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Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).
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Compacted Binary Trees = Creating a compacted tree

Motivation — Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression
(x (- (xxx) Fyy) (+ (xxx) (x3y)))

which represents (x? — y?)(x? + y?).

))))' (3’ ()/7070))v (4,(><,3,3)), (5’(_’2a4))v

Definition

Compacted tree is the DAG computed by this procedure.
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Compacted trees

m Important property: Subtrees are unique
m Efficient algorithm to compute compacted tree
m Traverse tree post-order
m If subtree appears twice, delete second one and replace by pointer
— directed acyclic graph (DAG)
m Analyzed by [Flajolet, Sipala, Steyaert 1990]: A tree of size n has a

compacted form of expected size that is asymptotically equal to
n

Viogn
where C is explicit related to the type of trees and the statistical model.
m Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.
m Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?
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M. Li:

Figure: All compacted binary trees of size n =0,1, 2.
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Compacted trees

m Size of a compacted tree: number of internal nodes
m Number of compacted trees of size n: ¢,

8 & A

Figure: All compacted binary trees of size n = 0,1, 2.

'Example (Compacted binary trees)

size || n=0|n=1|n=2|n=3|n=4|n=5| n==06
Cn 1 1 3 15 111 1119 | 14487

1 2n
n<c, < - n!
- n+1\n

Hence, ¢, = O(n!4"n=1/?).
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Goals of this talk

Goals

Understand compacted trees

=

Find a recurrence relation for compacted trees
Use exponential generating functions to count DAGs
Solve the (simplified) problem(s)

Methods
Recurrence relations Differential equations
Bijections @ Singularity analysis
Generating functions Chebyshev polynomials
Symbolic method B Guess and prove
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Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.
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Building a compacted tree from a binary tree — Example

Procedure
Take a binary tree of size n (called spine)
Add leaf as left child on first free spot in post-order traversal
Add pointers such that out-degree of all internal nodes is 2

Connect pointers to leaf or to internal nodes before the root in post-order
NOT violating uniqueness

Valid compacted tree Invalid compacted tree

We call the underlying binary tree from step 1 the spine.
This spine is associated to 3 valid compacted trees.
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A bigger example

We take a binary tree of size 8.

1 3,) 4 31
13
>

In total, this spine corresponds to 1-3-4-13-31 = 4836 compacted trees.
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A recurrence relation

Michael Wallner  LaBRI  24.05.2018



A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Ynt+l,p = E Yi,pYn—ip+is for n>1,
i=0
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Ynt+l,p = E Yi,pYn—ip+is for n>1,
i=0

Y0,p :P+1,
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Tnt+l,p = Z’yi,plynfi,p+i7 for n>1,
i=0
707p =P + 1)

Np=p+p+1
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,

m Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters
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A recurrence for compacted binary trees

Counting formula
Let n,p € N, then

n
Yn+l,p = Z’Yi,plynfi,p+i7 for n > 17
i=0
707p =P + 1)

Np=p+p+1

We are interested in ¢, = 7Yn,0.

m Helps us to efficiently compute ¢,

m Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

m Summands possess 3 (!) dependencies on i
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Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. ¢, < rp.
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Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. ¢, < rp.
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Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. ¢, < rp.

4 4

In total, this spine corresponds to 1-3 -4 -42 .62 = 6912 relaxed trees.
(Recall, that the same spine corresponds to 4836 compacted trees.)
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Compacted Binary Trees = A recurrence relation

Relaxed compacted binary trees of size 3

€ Q /CJ
s of il
v <“<?JJ (1@ o7
v =2 e 054
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Compacted Binary Trees = A recurrence relation

Relaxed compacted binary trees of size 3

The relaxed tree of size 3 which is not a compacted tree

/Q By
5553 — AR L@

compacted tree binary tree relaxed tree

Reason: subtrees not unique

/,;)\ - F),\ C)/\-)\ /ij)
e T 0% | &) -
»qﬁ_/ C < C@ @
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A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Zéi,p5nfi,p+i7 for n >0,
i=0
507P:p+1a 51 =32 1

We are interested in r, = 6, 0.
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A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Zéi,panfi,p+i7 for n >0,
i=0
507P:p+1a 51 =32 1

We are interested in r, = 6, 0.

Recursion still too complicated.
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A recurrence for relaxed compacted binary trees

Counting formula
Let n,p € N, then

n
Ont1,p = Z5i,p5n—;,p+;, for n >0,
i=0
507P:p+1a 51 =p2 1.

We are interested in r, = 6, 0.

Recursion still too complicated.

'Example (Relaxed binary trees)

size||n=0|n=1|n=2|n=3|n=4|n=5|n=6
Cn 1 1 3 15 111 1119 | 14487
rn 1 1 3 16 127 1363 | 18628
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Compacted Binary Trees = Operations on trees

Operations on trees
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Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.
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Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf.

Michael Wallner  LaBRI  24.05.2018



Compacted Binary Trees = Operations on trees

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height
The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf.

Example

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.
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Compacted Binary Trees = Operations on trees

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height
The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf.

Example

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.
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Compacted trees of right height < k

Figure: Right height < 0.
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Compacted Binary Trees = Operations on trees

Compacted trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.
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Compacted Binary Trees = Operations on trees

Compacted trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.

=i e

Figure: Right height < 2.
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Compacted Binary Trees = Operations on trees

Compacted trees of right height < k

Figure: Right height < 0.

Figure: Right height < 1.

=i e

Figure: Right height < 2.

53T 538 538 oY

Figure: Right height < 3.
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Motivational outlook

Theorem

The number ry , of relaxed trees with right height at most k is for n — oo
asymptotically equivalent to

o N
™

~ 1 4 o —k/2

Tkon ~ kN ( c05<k 3>> n=k/2,

where 7y, € R\ {0} is independent of n.
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Motivational outlook

VTheorem

The number ry , of relaxed trees with right height at most k is for n — oo
asymptotically equivalent to

o N
™

~ 1 4 o —k/2

Tkon ~ kN ( c05<k 3>> n=k/2,

where 7y, € R\ {0} is independent of n.

 Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

2 n
™ k_ 1 11 x \—2
Ck.n~ kin! | 4cos | —— n— == (i) cos() ,
’ k+3

where k. € R\ {0} is independent of n.
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Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
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Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)

m Upper bound guarantees positive radius of convergence
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Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!

Michael Wallner  LaBRI ~ 24.05.2018



Compacted Binary Trees = Operations on trees

Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees
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Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 t,Z; be an EGF of the class 7.
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Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 tnZ; be an EGF of the class 7.

T(z) — 2zT(2)

Append a new node with a pointer to the class 7. I>_’
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Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 tnZ; be an EGF of the class 7.

T(z) — zT(2)
Append a new node with a pointer to the class 7. I>_’

Proof:

]

KI[zKzT(z) = k- i1
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Main idea: Exponential generating functions

m Asymptotic growth: n!p"” = exponential generating functions (EGF)
m Upper bound guarantees positive radius of convergence

m Problem: unlabeled structures!
Idea: derive symbolic method for compacted trees

Let T(2) =3 50 t,Z; be an EGF of the class 7.

T(z) — 2zT(2)

Append a new node with a pointer to the class 7. I>_’

Proof:
K[ZMzT(z)= k- b -
T@) = -ty
k p955|b|e k—1 internal
pointers nodes

Michael Wallner  LaBRI  24.05.2018



Compacted Binary Trees = Operations on trees

Construction of Ry(z)

Let Ro(z) =3 50 r07,,f,—: be the EGF of relaxed binary trees with bounded right

height < 0.
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Construction of Ry(z)

Let Ro(z) =D ,50 r07,,f,—: be the EGF of relaxed binary trees with bounded right
height < 0. B

Ro = D} @] {O} X Ro
~—~ —_———

Tree of size 0  append new root

and new pointer
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Compacted Binary Trees = Operations on trees

Construction of Ry(z)

Let Ro(z) =D ,50 r07,,f,—: be the EGF of relaxed binary trees with bounded right
height < 0. B
1 2 3 n3 n2 nl n

Ro = D} @] {O} X Ro
~—~ —_———

Tree of size 0  append new root

and new pointer
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Compacted Binary Trees = Operations on trees

Further constructions

S:T(z)— iT(z)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.
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Compacted Binary Trees = Operations on trees

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.

Y d
D:T(z)— $T(2)
Delete top node but preserve its pointers. : 5
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Compacted Binary Trees = Operations on trees

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S _I> U I>_9 U I>_9_9 U e
sequence at the root.
Y d

D:T(z)— $T(2)

Delete top node but preserve its pointers. : 5

I:T(z)— [T(2)
Add top node without pointers. |>.
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Compacted Binary Trees = Operations on trees

Further constructions

S T(2) > L T(2)

Append a (possibly empty) S :I> U I>—9 U I>_9_9 U ...
sequence at the root.

Y d
D:T(z)— $T(2)
Delete top node but preserve its pointers. : 5

I:T(z)— [T(2)
Add top node without pointers. |>_.

P:T(z)~ z% T(2)
Add a new pointer to the top node. : :g
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Compacted Binary Trees | Relaxed binary trees

Relaxed binary trees
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Compacted Binary Trees | Relaxed binary trees

Construction of Ri(z)

Let Ri(z) =D /50 f1,nf,—? be the EGF of relaxed binary trees with bounded right
height < 1. B

Michael Wallner  LaBRI  24.05.2018



Compacted Binary Trees | Relaxed binary trees

Construction of Ri(z)

Let Ri(z) =D /50 f1,nf,—? be the EGF of relaxed binary trees with bounded right
height < 1. B

Decomposition of R;(z)

Ri(z) = Riu(2)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees,
i.e. ¢ left-edges from level 0 to level 1.
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Compacted Binary Trees | Relaxed binary trees

Construction of Ri(z)

Let Ri(z) =D /50 f1,nf,—? be the EGF of relaxed binary trees with bounded right
height < 1. B

' Decomposition of R;(z)

Ri(z) = Riu(2)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees,
i.e. ¢ left-edges from level 0 to level 1.
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Compacted Binary Trees | Relaxed binary trees

Construction of Ry 1(

27237 77
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Compacted Binary Trees | Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence D_97
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Compacted Binary Trees | Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence
2 decompose
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Compacted Binary Trees = Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence

2 decompose . D—S}— —S)—S):Q_S)_ _9_’

3 append and add pointer
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Compacted Binary Trees = Relaxed binary trees

Construction of Ry 1(

°2,7237 77

Symbolic specification

1 delete initial sequence

2 decompose O 9O 00

3 append and add pointer
4 add initial sequence

Rl,l(Z)

Rlﬁl(z):\S/o I o SoP (zRio(z))

init. Ivl 0 red pointer ., empt:
seq. node and seq. Y

Ru(e) = [ 7 (o) oz

1—~z
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Compacted Binary Trees | Relaxed binary trees

Construction of Ry (z)
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Compacted Binary Trees | Relaxed binary trees

Construction of Ry (z)

AP SR T S S

Observation >0-0 +-0-0)
Same structure as for Ry 1(z) D000

1 1
Rue(2) = 17— / - zz(le,g,l(z))’ dz, >1,

R170(Z) = Ro(Z) =
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Compacted Binary Trees | Relaxed binary trees

Construction of Ry (z)

AP SR T S S

Observation w 0-0---0-0

Same structure as for Ry 1(z) D000
Rule) = 1 [ 52 (@R (21
1,@2—1_2 1_2221,6712 Z, =z 4

1
R :R =
10(2) = Ro(2) = 7—

Recall that Ri(z) = >~ ,~o R1,¢(z). Summing the previous equation (formally) for
£ > 1 gives B

1-2z7 1
T -

Ri(z) — ((1 — 2)Ri0(2))" = 0.
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Compacted Binary Trees | Relaxed binary trees

Closed form of Ry(z)

1-27 1
T Ri(2) = T Ri(2) = (1 - 2)Rio(2) = 0.
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.

Michael Wallner  LaBRI ~ 24.05.2018



Compacted Binary Trees = Relaxed binary trees

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z
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Compacted Binary Trees | Relaxed binary trees

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Therefore we get

= nl[z"|Ri(z) = ;(2:) = (2n — 1)L,
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Compacted Binary Trees | Relaxed binary trees

Closed form of Ry(z)

1-2z7 1
=2 pi(5) - L Ri2)— (1 - DRig(2)) =0
We know that Ry o(z) = 13 and get
(1-22)R{(z) — Ri(z) =0, with R1(0) = 1.
This directly yields
1
R = —
1(2) V1-2z

Therefore we get
1 /2
= nl[z"|Ri(z) = ;i ( n”) = (2n — 1)L,

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].
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Compacted Binary Trees

Bounded right height < 2: Ry(z)

T U e

Symbolic construction

(1-3z+42°) RY(z) + (2z — 3) Ry(2) = 0,
R:(0) =1, R3(0) =1,
then we get the closed form

1

Ro(2) = 1= =%

and the coefficients

))
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Bounded right height < 3: R;(z)

e

.9,
@,

9

D0

Symbolic construction
(1 —4z + 322) Ry (z) + (92 — 6) RY(z) + 2R}(z) = 0,
Ri(0) = 1, RY(0) = 1, RY(0) = >,

then we get the closed form

1//3
32— 2+4++3V1—4z+ 322 /
R3(Z) = y

V3-=2

and the asymptotics of the coefficients

ryn = nl[2"|Rs(z) = T _"\!/g)l/ﬁ n3/32"\/7? <1 +0 C})) .
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Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.
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Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0
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Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0

2

d d
(2> -3z + 1)@:‘?2(2) + (2z — 3)ER2(Z) =0
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Compacted Binary Trees | Relaxed binary trees

Differential operators

Theorem

Let (Lk)k>0 be a family of differential operators given by
Lo=(1-2),
Ly =(1-22)D—1,
Ly=Lk1-D—Le o -D? 2, k> 2.

Then the exponential generating function Ry(z) for relaxed trees with right
height < k satisfies

Ly - R = 0.

(1- 22)%1?1(2) —Ri(z)=0

(2 —3z-|-1):2R( )+(22—3)%R2(z)20

3

d d? d
(322 —4z+1)d sRa(z )+(92_6)ER3(Z)+2$R3(2)_0
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Asymptotics of relaxed trees with bounded right height

. D95 eeege—— e O A
o505 o oge S 500 S woeged

Theorem

The number ry , of relaxed trees with right height at most k is for n — oo
asymptotically equivalent to

o\ N
s
b~ 1|4 —k/2
Ik, Yih ( cos<k+3> ) n ,

where v, € R\ {0} is independent of n.
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Sketch of proof

Let ¢k ; € C[z] be such that
L, = fk)k(Z)Dk + £k7k_1(Z)Dk_1 +...+ fkyo(Z).
Find recurrences for ¢y ;j(z) using Guess'n'Prove techniques.
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Sketch of proof

Let ¢k ; € C[z] be such that
L, = fk)k(Z)Dk + £k7k_1(Z)Dk_1 +...+ fkyo(Z).
Find recurrences for ¢y ;j(z) using Guess'n'Prove techniques.

Use singularity analysis directly on differential equation:
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Sketch of proof

Let ¢k ; € C[z] be such that
L = by k(2) DX 4 li - 1(2)DF 2 4 4 Lio(2).
Find recurrences for ¢y ;j(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:

Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are
candidates.
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Sketch of proof

Let ¢k ; € C[z] be such that
L = by k(2) DX 4 li - 1(2)DF 2 4 4 Lio(2).
Find recurrences for ¢y ;j(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:

Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are
candidates.

L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,
1

Pk = —"" 3"
4 cos (1&3)
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Sketch of proof

Let ¢k ; € C[z] be such that
L = by k(2) DX 4 li - 1(2)DF 2 4 4 Lio(2).
Find recurrences for ¢y ;j(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:

Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are
candidates.

L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,
1

—
s
4 cos (m)
Subexponential growth: Use the indicial indicial polynomial derived from the
Li.i(2).

Pk =
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Sketch of proof

Let ¢k ; € C[z] be such that
L = by k(2) DX 4 li - 1(2)DF 2 4 4 Lio(2).
Find recurrences for ¢y ;j(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:

Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are
candidates.

L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,
1

—
4 cos (1&3)
Subexponential growth: Use the indicial indicial polynomial derived from the
Li.i(2).
@ Find a basis of solutions for differential equation:
Only one is singular at py!

Pk =
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Sketch of proof

Let ¢k ; € C[z] be such that
L, = fk)k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ fk,o(Z).

Find recurrences for ¢y ;j(z) using Guess'n'Prove techniques.
Use singularity analysis directly on differential equation:
Exponential growth p,: Roots of coefficient of leading polynomial ¢y «(z) are

candidates.
L «(2) is a transformed Chebyshev polynomial of the second kind. Hence,

1

—
4 cos (1&3)
Subexponential growth: Use the indicial indicial polynomial derived from the
Li.i(2).
@ Find a basis of solutions for differential equation:
Only one is singular at py!
Prove that other coefficients ¢ ;(z) are nice.

Pk =
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Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

My - C = 0.
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Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

M - G = 0.
1-29L )+ (-3 La(z) =0
dz2 t dz 1\
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Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

My - C, = 0.
d? d
(1- QZ)EQ(Z) +(z- 3)EC1(Z) =0,
(2? —3z+1)d—3C2(z) (22 — 62+ 6)—— d G(z) — (2z—3)iC2(z) =0
dz3 dz2 dz
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Compacted Binary Trees = Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Bak+1

Let (Mk)k>o0 be a family of differential operators such that the EGF Cy(z) for
compacted binary trees with right height < k satisfies

M, - C, =0.
1-29L )+ (-3 La(z) =0
dz2 t dz 1\

3 @2 d
(22 f3z+1)d3C() (2° f6z+6)d2C()7(2273)56(2):0
(32% — 4z + 1)i4c3(z) — (422 — 18z + 10)i3c3(z) Foe
dz* dz3

d? d
(22122 + 14)EC3(Z) +(z— 3)$C3(z) =0.
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Asymptotics of compacted trees with bounded right height

 Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

2 n
s k 1 1 1 -2
Ck.n~ kin! | 4cos | —— n— -~ (3-s) cos() ,
’ k+3

where i, € R\ {0} is independent of n.
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Asymptotics of compacted trees with bounded right height

Theorem (Main result)

The number ¢, , of compacted trees with right height at most k is
asymptotically equal to

2 n
s k 1 1 1 -2
Ck.n~ kin! | 4cos | —— n— -~ (3-s) cos() ,
’ k+3

where i, € R\ {0} is independent of n.

Proof:
m We derived a symbolic method on exponential generating functions,
m leading to ordinary differential equations, and

m analyzed them by singularity analysis (recurrence relations on polynomial
coefficients, indicial polynomial, transfer theorems). O
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Comparing compacted and relaxed trees

Compacted trees with right height at most k

N\ N

™ k 1 1 1 x )2
C ~ ren' | 4cos | —— n_f_k+3_(1_k+3)cos(k+3)
fon 7K ( <k+3))
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Comparing compacted and relaxed trees

Compacted trees with right height at most k
™ 2\" k 1 1 1 -2
Cik,n ~ K| <4cos<k+3) ) p— s~ (§ ) cos( )

| Relaxed trees with right height at most k

2 n
Ik,n ~ k! <4cos (%_{_3) > n—k/2
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Comparing compacted and relaxed trees

Compacted trees with right height at most k
™ 2\" k 1 1 1 -2
Cik,n ~ K| <4cos <k . 3) ) p— s~ (§ ) cos( )
Relaxed trees with right height at most k

2 n
Ik,n ~ k! <4cos (kL—i-?») > n—k/2

Corollary (Proportion of compacted among relaxed trees)

Ck,n
rk,n
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Comparing compacted and relaxed trees

Compacted trees with right height at most k
™ 2\" k 1 1 1 -2
Cik,n ~ K| <4cos <k . 3) ) p— s~ (§ ) cos( )
Relaxed trees with right height at most k

2 n
Ik,n ~ k! <4cos (%_{_3) > n—k/2

Corollary (Proportion of compacted among relaxed trees)
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Next steps

m Enumeration of compacted trees without height restrictions
m Different tree structures, like e.g. ternary trees

® Analyze shape parameters, like height, width, profile, ...
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