, P_{2}) & \text{if } |t_{1}| < m, |t_{1}u_{2}| < m \\
(\llbracket \rrbracket[E_{2}], [\rbrack, (t_{1}u_{2}) \cdot P_{2}) & \text{if } |t_{1}| < m, |t_{1}u_{2}| \geq m \\
\text{where } (E_{i}, u_{i}, P_{i}) = \Phi_{m}(t_{i}) \quad (i = 1, 2).
\end{cases}$$

For $k, \iota, \xi \geq 0$ and $n \geq m \geq 2$,

$$\Lambda_n^{\alpha}(k, \iota, \xi) \cong \coprod_{E \in \mathcal{B}_m^n} \coprod_{i \leq \sinh(E)} U_{E,i}^m$$

cf.
$$A^n \cong \coprod A^m$$

$$w \in A^{(n \mod m)} i \leq \lfloor \frac{n}{m} \rfloor$$

For $k, \iota, \xi \geq 0$ and $n \geq m \geq 2$,

$$\Lambda_n^{\alpha}(k,\iota,\xi) \cong \coprod_{E \in \mathcal{B}_m^n} \coprod_{i \leq \sinh(E)} U_{E,i}^m$$

some set of second-order contexts

cf.
$$A^n \cong \coprod_{w \in A^{(n \mod m)}} \coprod_{i \le \lfloor \frac{n}{m} \rfloor} A^m$$

For $k, \iota, \xi \geq 0$ and $n \geq m \geq 2$,

$$\Lambda_n^{\alpha}(k, \iota, \xi) \cong \coprod_{E \in \mathcal{B}_m^n} \coprod_{i \leq \sinh(E)} U_{E,i}^m$$

some set of second-order contexts

the number of holes [] in E

cf.
$$A^n \cong \coprod A^m$$

$$w \in A^{(n \mod m)} i \leq \lfloor \frac{n}{m} \rfloor$$

For $k, \iota, \xi \geq 0$ and $n \geq m \geq 2$,

$$\Lambda_n^{\alpha}(k,\iota,\xi) \cong \coprod_{E \in \mathcal{B}_m^n} \coprod_{i \leq \sinh(E)} \underbrace{U_{E.i}^m}_{k}$$

some set of second-order contexts

the number of holes [] in E [] that can be filled in the

the set of "good" contexts that can be filled in the i-th hole of E.

cf.
$$A^n \cong \coprod A^m$$

$$w \in A^{(n \mod m)} i \leq \lfloor \frac{n}{m} \rfloor$$

For $k, \iota, \xi \geq 0$ and $n \geq m \geq 2$,

$$\Lambda_n^{\alpha}(k,\iota,\xi) \cong \coprod_{E \in \mathcal{B}_m^n} \coprod_{i \leq \sinh(E)} U_{E,i}^m$$

Each decomposed part A^m does NOT depend on the residual part w

Each decomposed part $U_{E,i}^m$ **DOES depend** on the residual part E(and also on the index i)

cf.
$$A^n \cong \prod A^m$$

$$w \in A^{(n \mod m)} i \leq \lfloor \frac{n}{m} \rfloor$$

OUTLINE

- Introduction
- Our result
- Proof of our result
 - Idea
 - Infinite Monkey Theorem
 - Decomposition of terms
 - Sketch of the proof
- Related&future work
- Conclusion

PROOF OF PARAMETERISED MONKEY THOREM FOR TERMS

For any family of contexts $(C_n)_n$ of $\Lambda_n^{\alpha}(k, \iota, \xi)$ such that $|C_n| = \lceil \log^{(2)}(n) \rceil$, $\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid C_n \preceq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$ if $k, \iota, \xi \geq 2$.

. It is suffice to show that

$$\frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi) \mid C_n \not\preceq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} \to 0 \quad (n \to \infty)$$

PROOF OF PARAMETERISED MONKEY THOREM FOR TERMS

$$\frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k,\iota,\xi) \mid C_n \not\preceq t\}}{\#\Lambda_n^{\alpha}(k,\iota,\xi)} \xrightarrow{?} 0 \quad (n \to \infty)$$

PROOF OF PARAMETERISED MONKEY THOREM FOR TERMS

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\# \coprod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \sinh(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$= \frac{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\# \coprod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \text{shn}(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$= \frac{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \left(1 - 1/c\gamma^{2\lceil \log^{(2)}(n) \rceil}\right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

Lemma

$$\operatorname{shn}(E) \ge n/4\lceil \log^{(2)}(n) \rceil \text{ for any } E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ fo}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)} \underbrace{\text{every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\# \coprod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \text{shn}(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$\#\Lambda_n^{lpha}(k,\iota,\xi)$$

$$\leq \left(1 - 1/c\gamma^{2\lceil \log^{(2)}(n) \rceil}\right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

$$\operatorname{shn}(E) \ge n/4\lceil \log^{(2)}(n) \rceil \text{ for any } E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}$$

$$\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k,\iota,\xi) \mid C_n \not\preceq u_i \text{ folevery } i\}$$

$$\#U_{E,i}^{\lceil \log^{(2)}(n) \rceil} = \mathcal{O}(c\gamma^{2\lceil \log^{(2)}(n) \rceil}) \quad | \stackrel{(n) \rceil}{=} C_n \not\preceq u_i$$

for some constants c and γ

$$s \ c \ ext{and} \ \gamma$$

$$\# \Lambda_n^{\alpha}(k,\iota,\xi)$$

$$=\frac{\#\lambda_n^{\alpha}(k,\iota,\xi)}{\#\lambda_n^{\alpha}(k,\iota,\xi)}$$

$$\leq \left(1-1/c\gamma^{2\lceil\log^{(2)}(n)\rceil}\right)^{n/4\lceil\log^{(2)}(n)\rceil}$$

$$n/4\lceil \log^{(2)}(n) \rceil$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\# \coprod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \text{shn}(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$= \frac{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \left(1 - 1/c\gamma^{2\lceil \log^{(2)}(n) \rceil}\right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\# \coprod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \sinh(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$\leq \left(1 - 1/c\gamma^{2\lceil \log^{(2)}(n) \rceil}\right)^{n/4\lceil \log^{(2)}(n) \rceil} \to 0 \ (n \to \infty) \quad \therefore$$

For any family of contexts $(C_n)_n$ of $\Lambda_n^{\alpha}(k, \iota, \xi)$ such that $|C_n| = \lceil \log^{(2)}(n) \rceil$,

$$\lim_{n \to \infty} \frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi)\} \mid C_n \leq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} = 1.$$

 $n{
ightarrow}\infty$ if $k,\iota,\xi\geq 2$.

• •

$$\frac{\#\{[t]_{\alpha} \in \Lambda_n^{\alpha}(k, \iota, \xi) \mid C_n \not\preceq t\}}{\#\Lambda_n^{\alpha}(k, \iota, \xi)} \to 0 \quad (n \to \infty)$$

•

SUMMARY OF THE MAIN PROOF

the probability that a term $|t|_{\alpha} \in \Lambda_n^{\alpha}(k,\iota,\xi)$ has a β -reduction sequence of length (k-2)-EXP(n)

('.' explosive property)
$$\geq \text{ the probability that } k \\ \log^{(2)}(n) \\ \rceil \\ \preceq t \ \ holds$$

(: Patermeterised Monkey Theorem)

$$\rightarrow 1 \ (n \rightarrow \infty)$$

OUTLINE

Introduction

Our result

Proof of our result

Related&future work

Conclusion

OUR RECENT PAPER [LMCS2019]

- We have strengthened and generalised the result of [FoSSacs2017]
 - Strengthen: we prove that almost every λ -term of order-k has a (k-1)-EXP long β -reduction sequence.
 - Generalise: we prove the parameterised monkey theorem for trees generated by any (unambiguous and strongy-connected) regular tree grammar, not only for λ -terms $\Lambda(k, \iota, \xi)$.

RELATED WORK

- Quantitative analysis of untyped terms:
 - Almost every λ-term is strongly normalising (SN), but almost every SK-combinatory term is not SN [David et al. 2009].
 - Almost every de Bruijn λ-term is not SN [Bendkowski et al. 2015].
 - Empirical results: almost every λ -term is not β -normal, untypable [Grygiel-Lescanne 2013].

RELATED WORK

- Quantitative analysis of untyped terms:
 - Almost every λ-term is strongly normalising (SN), but almost every SK-combinatory term is not SN [David et al. 2009].
 - Almost every de Bruijn λ-term is not SN [Bendkowski et al. 2015].
 - Empirical results: almost every λ -term is not β -normal, untypable [Grygiel-Lescanne 2013].

Quantitative analysis of typed terms: little is known.

FUTURE WORK

- Quantitative analysis of simply typed λ -terms in different settings:
 - with an unbounded number of variables.
 - this makes # of terms super-exponential growth.

FUTURE WORK

- Quantitative analysis of simply typed λ -terms in different settings:
 - with an unbounded number of variables.
 - this makes # of terms super-exponential growth.
- Quantitative analysis of the complexity of HOMC:
 - We are trying to prove the following kind

$$\lim_{n\to\infty} \frac{\#\Big(\big\{[t]_{\alpha}\in\Lambda_{n}^{Y}\mid \mathrm{HOMC}(t,\cdot)\;\mathrm{is}\;k\text{-EXP-hard}\big\}\Big)}{\#\Big(\hat{\Lambda}_{n}^{Y}\Big)}=1.$$

for a certain fragment of λY -terms (on-going work).

CONCLUSION

- We want to know the typical-case complexity of HOMC.
 - Analysis of the length of β -reduction sequence of STLC as a first step.
- Result: almost every terms of order at most k has a (k-1)-exponentially long β -reduction sequence.
 - The core of our proof is a non-trivial extension of well-known Monkey Theorem.
 - The parameterised Monkey Theorem for regular tree languages may be of independent interest.

APPENDIX

UNUSED VARIABLE

• Our syntax has special symbol *, an unused variable:

$$t ::= x \mid \lambda x.t \mid \lambda *.t \mid tt$$

• * is never used, appeared only in λ binder.

α-equivalence is defined naturally.

Example
$$\lambda y.x \approx_{\alpha} \lambda *.x$$

SUPER-EXP. GROWTH

- Quantitative analysis of simply typed λ -terms in different settings:
 - with an unbounded number of variables.
 - this makes # of terms super-exponential growth.
 - The number of term of the form below is n!:

$$\lambda x_1^{\circ \to \circ} \cdots x_n^{\circ \to \circ} a^{\circ} \cdot x_1' (x_2' (\cdots (x_n' a) \cdots))$$

• In the fragment of λ -terms with super-exponential growth, (classical) Monkey Theorem does not hold (cf. David et al.).

ANALOGY BETWEEN DECOMPOSITION OF WORDS AND TERMS $(m = \lceil \log^{(2)}(n) \rceil)$

	Residual part	Decomposed part	# of decomposed parts	Size of each decomposed part		
			$ \log^{-\gamma}(n) $	$#A^{\lceil \log^{(2)}(n) \rceil}$		
Terms	$\mathcal{B}_n^{\lceil \log^{(2)}(n) ceil}$	$U_{E.i}^{\lceil \log^{(2)}(n) \rceil}$	$\geq \frac{n}{4\lceil \log^{(2)}(n) \rceil}$	$\mathrm{O}(\gamma^{2\lceil \log^{(2)}(n) \rceil})$ for some γ		
The set of "good" contexts						
Some set of second-order contexts Upper bound of $\#U_{E,i}^{\lceil \log^{(2)}(n) \rceil}$						

ANALOGY BETWEEN DECOMPOSITION OF WORDS AND TERMS $(m = \lceil \log^{(2)}(n) \rceil)$

	Residual part	Decomposed part	# of decomposition parts	Size of each decomposition part		
			$ \log^{(n)}(n) $	$#A^{\lceil \log^{(2)}(n) \rceil}$		
Terms	$\mathcal{B}_n^{\lceil \log^{(2)}(n) ceil}$	$U_{E.i}^{\lceil \log^{(2)}(n) \rceil}$	$\geq \frac{n}{4\lceil \log^{(2)}(n) \rceil}$	$O(\gamma^{2\lceil \log^{(2)}(n) \rceil})$ for some γ		
The set of "good" contexts						
Some set of second-order contexts Upper bound of $\#U_{E,i}^{\lceil \log^{(2)}(n) \rceil}$						

A FORMAL DEFINITION OF THE DECOMPOSITION FUNCTION

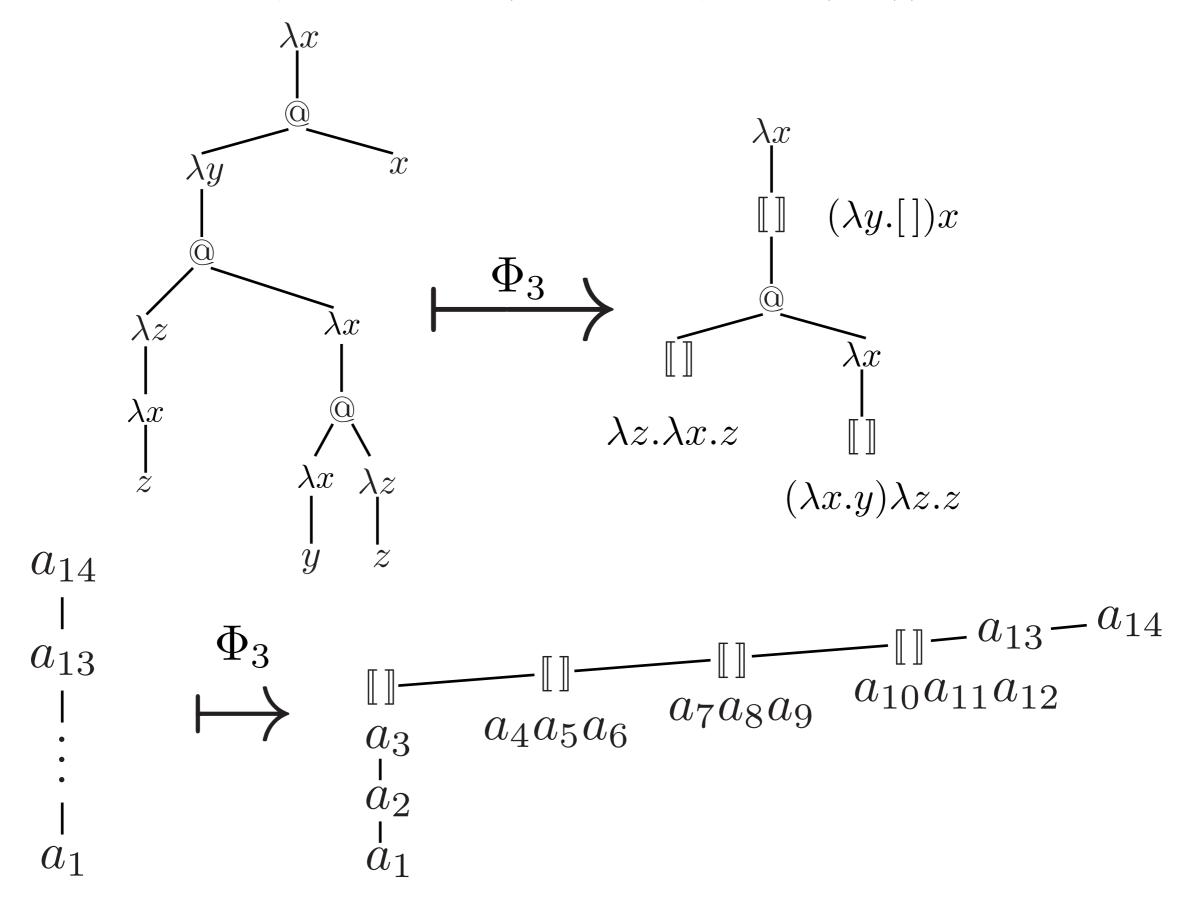
We define Φ_m by:

```
• If |T| < m, then \Phi_m(T) \triangleq ([], T, \epsilon).
```

• If
$$|T| < m$$
, then $\Phi_m(T) = ([], T, \epsilon)$.
• If $|T| \ge m$, $T = a(T_1, \dots, T_{\Sigma(a)})$, and $\Phi_m(T_i) = (U_i, E_i, P_i)$ (for each $i \le \Sigma(a)$), then:

$$\Phi_m(T) \triangleq d(T_1, \dots, T_{\Sigma(a)}), \text{ and } \Phi_m(T_i) = (U_i, E_i, P_i) \text{ (for each } i \leq \Sigma(a)), \text{ to } \{ ([], \ a(U_1[E_1], \dots, U_{\Sigma(a)}[E_{\Sigma(a)}]), \ P_1 \dots P_{\Sigma(a)}) \\ \text{ if there exist } i, j \text{ such that } 1 \leq i < j \leq \Sigma(a) \text{ and } |T_i|, |T_j| \geq m \\ ([], \ []]_1^n[E_i], \ a(T_1, \dots, U_i, \dots, T_{\Sigma(a)}) \cdot P_i) \\ \text{ if } |T_j| < m \text{ for every } j \neq i, |T_i| \geq m, \text{ and } \\ n \triangleq |a(T_1, \dots, U_i, \dots, T_{\Sigma(a)})| \geq m \\ (a(T_1, \dots, U_i, \dots, T_{\Sigma(a)}), \ E_i, \ P_i) \\ \text{ if } |T_j| < m \text{ for every } j \neq i, |T_i| \geq m, \text{ and } \\ |a(T_1, \dots, U_i, \dots, T_{\Sigma(a)})| < m \\ ([], \ []_0^n, \ T) \\ \text{ if } |T_i| < m \text{ for every } i \leq \Sigma(a), \text{ and } n \triangleq |T|$$

RELATION BETWEEN THE DECOMPOSITION OF TERMS AND WORDS



PROOF OF MONKEY THEOREM (FORMAL)

 \cdot Let $\ell = |x|$.

 $\Pr[x \not\sqsubseteq w \text{ holds for a randomly chosen word } w \in A^n]$

 $\leq \Pr[x \neq w_i \text{ holds for every decomposed part } w_i \text{ of } w]$

$$\# \left(\prod_{w' \in A^{(n \bmod \ell)}} \prod_{i \le \lfloor n/\ell \rfloor} (A^{\ell} \setminus \{x\}) \right)$$

 $\#A^n$

ページ移動で式変形が追えない

$$= \frac{\sum_{w' \in A^{(n \mod \ell)}} \# \left(\prod_{i \le \lfloor n/\ell \rfloor} (A^{\ell} \setminus \{x\}) \right)}{\# A^n}$$

 \cdot Let $\ell = |x|$.

 $\Pr[x \not\sqsubseteq w \text{ holds for a randomly chosen word } w \in A^n]$

 $\leq \Pr[x \neq w_i \text{ holds for every decomposed part } w_i \text{ of } w]$

$$\frac{\#\left(\prod_{w'\in A^{(n \bmod \ell)}} \prod_{i\leq \lfloor n/\ell\rfloor} \left(A^{\ell}\setminus \{x\}\right)\right)}{\#A^n}$$

$$= \frac{\sum \prod_{w' \in A^{(n \mod \ell)}} \frac{\prod (\#A^{\ell} - 1)}{i \leq \lfloor n/\ell \rfloor}}{\#A^n}$$

 \cdot Let $\ell = |x|$.

 $\Pr[x \not\sqsubseteq w \text{ holds for a randomly chosen word } w \in A^n]$

 $\leq \Pr[x \neq w_i \text{ holds for every decomposed part } w_i \text{ of } w]$

$$\frac{\#\left(\prod_{w'\in A^{(n \bmod \ell)}} \prod_{i\leq \lfloor n/\ell\rfloor} (A^{\ell}\setminus\{x\})\right)}{\#A^{n}}$$

$$\sum_{w' \in A^{(n \bmod \ell)}} \left(\# A^{\ell} - 1 \right)^{\lfloor n/\ell \rfloor}$$

 $\#A^n$

 \cdot Let $\ell = |x|$.

 $\Pr[x \not\sqsubseteq w \text{ holds for a randomly chosen word } w \in A^n]$

 $\leq \Pr[x \neq w_i \text{ holds for every decomposed part } w_i \text{ of } w]$

$$\frac{\#\left(\prod_{w'\in A^{(n \bmod \ell)}} \prod_{i\leq \lfloor n/\ell\rfloor} (A^{\ell}\setminus\{x\})\right)}{\#A^n}$$

$$\frac{\left(\#A^{\ell}-1\right)^{\lfloor n/\ell\rfloor}}{w'\in A^{(n \bmod \ell)}}$$

 \cdot Let $\ell = |x|$.

 $\Pr[x \not\sqsubseteq w \text{ holds for a randomly chosen word } w \in A^n]$ $\leq \Pr[x \neq w_i \text{ holds for every decomposed part } w_i \text{ of } w]$

$$= \frac{\# \left(\prod_{w' \in A^{(n \mod \ell)}} \prod_{i \leq \lfloor n/\ell \rfloor} (A^{\ell} \setminus \{x\}) \right)}{\frac{1}{\sqrt{An}}}$$

$$= \frac{\left(\#A^{\ell} - 1\right)^{\lfloor n/\ell \rfloor} \#A^{(n \bmod \ell)}}{\#A^n}$$

 \cdot Let $\ell = |x|$.

 $\Pr[x \not\sqsubseteq w \text{ holds for a randomly chosen word } w \in A^n]$ $\leq \Pr[x \neq w_i \text{ holds for every decomposed part } w_i \text{ of } w]$

$$= \frac{\#\left(\prod_{w'\in A^{(n \bmod \ell)}} \prod_{i\leq \lfloor n/\ell\rfloor} (A^{\ell}\setminus\{x\})\right)}{\# An}$$

$$= \frac{\left(\#A^{\ell} - 1\right)^{\lfloor n/\ell\rfloor} \#A^{(n \bmod \ell)}}{\left(\#A^{\ell}\right)^{\lfloor n/\ell\rfloor} \#A^{(n \bmod \ell)}}$$

 \therefore Let $\ell = |x|$.

 $\Pr[x \not\sqsubseteq w \text{ holds for a randomly chosen word } w \in A^n]$

 $\leq \Pr[x \neq w_i \text{ holds for every decomposed part } w_i \text{ of } w]$

$$= \frac{\# \left(\prod_{w' \in A^{(n \mod \ell)}} \prod_{i \leq \lfloor n/\ell \rfloor} (A^{\ell} \setminus \{x\}) \right)}{\# A^n}$$

$$= \left(\frac{\#A^{\ell}-1}{\#A^{\ell}}\right)^{\lfloor n/\ell\rfloor} = \left(1-\frac{1}{\#A^{\ell}}\right)^{\lfloor n/\ell\rfloor} \stackrel{(n/\ell)}{\to} 0 \ (n\to\infty)$$

•

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} # \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} # \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{lpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$= \sum_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \#\prod_{i \leq \text{shn}(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$\frac{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{lpha}(k,\iota,\xi)$$

Lemma (see our paper for details):

$$# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\leq \left(\# \prod_{i \leq \operatorname{shn}(E)} U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \right) \left(1 - \frac{1}{c \gamma^{2\lceil \log^{(2)}(n) \rceil}} \right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} # \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

Lemma (see our paper for details):

$$\# \prod_{i \leq \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \leq u_i \right\}$$

$$\leq \left(\# \prod_{i \leq \operatorname{shn}(E)} U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \right) \left(1 - \frac{1}{c \gamma^{2\lceil \log^{(2)}(n) \rceil}} \right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} # \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{lpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{lpha}(k,\iota,\xi)$$

Lemma (see our paper for details):

$$\# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\leq \left(1 - \frac{1}{c\gamma^{2\lceil \log^{(2)}(n) \rceil}}\right)^{n/4\lceil \log^{(2)}(n) \rceil} \left(\# \prod_{i \leq \sinh(E)} U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \right)$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

Lemma (see our paper for details):

$$# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\leq \left(\# \prod_{i \leq \operatorname{shn}(E)} U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \right) \left(1 - \frac{1}{c \gamma^{2\lceil \log^{(2)}(n) \rceil}} \right)^{n/4\lceil \log^{(2)}(n) \rceil}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} # \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} # \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{lpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\sum_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \# \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$= \frac{\sum_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \#\prod_{i \leq \text{shn}(E)} \left\{ u_{i} \in U_{E.i}^{\lceil \log^{(2)}(n) \rceil} \mid C_{n} \not\preceq u_{i} \right\}$$

$$\#\Lambda_{n}^{\alpha}(k, \iota, \xi)$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\leq \frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k, \iota, \xi) \mid C_{n} \not\preceq u_{i} \text{ for every } i\}}{\#\Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$# \coprod_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

•

Lemma (see our paper for details):

For every $E \in \mathcal{B}_n^{\log^{(2)}(n)}$ and $i \leq \sinh(E)$,

$$\left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not\preceq u_i \right\} \le \# U_{E,i}^{\lceil \log^{(2)}(n) \rceil} - 1$$

i.e. there exists $u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil}$ such that $C_n \leq u_i$

$$# \coprod_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{lpha}(k,\iota,\xi)$$

•

Lemma (see our paper for details):

For every $E \in \mathbb{B}_n^{\log^{(2)}(n)}$ and $i \leq \sinh(E)$,

$$\left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not\preceq u_i \right\} \le \# U_{E,i}^{\lceil \log^{(2)}(n) \rceil} - 1$$

i.e. there exists $u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil}$ such that $C_n \leq u_i$

$$# \coprod_{E \in \mathcal{B}_n^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \le \sinh(E)} \left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not \preceq u_i \right\}$$

$$\#\Lambda_n^{\alpha}(k,\iota,\xi)$$

•

Lemma (see our paper for details):

For every $E \in \mathbb{B}_n^{\log^{(2)}(n)}$ and $i \leq \sinh(E)$,

$$\left\{ u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil} \mid C_n \not\preceq u_i \right\} \le \# U_{E,i}^{\lceil \log^{(2)}(n) \rceil} - 1$$

i.e. there exists $u_i \in U_{E,i}^{\lceil \log^{(2)}(n) \rceil}$ such that $C_n \leq u_i$

$$4 \prod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \sinh(E)} \left(\# U_{E,i}^{\lceil \log^{(2)}(n) \rceil} - 1 \right) \\
\leq \frac{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}}{\# \Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

•

Lemma (see our paper for details):

For every
$$E \in \mathcal{B}_n^{\log^{(2)}(n)}$$
 and $i \leq \sinh(E)$,

$$4 \prod_{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}} \prod_{i \leq \sinh(E)} \left(\# U_{E,i}^{\lceil \log^{(2)}(n) \rceil} - 1 \right) \\
\leq \frac{E \in \mathcal{B}_{n}^{\lceil \log^{(2)}(n) \rceil}}{\# \Lambda_{n}^{\alpha}(k, \iota, \xi)}$$

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k,\iota,\xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k,\iota,\xi)}$$

= $\Pr[C_n \not\preceq t \text{ holds for a randomly chosen term } t \text{ in } \Lambda_n^{\alpha}(k, \iota, \xi)]$

 $\leq \Pr[C_n \not\preceq u_i \text{ holds for every decomposed part } u_i \text{ of } t]$

$$= \frac{\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \left(\prod_{i \le \sinh(E)} \{ u_i \in U_{E,i}^{\log^{(2)}(n)} \mid C_n \not \preceq u \} \right)}{\left(\sum_{i \le \sinh(E)} \{ u_i \in U_{E,i}^{\log^{(2)}(n)} \mid C_n \not \preceq u \} \right)}$$

$$\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \left(\prod_{i \le \sinh(E)} U_{E,i}^{\log^{(2)}(n)} \right)$$

PROOF OF PARAMETERISED

$$= \Pr[C_n \not \leq t \text{ hold}]$$

$$\leq \Pr[C_n \not\preceq u_i \text{hold}]$$

Notation:

$$\frac{\#\{[i]}{\Lambda_E} = \prod_{i \le \sinh(E)} \{u \in U_{E,i}^{\log^{(2)}(n)} \mid C_n \not \preceq u\}$$

$$= \Pr[C_n \not \preceq t \text{ hold} \quad \Lambda_E = \prod_{i \le \sinh(E)} U_{E,i}^{\log^{(2)}(n)}$$

$$\le \Pr[C_n \not \preceq u_i \text{ hold} \quad \Lambda_E = \prod_{i \le \sinh(E)} U_{E,i}^{\log^{(2)}(n)}$$

$$\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \left(\prod_{i \le \sinh(E)} \{ u_i \in U_{E,i}^{\log^{(2)}(n)} \mid C_n \not \preceq u \} \right)$$

$$\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \left(\prod_{i \leq \sinh(E)} U_{E,i}^{\log^{(2)}(n)} \right)$$

PROOF OF PARAMETERISED

Notation:

$$= \Pr[C_n \not \preceq t \text{ holds}]$$

$$\leq \Pr[C_n \not \preceq u_i \text{ holds}]$$

$$\leq \Pr[C_n \not \preceq u_i \text{hold}]$$

$$\overline{\Lambda}_{E} = \prod_{i \leq \sinh(E)} \{ u \in U_{E,i}^{\log^{(2)}(n)} \mid C_{n} \not \leq u \}$$

$$\Lambda_{E} = \prod_{i \leq \sinh(E)} U_{E,i}^{\log^{(2)}(n)}$$

$$i \leq \sinh(E)$$

$$= \frac{\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \overline{\Lambda}_E}{\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \Lambda_E}$$

$$E \in \mathcal{B}_n^{\log^{(2)}(n)}$$

Lemma (see our paper for details):

$$\begin{split} &= \mathsf{P} \quad \# \overline{\Lambda}_E \leq \# \Lambda_E \times \left(1 - \frac{1}{c \gamma^{2c \lceil \log^{(2)}(n) \rceil}}\right)^{n/4c \lceil \log^{(2)}(n) \rceil} \\ &\leq \mathsf{P} \quad \text{holds for every } E \in \mathcal{B}_n^{\log^{(2)}(n)}. \end{split}$$

$$= \frac{E \in \mathcal{B}_n^{\log^{(2)}(n)}}{\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \Lambda_E}$$

$$E \in \mathcal{B}_n^{\log^{(2)}(n)}$$

Lemma (see our paper for details):

There exist constants c and γ such that

$$= P \qquad \#\overline{\Lambda}_E \leq \#\Lambda_E \times \left(1 - \frac{1}{c\gamma^{2c\lceil\log^{(2)}(n)\rceil}}\right)^{n/4c\lceil\log^{(2)}(n)\rceil}$$
 holds for every $E \in \mathcal{B}_n^{\log^{(2)}(n)}$. Lower bound of the

$$= \frac{\sum_{E \in \mathcal{B}_n^{\log(2)}(n)}^{\# \overline{\Lambda}_E}}{\sum_{E \in \mathcal{B}_n^{\log(2)}(n)}^{\# \Lambda_E}}$$

$$E \in \mathcal{B}_n^{\log(2)}(n)$$

Lower bound of the # of holes (decomposed parts) of every $E \in \overline{\mathcal{B}}_n^{\log^{(2)}(n)}$

Lemma (see our paper for details):

There exist constants c and γ such that

$$= P \qquad \#\overline{\Lambda}_E \leq \#\Lambda_E \times \left(1 - \frac{1}{c\gamma^{2c\lceil\log^{(2)}(n)\rceil}}\right)^{n/4c\lceil\log^{(2)}(n)\rceil}$$
 holds for every $E \in \mathcal{B}_n^{\log^{(2)}(n)}$. Lower bound of the

$$\sum_{E \in \mathcal{B}_n^{\log(2)}(n)} \# \overline{\Lambda}_E$$
 (decomposed of every specific product) (equation of every specific product) (for every specifi

Lower bound of the # of holes (decomposed parts) of every $E \in \overline{\mathcal{B}}_n^{\log^{(2)}(n)}$

Asymptotic upper bound of
$$\#U_{E.i}^{\log^{(2)}(n)}$$

$$\left(\# U_{E,i}^{\log^{(2)}(n)} = \mathcal{O}(c\gamma^{2c\lceil \log^{(2)}(n)\rceil}) \right)$$

$$\sum_{E \in \mathcal{B}_n^{\log(2)}(n)} \# \Lambda_E$$

Lemma (see our paper for details):

$$\begin{split} &= \mathsf{P} \quad \# \overline{\Lambda}_E \leq \# \Lambda_E \times \left(1 - \frac{1}{c \gamma^{2c \lceil \log^{(2)}(n) \rceil}}\right)^{n/4c \lceil \log^{(2)}(n) \rceil} \\ &\leq \mathsf{P} \quad \text{holds for every } E \in \mathcal{B}_n^{\log^{(2)}(n)}. \end{split}$$

$$\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \Lambda_E \times \left(1 - \frac{1}{c\gamma^{2c\lceil \log^{(2)}(n) \rceil}} \right)^{n/4c\lceil \log^{(2)}(n) \rceil}$$

$$\leq \frac{E \in \mathcal{B}_n^{\log^{(2)}(n)}}{\nabla \# \Lambda_E}$$

$$E \in \mathcal{B}_n^{\log(2)}(n)$$

Lemma (see our paper for details):

There exist constants c and γ such that

$$\begin{split} &= \mathsf{P} \quad \# \overline{\Lambda}_E \leq \# \Lambda_E \times \left(1 - \frac{1}{c \gamma^{2c \lceil \log^{(2)}(n) \rceil}}\right)^{n/4c \lceil \log^{(2)}(n) \rceil} \\ &\leq \mathsf{P} \quad \text{holds for every } E \in \mathcal{B}_n^{\log^{(2)}(n)}. \end{split}$$

$$\sum_{E \in \mathcal{B}_{n}^{\log^{(2)}(n)}} \# \Lambda_{E} \times \left(1 - \frac{1}{c\gamma^{2c\lceil \log^{(2)}(n)\rceil}}\right)^{n/4c\lceil \log^{(2)}(n)\rceil}$$

$$\leq \frac{E \in \mathcal{B}_{n}^{\log^{(2)}(n)}}{\sum_{E \in \mathcal{B}_{n}} \# \Lambda_{E}}$$

$$\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \# \Lambda_E$$

Not depends on *E*

Lemma (see our paper for details):

$$\begin{split} &= \mathsf{P} \quad \# \overline{\Lambda}_E \leq \# \Lambda_E \times \left(1 - \frac{1}{c \gamma^{2c \lceil \log^{(2)}(n) \rceil}}\right)^{n/4c \lceil \log^{(2)}(n) \rceil} \\ &\leq \mathsf{P} \quad \text{holds for every } E \in \mathcal{B}_n^{\log^{(2)}(n)}. \end{split}$$

$$\leq \left(1 - \frac{1}{c\gamma^{2c\lceil\log^{(2)}(n)\rceil}}\right)^{n/4c\lceil\log^{(2)}(n)\rceil} \times \frac{\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \#\Lambda_E}{\sum_{E \in \mathcal{B}_n^{\log^{(2)}(n)}} \#\Lambda_E}$$

Lemma (see our paper for details):

There exist constants
$$c$$
 and γ such that
$$= P \qquad \#\overline{\Lambda}_E \leq \#\Lambda_E \times \left(1 - \frac{1}{c\gamma^{2c\lceil\log^{(2)}(n)\rceil}}\right)^{n/4c\lceil\log^{(2)}(n)\rceil}$$
 holds for every $E \in \mathcal{B}_n^{\log^{(2)}(n)}$.

$$\leq \left(1 - \frac{1}{c\gamma^{2c\lceil\log^{(2)}(n)\rceil}}\right)^{n/4c\lceil\log^{(2)}(n)\rceil}$$

Lemma (see our paper for details):

There exist constants
$$c$$
 and γ such that
$$= P \\ \#\overline{\Lambda}_E \leq \#\Lambda_E \times \left(1 - \frac{1}{c\gamma^{2c\lceil\log^{(2)}(n)\rceil}}\right)^{n/4c\lceil\log^{(2)}(n)\rceil} \leq P \\ \text{holds for every } E \in \mathcal{B}_n^{\log^{(2)}(n)}.$$

$$\leq \left(1 - \frac{1}{c\gamma^{2c\lceil \log^{(2)}(n)\rceil}}\right)^{n/4c\lceil \log^{(2)}(n)\rceil} \to 0 \ (n \to \infty)$$

Lemma (see our paper for details):

There exist constants c and γ such that

$$\begin{split} &= \mathbf{P} \quad \# \overline{\Lambda}_E \leq \# \Lambda_E \times \left(1 - \frac{1}{c \gamma^{2c \lceil \log^{(2)}(n) \rceil}}\right)^{n/4c \lceil \log^{(2)}(n) \rceil} \\ &\leq \mathbf{P} \quad \text{holds for every } E \in \mathcal{B}_n^{\log^{(2)}(n)}. \end{split}$$

$$\leq \left(1 - \frac{1}{c\gamma^{2c\lceil\log^{(2)}(n)\rceil}}\right)^{n/4c\lceil\log^{(2)}(n)\rceil} \to 0 \quad (n \to \infty)$$

This convergence can be proved with elementary analysis (see our paper)

$$\frac{\#\{[t]_{\alpha} \in \Lambda_{n}^{\alpha}(k,\iota,\xi) \mid C_{n} \not\preceq t\}}{\#\Lambda_{n}^{\alpha}(k,\iota,\xi)}$$

= $\Pr[C_n \not\preceq t \text{ holds for a randomly chosen term } t \text{ in } \Lambda_n^{\alpha}(k, \iota, \xi)]$

 $\leq \Pr[C_n \not\preceq u_i \text{ holds for every decomposed part } u_i \text{ of } t]$

$$\leq \left(1 - \frac{1}{c\gamma^{2c\lceil \log^{(2)}(n)\rceil}}\right)^{n/4c\lceil \log^{(2)}(n)\rceil} \to 0 \ (n \to \infty) \qquad ...$$

This convergence can be proved with elementary analysis (see our paper)