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Compacted Binary Trees | Creating a compacted tree

Motivation – Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (−, 2, 4)), (7, (−, 5, 6))

Definition

Compacted tree is the DAG computed by this procedure.
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Compacted Binary Trees | Creating a compacted tree

Compacted trees

Important property: Subtrees are unique
Efficient algorithm to compute compacted tree

Traverse tree post-order
If subtree appears twice, delete second one and replace by pointer
→ directed acyclic graph (DAG)

Analyzed by [Flajolet, Sipala, Steyaert 1990]: A tree of size n has a
compacted form of expected size that is asymptotically equal to

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.
Applications: XML-Compression [Bousquet-Mélou, Lohrey, Maneth,
Noeth 2015], Compilers [Aho, Sethi, Ullman 1986], LISP [Goto 1974], Data
storage [Meinel, Theobald 1998], [Knuth 1968], etc.
Restrict to unlabeled binary trees

Reverse question

How many compacted trees of (compacted) size n exist?
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Compacted Binary Trees | Creating a compacted tree

Compacted trees

Size of a compacted tree: number of internal nodes

Number of compacted trees of size n: cn

Figure: All compacted binary trees of size n = 0, 1, 2.

Example (Compacted binary trees)

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487

n! ≤ cn ≤
1

n + 1

(
2n

n

)
· n!

Hence, cn = O(n!4nn−1/2).
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Compacted Binary Trees | Creating a compacted tree

Goals of this talk

Goals

1 Understand compacted trees

2 Find a recurrence relation for compacted trees

3 Use exponential generating functions to count DAGs

4 Solve the (simplified) problem(s)

Methods

1 Recurrence relations

2 Bijections

3 Generating functions

4 Symbolic method

5 Differential equations

6 Singularity analysis

7 Chebyshev polynomials

8 Guess and prove
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Compacted Binary Trees | Creating a compacted tree

Building a compacted tree from a binary tree

Idea

Every compacted tree of size n can be build from a binary tree of size n by
adding pointers.

Attention: Pointers are not allowed to violate uniqueness

Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Procedure

1 Take a binary tree of size n

2 Add leaf as left child on first free spot in post-order traversal

3 Add pointers such that out-degree of all internal nodes is 2

4 Connect pointers to leaf or to internal nodes before the root in post-order
NOT violating uniqueness
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Compacted Binary Trees | Creating a compacted tree

Building a compacted tree from a binary tree – Example

Procedure

1 Take a binary tree of size n (called spine)

2 Add leaf as left child on first free spot in post-order traversal

3 Add pointers such that out-degree of all internal nodes is 2

4 Connect pointers to leaf or to internal nodes before the root in post-order
NOT violating uniqueness

Valid compacted tree

Invalid compacted tree

We call the underlying binary tree from step 1 the spine.

This spine is associated to 3 valid compacted trees.
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Compacted Binary Trees | Creating a compacted tree

A bigger example

We take a binary tree of size 8.

In total, this spine corresponds to 1 · 3 · 4 · 13 · 31 = 4836 compacted trees.
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Compacted Binary Trees | A recurrence relation

A recurrence relation
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Compacted Binary Trees | A recurrence relation

A recurrence for compacted binary trees

Counting formula

Let n, p ∈ N, then

γn+1,p =
n∑

i=0

γi,pγn−i,p+i , for n ≥ 1,

γ0,p = p + 1,

γ1,p = p2 + p + 1.

We are interested in cn = γn,0.

Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i
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Helps us to efficiently compute cn

Asymptotic analysis failed (so far)
One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i
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Compacted Binary Trees | A recurrence relation

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. cn ≤ rn.

1
2 2

4

4 4

6 6

In total, this spine corresponds to 1 · 3 · 4 · 42 · 62 = 6912 relaxed trees.
(Recall, that the same spine corresponds to 4836 compacted trees.)
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Compacted Binary Trees | A recurrence relation

Relaxed compacted binary trees of size 3
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The relaxed tree of size 3 which is not a compacted tree

compacted tree binary tree relaxed tree

Reason: subtrees not unique



Compacted Binary Trees | A recurrence relation

A recurrence for relaxed compacted binary trees

Counting formula

Let n, p ∈ N, then

δn+1,p =
n∑

i=0

δi,pδn−i,p+i , for n ≥ 0,

δ0,p = p + 1, ((((((((hhhhhhhhδ1,p = p2 + p + 1 .

We are interested in rn = δn,0.

Recursion still too complicated.

Example (Relaxed binary trees)

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487
rn 1 1 3 16 127 1363 18628

Michael Wallner | LaBRI | 24.05.2018 14 / 36



Compacted Binary Trees | A recurrence relation

A recurrence for relaxed compacted binary trees

Counting formula

Let n, p ∈ N, then

δn+1,p =
n∑

i=0

δi,pδn−i,p+i , for n ≥ 0,

δ0,p = p + 1, ((((((((hhhhhhhhδ1,p = p2 + p + 1 .

We are interested in rn = δn,0.

Recursion still too complicated.

Example (Relaxed binary trees)

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487
rn 1 1 3 16 127 1363 18628

Michael Wallner | LaBRI | 24.05.2018 14 / 36



Compacted Binary Trees | A recurrence relation

A recurrence for relaxed compacted binary trees

Counting formula

Let n, p ∈ N, then

δn+1,p =
n∑

i=0

δi,pδn−i,p+i , for n ≥ 0,

δ0,p = p + 1, ((((((((hhhhhhhhδ1,p = p2 + p + 1 .

We are interested in rn = δn,0.

Recursion still too complicated.

Example (Relaxed binary trees)

size n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
cn 1 1 3 15 111 1119 14487
rn 1 1 3 16 127 1363 18628

Michael Wallner | LaBRI | 24.05.2018 14 / 36



Compacted Binary Trees | Operations on trees

Operations on trees
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Compacted Binary Trees | Operations on trees

Bounded right height

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of right children on
any path from the root to a leaf.

Example

←→

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 3 in green.
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Compacted Binary Trees | Operations on trees

Compacted trees of right height ≤ k

n

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Figure: Right height ≤ 2.

Figure: Right height ≤ 3.
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Compacted Binary Trees | Operations on trees

Motivational outlook

Theorem

The number rk,n of relaxed trees with right height at most k is for n→∞
asymptotically equivalent to

rk,n ∼ γkn!

(
4 cos

(
π

k + 3

)2
)n

n−k/2,

where γk ∈ R \ {0} is independent of n.

Theorem (Main result)

The number ck,n of compacted trees with right height at most k is
asymptotically equal to

ck,n ∼ κkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2−

1
k+3−( 1

4−
1

k+3 ) cos( π
k+3 )−2

,

where κk ∈ R \ {0} is independent of n.
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Compacted Binary Trees | Operations on trees

Main idea: Exponential generating functions

Asymptotic growth: n!ρn ⇒ exponential generating functions (EGF)

Upper bound guarantees positive radius of convergence

Problem: unlabeled structures!

Idea: derive symbolic method for compacted trees

Let T (z) =
∑

n≥0 tn
zn

n! be an EGF of the class T .

T (z) 7→ zT (z)

Append a new node with a pointer to the class T . T

Proof:

k![zk ]zT (z) = k︸︷︷︸

k possible
pointers

· tk−1︸︷︷︸

k−1 internal
nodes
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Compacted Binary Trees | Operations on trees

Construction of R0(z)

Let R0(z) =
∑

n≥0 r0,n
zn

n! be the EGF of relaxed binary trees with bounded right
height ≤ 0.

n

R0 = {�}︸︷︷︸
Tree of size 0

∪ {◦} ×R0︸ ︷︷ ︸
append new root
and new pointer

R0(z) =
1

1− z
=
∑
n≥0

n!
zn

n!
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Compacted Binary Trees | Operations on trees

Further constructions

S : T (z) 7→ 1
1−z

T (z)

Append a (possibly empty)
sequence at the root.

TS = ∪ T ∪ T ∪

D : T (z) 7→ d
dz
T (z)

Delete top node but preserve its pointers.
T

I : T (z) 7→
∫
T (z)

Add top node without pointers.
T

P : T (z) 7→ z d
dz
T (z)

Add a new pointer to the top node.
T
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Compacted Binary Trees | Relaxed binary trees

Relaxed binary trees
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Compacted Binary Trees | Relaxed binary trees

Construction of R1(z)

Let R1(z) =
∑
`≥0 r1,n

zn

n! be the EGF of relaxed binary trees with bounded right
height ≤ 1.

Decomposition of R1(z)

R1(z) =
∑
n≥0

R1,`(z)

where R1,`(z) is the EGF for relaxed binary trees with exactly ` left-subtrees,
i.e. ` left-edges from level 0 to level 1.

R1,0(z) = R0(z) =
1

1− z

R1,1(z) = ?
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Compacted Binary Trees | Relaxed binary trees

Construction of R1,1(z)

Symbolic specification

1 delete initial sequence
2 decompose
3 append and add pointer
4 add initial sequence

R1,1(z)

R1,1(z) = S︸︷︷︸
init.
seq.

◦ I︸︷︷︸
lvl 0
node

◦ S ◦ P︸ ︷︷ ︸
red pointer

and seq.

(
zR1,0(z)︸ ︷︷ ︸
non empty

)

R1,1(z) =
1

1− z

∫
1

1− z
z (zR1,0(z))′ dz
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Compacted Binary Trees | Relaxed binary trees

Construction of R1,`(z)

Observation

Same structure as for R1,1(z)

R1,`−1

R1,`(z) =
1

1− z

∫
1

1− z
z (zR1,`−1(z))′ dz , ` ≥ 1,

R1,0(z) = R0(z) =
1

1− z
.

Recall that R1(z) =
∑
`≥0 R1,`(z). Summing the previous equation (formally) for

` ≥ 1 gives

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.
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Compacted Binary Trees | Relaxed binary trees

Closed form of R1(z)

1− 2z

1− z
R ′1(z)− 1

1− z
R1(z)− ((1− z)R1,0(z))′ = 0.

We know that R1,0(z) = 1
1−z and get

(1− 2z)R ′1(z)− R1(z) = 0, with R1(0) = 1.

This directly yields

R1(z) =
1√

1− 2z
.

Therefore we get

r1,n = n![zn]R1(z) =
n!

2n

(
2n

n

)
= (2n − 1)!!.

Preprint (ArXiv:1706.07163): [W, 2017, “A bijection of plane increasing trees
with relaxed binary trees of right height at most one”].
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Bounded right height ≤ 2: R2(z)

Symbolic construction(
1− 3z + z2

)
R ′′2 (z) + (2z − 3)R ′2(z) = 0,

R2(0) = 1, R ′2(0) = 1,

then we get the closed form

R ′2(z) =
1

1− 3z + z2
,

and the coefficients

r2,n = n![zn]R2(z) =
(n − 1)!√

5

((
3 +
√

5

2

)n

−

(
3−
√

5

2

)n)
.
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Bounded right height ≤ 3: R3(z)

Symbolic construction(
1− 4z + 3z2

)
R ′′′3 (z) + (9z − 6)R ′′3 (z) + 2R ′3(z) = 0,

R3(0) = 1, R ′3(0) = 1, R ′′3 (0) =
3

2
,

then we get the closed form

R3(z) =

(
3z − 2 +

√
3
√

1− 4z + 3z2

√
3− 2

)1/
√

3

,

and the asymptotics of the coefficients

r3,n = n![zn]R3(z) =
n!

√
6
(
2−
√

3
)1/
√

3

3n

n3/2
√
π

(
1 +O

(
1

n

))
.
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Differential operators

Theorem

Let (Lk)k≥0 be a family of differential operators given by

L0 = (1− z),

L1 = (1− 2z)D − 1,

Lk = Lk−1 · D − Lk−2 · D2 · z , k ≥ 2.

Then the exponential generating function Rk(z) for relaxed trees with right
height ≤ k satisfies

Lk · Rk = 0.

(1− 2z)
d

dz
R1(z)− R1(z) = 0

(z2 − 3z + 1)
d2

dz2
R2(z) + (2z − 3)

d

dz
R2(z) = 0

(3z2 − 4z + 1)
d3

dz3
R3(z) + (9z − 6)

d2

dz2
R3(z) + 2

d

dz
R3(z) = 0
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Asymptotics of relaxed trees with bounded right height

Theorem

The number rk,n of relaxed trees with right height at most k is for n→∞
asymptotically equivalent to

rk,n ∼ γkn!

(
4 cos

(
π

k + 3

)2
)n

n−k/2,

where γk ∈ R \ {0} is independent of n.
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Sketch of proof

1 Let `k,i ∈ C[z ] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . .+ `k,0(z).

Find recurrences for `k,i (z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on differential equation:

3 Exponential growth ρk : Roots of coefficient of leading polynomial `k,k(z) are
candidates.

4 `k,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

5 Subexponential growth: Use the indicial indicial polynomial derived from the
`k,i (z).

6 Find a basis of solutions for differential equation:
Only one is singular at ρk !

7 Prove that other coefficients `k,i (z) are nice.
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Compacted binary trees

Michael Wallner | LaBRI | 24.05.2018 32 / 36



Compacted Binary Trees | Compacted binary trees

Compacted binary trees

Uniqueness of subtrees

Tk = −

k2 + k + 1 (k + 1)2 k

Tk Tk

Let (Mk)k≥0 be a family of differential operators such that the EGF Ck(z) for
compacted binary trees with right height ≤ k satisfies

Mk · Ck = 0.

(1− 2z)
d2

dz2
C1(z) + (z − 3)

d

dz
C1(z) = 0,

(z2 − 3z + 1)
d3

dz3
C2(z)− (z2 − 6z + 6)

d2

dz2
C2(z)− (2z − 3)

d

dz
C2(z) = 0,

(3z2 − 4z + 1)
d4

dz4
C3(z)− (4z2 − 18z + 10)

d3

dz3
C3(z) + · · ·

· · ·+ (z2 − 12z + 14)
d2

dz2
C3(z) + (z − 3)

d

dz
C3(z) = 0.
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Asymptotics of compacted trees with bounded right height

Theorem (Main result)

The number ck,n of compacted trees with right height at most k is
asymptotically equal to

ck,n ∼ κkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2−

1
k+3−( 1

4−
1

k+3 ) cos( π
k+3 )−2

,

where κk ∈ R \ {0} is independent of n.

Proof:

We derived a symbolic method on exponential generating functions,

leading to ordinary differential equations, and

analyzed them by singularity analysis (recurrence relations on polynomial
coefficients, indicial polynomial, transfer theorems).
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Comparing compacted and relaxed trees

Compacted trees with right height at most k

ck,n ∼ κkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2−

1
k+3−( 1

4−
1

k+3 ) cos( π
k+3 )−2

Relaxed trees with right height at most k

rk,n ∼ γkn!

(
4 cos

(
π

k + 3

)2
)n

n−k/2

Corollary (Proportion of compacted among relaxed trees)

ck,n
rk,n

∼ κn
− 1

k+3−( 1
4−

1
k+3 ) 1

cos2( π
k+3 ) = o

(
n−1/4

)
.
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Next steps

Enumeration of compacted trees without height restrictions

Different tree structures, like e.g. ternary trees

Analyze shape parameters, like height, width, profile, . . .
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