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The implicational fragment of
propositional intuitionistic logic
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Hilbert-style axioms schemes for the implicational fragment
of propositional intuitionistic logic

the implicational fragment of intuitionistic propositional logic can be
defined by two axiom schemes:

K : A→ (B→ A)
S : (A→ (B→ C))→ ((A→ B)→ (A→ C))

and the modus ponens inference rule:
MP : A, A→ B ` B.
substitution

The insight: those are exactly the types of the combinators S and K!

Is there a bridge standing up between the two sides?
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The bridge between types and propositions: standing up!

Curry-Howard isomorphism
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The Curry-Howard isomorphism

it connects:
the implicational fragment of propositional intuitionistic logic
types in the simply typed lambda calculus

complexity of “crossing the bridge”, different in the two directions

a (low polynomial) type inference algorithm associates a type (when
it exists) to a lambda term
PSPACE-complete algorithms associate lambda terms as inhabitants
to a given type expression

⇒

lambda term (typically in normal form) can serve as a witness for the
existence of a proof for the corresponding tautology in minimal logic
a theorem prover can also be seen as a tool for program synthesis
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Proof systems for intuitionistic
implicational propositional logic
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Gentzen’s LJ calculus, reduced to the implicational
fragment of intuitionistic propositional logic

LJ1 : A,Γ ` A

LJ2 : A,Γ ` B
Γ ` A→B

LJ3 : A→B,Γ ` A B,Γ ` G
A→B,Γ ` G

rules, if implemented directly are subject to looping
several variants use loop-checking, by recording the sequents used
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Dyckhoff’s LJT calculus (implicational fragment)

replace LJ3 with LJT3 and LJT4

termination proven using multiset orderings
no need for loop checking
efficient and simple

LJT1 : A,Γ ` A

LJT2 : A,Γ ` B
Γ ` A→B

LJT3 : B,A,Γ ` G
A→B,A,Γ ` G [A atomic ]

LJT4 : D→B,Γ ` C→D B,Γ→G
(C→D)→B,Γ ` G

to support negation, a rule for the special term false is needed

LJT5 : false,Γ ` G
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An executable specification
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Notations and assumptions

we use Prolog as our meta-language
code (now grown to above 2000 lines) at
https://github.com/ptarau/TypesAndProofs
basic Prolog programming:

variables will be denoted with uppercase letters
the pure Horn clause subset
well-known built-in predicates like memberchk/2 and select/3,
call/N), CUT and if-then-else constructs

lambda terms: a/2=application, l/2=lambda binders with a variable
as its first argument, an expression as second and logic variables
representing the leaf variables bound by a lambda
type expressions (also seen as implicational formulas): binary trees
with the function symbol “->/2” and logic variables (or atoms or
integers) as their leaves
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Examples

the S combinator and its type, with variables and integers as leaves:
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The importance of being Leanest

Roy Dyckchoff’s program, about 420 lines
can we just use his calculus as a starting point?
a blast from the past: lean theorem provers can be fast!

⇒
we start with a simple, almost literal translation of rules LJT1 . . .LJT4
to Prolog
note: values in the environment Γ denoted by the variables Vs,
Vs1, Vs2....
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Dyckhoff’s LJT calculus, literally

lprove(T):-ljt(T,[]),!.

ljt(A,Vs):-memberchk(A,Vs),!. % LJT_1

ljt((A->B),Vs):-!,ljt(B,[A|Vs]). % LJT_2

ljt(G,Vs1):- % LJT_4
select( ((C->D)->B),Vs1,Vs2),
ljt((C->D), [(D->B)|Vs2]),
!,
ljt(G,[B|Vs2]).

ljt(G,Vs1):- %atomic(G), % LJT_3
select((A->B),Vs1,Vs2),
atomic(A),
memberchk(A,Vs2),
!,
ljt(G,[B|Vs2]).
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Deriving our lean theorem provers
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bprove: concentrating nondeterminism into one place

The first transformation merges the work of the two select/3 calls into
a single call, observing that they do similar things after the call. That
avoids redoing the same iteration over candidates for reduction.
bprove(T):-ljb(T,[]),!.

ljb(A,Vs):-memberchk(A,Vs),!.
ljb((A->B),Vs):-!,ljb(B,[A|Vs]).
ljb(G,Vs1):-
select((A->B),Vs1,Vs2),
ljb_imp(A,B,Vs2),
!,
ljb(G,[B|Vs2]).

ljb_imp((C->D),B,Vs):-!,ljb((C->D),[(D->B)|Vs]).
ljb_imp(A,_,Vs):-atomic(A),memberchk(A,Vs).

⇒ 51% speed improvement for formulas with 14 internal nodes
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Calls for proving S

?- s_(S),bprove(S).

[]-->(0->1->2)->(0->1)->0->2
[(0->1->2)]-->(0->1)->0->2
[(0->1),(0->1->2)]-->0->2
[0,(0->1),(0->1->2)]-->2
[1,0,(0->1->2)]-->2
[(1->2),1,0]-->2
[2,1,0]-->2
S = ((0->1->2)->(0->1)->0->2).
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sprove: extracting the proof terms

sprove(T,X):-ljs(X,T,[]),!.

ljs(X,A,Vs):-memberchk(X:A,Vs),!. % leaf variable
ljs(l(X,E),(A->B),Vs):-!,ljs(E,B,[X:A|Vs]). % lambda term
ljs(E,G,Vs1):-
member(_:V,Vs1),head_of(V,G),!, % fail if non-tautology
select(S:(A->B),Vs1,Vs2), % source of application
ljs_imp(T,A,B,Vs2), % target of application
!,
ljs(E,G,[a(S,T):B|Vs2]). % application

ljs_imp(E,A,_,Vs):-atomic(A),!,memberchk(E:A,Vs).
ljs_imp(l(X,l(Y,E)),(C->D),B,Vs):-ljs(E,D,[X:C,Y:(D->B)|Vs]).

head_of(_->B,G):-!,head_of(B,G).
head_of(G,G).
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Extracting S, K and I from their types

?- sprove(((0->1->2)->(0->1)->0->2),X).
X = l(A, l(B, l(C, a(a(A, C), a(B, C))))). % S

?- sprove((0->1->0),X).
X = l(A, l(B, A)). % K

?- sprove((0->0),X). % I
X = l(A, A).

Tamari order:

?- T=(((a->b)->c) -> (a->(b->c))), sprove(T,X).
T = (((a->b)->c) -> a->(b->c)),
X = l(A, l(B, l(C, a(A, l(D, l(E, C)))))).

?- T=((a->(b->c)) -> ((a->b)->c)), sprove(T,X).
false.
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Inferring S from its type

?- s_(S),sprove(S,X),nv(X).
[]-->A:((0->1->2)->(0->1)->0->2)
[A:(0->1->2)]-->B:((0->1)->0->2)
[A:(0->1),B:(0->1->2)]-->C:(0->2)
[A:0,B:(0->1),C:(0->1->2)]-->D:2
[a(A,B):1,B:0,C:(0->1->2)]-->D:2
[a(A,B):(1->2),a(C,B):1,B:0]-->D:2
[a(a(A,B),a(C,B)):2,a(C,B):1,B:0]-->D:2

S = ((0->1->2)->(0->1)->0->2),
X = l(A, l(B, l(C, a(a(A, C), a(B, C))))).
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Implicational formulas as embedded Horn Clauses

equivalence between:
B1→ B2 . . .Bn→ H and
H :- B1,B2, . . . ,Bn (in Prolog notation)

H is the atomic formula ending a chain of implications
we can recursively transform an implicational formula:
toHorn((A->B),(H:-Bs)):-!,toHorns((A->B),Bs,H).
toHorn(H,H).

toHorns((A->B),[HA|Bs],H):-!,toHorn(A,HA),toHorns(B,Bs,H).
toHorns(H,[],H).

the transformation is reversible!
?- toHorn(((0->1->2)->(0->1)->0->2),R).
R = (2:-[(2:-[0, 1]), (1:-[0]), 0]).

?- toHorn(((0->1->2->3->4)->(0->1->2)->0->2->3),R).
R = (3:-[(4:-[0, 1, 2, 3]), (2:-[0, 1]), 0, 2]).
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Transforming provers for implicational formulas into
equivalent provers working on embedded Horn clauses

hprove(T0):-toHorn(T0,T),ljh(T,[]),!.

ljh(A,Vs):-memberchk(A,Vs),!.
ljh((B:-As),Vs1):-!,append(As,Vs1,Vs2),ljh(B,Vs2).
ljh(G,Vs1):- % atomic(G), G not on Vs1
memberchk((G:-_),Vs1), % if non-tautology, we just fail
select((B:-As),Vs1,Vs2), % outer select loop
select(A,As,Bs), % inner select loop
ljh_imp(A,B,Vs2), % A is in the body of B
!,trimmed((B:-Bs),NewB), % trim empty bodies
ljh(G,[NewB|Vs2]).

ljh_imp(A,_B,Vs):-atomic(A),!,memberchk(A,Vs).
ljh_imp((D:-Cs),B,Vs):- ljh((D:-Cs),[(B:-[D])|Vs]).

trimmed((B:-[]),R):-!,R=B.
trimmed(BBs,BBs).
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What’s new with the embedded Horn clause form?

The embedded Horn clause form helps bypassing some intermediate steps,
by focusing on the head of the Horn clause, which corresponds to the last
atom in a chain of implications. Also, 69% faster on terms of size 15.

the 3-rd clause of ljh works as a context reducer
a second select/3 call in it gives ljh_imp more chances to
succeed and commit
it removes a clause B:-As and it removes from its body As a
formula A, to be passed to ljh_imp, with the remaining context
if A is atomic, we succeed if and only if it is already in the context
we closely mimic rule LJT4 by trying to prove A = (D:-Cs), after
extending the context with the assumption B:-[D].
but here we relate D with the head B !
the context gets smaller as As does not contain the A anymore
if the body Bs is empty, the clause is downgraded to its head
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A lifting to classical logic, via Glivenko’s transformation

Glivenko’s translation that prefixes a formula with its double negation. It
turns an intuitionistic propositional prover into a classical one.

we add the atom false, to the language of the formulas
we rewrite negation of x into x → false
we add the special handling of false as the first clause of the
predicate ljb/2, corresponding to rule

LJT5 : false,Γ ` G
ljb(_AnyGoal,Vs):-memberchk(false,Vs),!.
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The testing framework
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Combinatorial testing, automated

testing correctness:
a false positive: it is not a tautology, but the prover proves it
a false negative: it is a tautology but the prover fails on it
no false positive: a prover is sound
no false negative: a prover is complete
indirect testing: via Glivenko’s translation
soundness and completeness are relative to a "gold standard"!

helpers:
intuitionistic tautologies are also classical, so if it is not classical it
cannot be intuitionistic
crossing the Curry-Howard bridge: types of all lambda terms up to a
given size: types of simply typed lambda terms are tautologies for sure

exhaustive vs. random
all implicational formulas up to given size: a mix of non-tautologies
and tautologies (fewer and fewer with size)
type of all lambda terms of a given size, random simply typed terms
random simply typed lambda terms, random implicational formulas
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Finding false negatives by generating the set of simply
typed normal forms of a given size

search is by the size of the proof rather than the size of the formula:

a false negative is identified if our prover fails on a type expression
known to have an inhabitant
via the Curry-Howard isomorphism, such terms are the types inferred
for lambda terms, generated by increasing sizes
this means that implicational formulas having proofs shorter than a
given number are all covered
but possibly small formulas having long proofs might not be reachable
code for generating all simply typed terms at: https://github.
com/ptarau/TypesAndProofs/blob/master/allTypedNFs.pro
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Examples of simply typed normal forms and their types

?- tnf(4,X:T),nv(T+X).
X = l(E, l(F, l(G, l(H, H)))),
T = (A->B->C->D->D) ;
X = l(E, l(F, l(G, l(H, G)))),
T = (A->B->C->D->C) ;
X = l(E, l(F, l(G, l(H, F)))),
T = (A->B->C->D->B) ;
X = l(E, l(F, l(G, l(H, E)))),
T = (A->B->C->D->A) ;
X = l(C, l(D, a(D, C))),
T = (A->(A->B)->B) ;
X = l(C, l(D, a(C, D))),
T = ((A->B)->A->B) ;
X = l(C, a(C, l(D, D))),
T = (((A->A)->B)->B) .

generation and type inference are interleaved
⇒ we can scale up to size 20 (with l=1,a=2 size definition)
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Finding false positives by generating all implicational
formulas/type expressions of a given size

a false positive is identified if the prover succeeds finding an
inhabitant for a type expression that does not have one
generating all implicational formulas of a given size:

generating all binary trees of a given size
extracting their leaf variables
iterating over the set of the set partitions of all leaves, while unifying
variables belonging to the same partition

the code describing the all-tree and all-set partition generation, as
well as their integration as a type expression generator, is at:
https://github.com/ptarau/TypesAndProofs/blob/master/

allPartitions.pro.
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Examples of implicational formulas

?- showImpForms(2).
A->A->A
A->B->A
A->A->B
A->B->B
A->B->C
(A->A)->A
(A->B)->A
(A->A)->B
(A->B)->B
(A->B)->C

we use set partitions of {A,B,C} to "name" the variables
⇒ we generate them up to α-equivalence
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Sizes of our test data for all term generators

simply typable lambda terms in normal forms
size definition variables=0, lambdas=1, applications=2
up to 20
0, 1, 2, 3, 7, 17, 43, 129, 389, 1245, 4274, 14991, 55289,
210743,826136, 3354509, 13948176, 59553717, 260593082,
1164467603, 5,321,739,900, ...

implicational formulas=types
A289679: Catalan(n-1)*Bell(n)
up to 10
1, 2, 10, 75, 728, 8526, 115764, 1776060, 30240210, 563,870,450
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Trimming out symmetries in implicational formulas

as both Catalan numbers and Bell numbers grow very fast, we need
to trim our test generator to smaller equivalence classes
step 1: by having set partitions instead of all combinations (done)
step 2: as the conjunction in the body of H :−B1,B2, . . . ,Bn is
associative, commutative and Bi ,Bi is equivalent to Bi we can see
B1,B2, . . . ,Bn as a set rather then a sequence
⇒ we recursively trim as we generate, with all formulas in strictly
increasing order and duplicates trimmed out
we have significantly fewer than Catalan(n-1)*Bell(n)

?- ncounts(8,allImpFormulas(_,_)). % without trimming
counts=[1,2,10,75,728,8526,115764,1776060,30240210]
ratios=[2,5,7.5,9.7,11.71,13.57,15.34,17.02]

?- ncounts(8,allSortedHorn(_,_)). % trimmed. OPEN QUEST: ANALYTICS?
counts=[1,2,7,38,266,2263,22300,247737,3049928]
ratios=[2,3.5,5.42,7,8.5,9.85,11.1,12.31]
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Testing against a trusted reference implementation

Once we can trust an existing reference implementation (e.g., after it
passes our generator-based tests), it makes sense to use it as a gold
standard. Thus, we can identify both false positives and negatives directly!
gold_test(N,Generator,Gold,Silver, Term, Res):-
call(Generator,N,Term),
gold_test_one(Gold,Silver,Term, Res),
Res\=agreement.

gold_test_one(Gold,Silver,T, Res):-
( call(Silver,T) -> \+ call(Gold,T),
Res = wrong_success

; call(Gold,T) -> % \+ Silver
Res = wrong_failure

; Res = agreement
).
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Examples of gold standard-based tests
we can use a generator for all implicational formulas, and Dyckhoff’s
dprove/1 predicate as a gold standard:
gold_test(N, Silver, Culprit, Unexp):-
gold_test(N,allImpFormulas,dprove,Silver,Culprit,Unexp).

to “test the tester”, we design a prover that randomly succeeds or fails:
badProve(_) :- 0 =:= random(2).

?- gold_test(6,lprove,T,R).
false. % indicates that no false positive or negative is found

?- gold_test(6,badProve,T,R).
T = (0->1->0->0->0->0->0),
R = wrong_failure ;
...
?- gold_test(6,badProve,T,wrong_success).
T = (0->1->0->0->0->0->2) ;
T = (0->0->1->0->0->0->2) ;
...
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Catching unsoundness

badSolve(A,Vs):-atomic(A),!,memberchk(A,Vs).
badSolve((A->B),Vs):-badSolve(B,[A|Vs]).
badSolve(_,Vs):-badReduce(Vs).

badReduce([]):-!.
badReduce(Vs):-select(V,Vs,NewVs),badSolve(V,NewVs),badReduce(NewVs).

a more interesting case is when a prover is only guilty of false positives
naively implementing an apparently sound intuition:

a goal is provable w.r.t. a context Vs if all its premises are provable
with implication introduction assuming premises
success achieved when the environment is reduced to empty

?- gold_test(6,badSolve,T,wrong_failure).
false. % no wrong failure

?- gold_test(6,badSolve,T,wrong_success).
T = (0->0->0->0->0->0->1) ;
T = (0->1->0->0->0->0->2) ;
...
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Testing on classical formulas, via Glivenko’s translation

an implicit correctness test: we compare the behavior of a prover that
handles false, with Glivenko’s double negation transformation
we turn our intuitionistic propositional provers into a classical provers
we work on classical formulas containing implication and negation
operators

gold_classical_test(N,Silver,Culprit,Unexpected):-
gold_test(N,allClassFormulas,tautology,Silver,
Culprit,Unexpected).

we are using Melvin Fitting’s classical tautology prover
tautology/1 as a gold standard
we restricted to implicational logic, see:
https://github.com/ptarau/TypesAndProofs/blob/master/

third_party/fitting.pro.

Paul Tarau ( University of North Texas ) Propositional Intuitionistic Theorem Provers CLA’2018 36 / 60

https://github.com/ptarau/TypesAndProofs/blob/master/third_party/fitting.pro
https://github.com/ptarau/TypesAndProofs/blob/master/third_party/fitting.pro


Examples of tests on classical formulas

we modify our generators to use false instead of one of our
variables in the all implicative formula generator
?- gold_classical_test(7,gprove,Culprit,Error).
false. % no false positive or negative found

?- gold_classical_test(7,kprove,Culprit,Error).

Culprit = ((false->false)->0->0->((1->false)->false)->1),
Error = wrong_failure ;

Culprit = ((false->false)->0->1->((2->false)->false)->2),
Error = wrong_failure .
...

gprove/1, implementing Glivenko’s translation, passes the test
kprove/1, that handles only intuitionistic tautologies (including
negated formulas), will fail on classical tautologies that are not also
intuitionistic tautologies
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Performance and scalability testing
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Can we make a tautology so hard that we cannot prove it?

After a few refining steps, our best provers solved every problem we
threw at them.
Can we generate harder ones, that they cannot solve?
For a PSPACE-complete problem, that should be easy!

Figure: Can God make a rock so heavy that He cannot lift it?
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A balancing act: the question has its nuances!

Yes, very likely so, for human made ones, see:
http://www.iltp.de/.

Figure: We can save face by rephrasing the question!

Can we generate such tautologies automatically?
Can we generate non-tautologies that we cannot refute?
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Random simply-typed terms, with Boltzmann samplers

we generate random simply-typed normal forms, using a Boltzmann
sampler
the code variant, adapted to our different term-size definition is at:
https://github.com/ptarau/TypesAndProofs/blob/master/

ranNormalForms.pro

it works as follows:
?- ranTNF(10,XT,TypeSize).
XT = l(l(a(a(s(0), l(s(0))), 0))) : (((A->B)->B->C)->B->C).
TypeSize = 5.

?- ranTNF(60,XT,TypeSize).
XT = l(l(a(a(0, l(a(a(0, a(0, l(...))), s(s(0))))),

l(l(a(a(0, a(l(...), a(..., ...))), l(0)))))))
:
(A->((((A->A)- ...)->D)->D)->M)->M),

TypeSize = 34.
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Most random lambda terms have types that are too easy!

there’s some variation in the size of the terms that Boltzmann
samplers generate
but the problem occurs despite the fairly large simply typed normal
forms we can generate (e.g., above “natural” size=60)
uniform distribution of normal forms leads often to simple tautologies
where an atom identical to the last one is contained in the implication
chain leading to it
⇒ if we want to use these for scalability tests, additional filtering
mechanisms need to be devised, to statically reject type expressions
that are large, but easy to prove as intuitionistic tautologies
back to the same challenge:
Can we make a tautology so hard that we cannot prove it?
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Random implicational formulas

Rémy’s algorithm for the generation of random binary binary trees:
https://github.com/ptarau/TypesAndProofs/blob/master/

RemyR.pro

a random set partition generator: https://github.com/ptarau/
TypesAndProofs/blob/master/ranPartition.pro.
automatic Boltzmann sampler generators for a partition are limited to
a fixed numbers of equivalence classes for which a CF- grammar can
be given
⇒ we build our the random set partition generator that groups
variables in leaf position into equivalence classes by using an Stam’s
urn-algorithm: https://github.com/ptarau/TypesAndProofs/
blob/master/ranPartition.pro
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Examples of formula generation

Thus, the partition generator works as follows:
?- ranSetPart(7,Vars).
Vars = [0, 0, 1, 1, 2, 3, 0] .

?- ranSetPart(7,Vars).
Vars = [0, 1, 2, 1, 1, 2, 3] .

we obtain the the binary tree generated by Rémy’s algorithm, by
unifying the list of variables Vs with it
?- remy(6,T,Vs).
T = ((((A->B)->C->D)->E->F)->G),
Vs = [A, B, C, D, E, F, G] .
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Random implicational formulas from binary trees and set
partitions

The combined generator, produces in a few seconds terms of size
1000:
?- ranImpFormula(20,F).
F = (((0->(((1->2)->1->2->2)->3)->2)->4->(3->3)->

(5->2)->6->3)->7->(4->5)->(4->8)->8) .

?- time(ranImpFormula(1000,_)).
% includes tabling large Stirling numbers
% 37,245,709 inferences,7.501 CPU in
7.975 seconds (94% CPU, 4965628 Lips)

?- time(ranImpFormula(1000,_)). % fast, thanks to tabling
% 107,163 inferences,0.040 CPU in
0.044 seconds (92% CPU, 2659329 Lips)

.
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Testing with large random terms

testing for false positives and false negatives for random terms:
similar to exhaustive testing with terms of a given size
assuming Roy Dyckhoff’s prover as a gold standard, we can find out
that our embedded Horn Clause prover hprove/1 can handle 100
terms of size 50 as well as the gold standard
?- gold_ran_imp_test(50,100,hprove, Culprit, Unexpected).
false. % indicates no differences with the gold standard

the size of the random terms handled by hprove/1 makes using
provers an appealing alternative to random lambda term generators in
search for very large lambda term / simple type pairs.

On the side of random simply typed terms, limitations come from their
vanishing density, while on the other side of the Curry-Howard
isomorphism they come from the PSPACE-complete proof procedures.
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Can our lean provers actually be fast? A quick
performance evaluation

our benchmarking code is at: https://github.com/ptarau/
TypesAndProofs/blob/master/bm.pro.
we compare our provers on:

known tautologies with given proof size N (lambda terms in normal
forms)
implicational formulas of size (N//2)
for the winner, we also test it on larger formulas up to size 20 and 10
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Runtimes on known tautologies and all formulas

Prover Term Size Positive Mix (half size) Total seconds
lprove 13 1.4 0.28 1.68
lprove 14 6.86 6.33 13.2
lprove 15 56.93 6.56 63.49
bprove 13 0.92 0.20 1.12
bprove 14 4.31 4.26 8.58
bprove 15 31.72 4.31 36.03
sprove 13 1.92 0.16 2.09
sprove 14 9.43 2.72 12.16
sprove 15 48.55 2.73 51.29
hprove 13 0.95 0.11 1.07
hprove 14 4.26 1.86 6.12
hprove 15 19.35 1.87 21.22
dprove 13 2.18 0.35 2.53
dprove 14 10.96 6.25 17.21
dprove 15 1100.72 5.76 1106.49
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How does hprove/1 scale?

Prover Size Positive Mix (half-size) Total Time
hprove 16 89.58 34.74 124.32
hprove 17 427.47 33.56 461.03
hprove 18 2090.77 684.15 2774.92
hprove 19 11270.35 756.8 12027.15

Figure: hprove/1 on larger tests, time in seconds

no unexpected slowdown on either proving known tautologies or
rejecting non-tautologies (contrary to dprove/1 that gave up
already on size 15)
small enough to be converted to C, possibly competitive with much
more complex provers
needs to be tested on hard, human-made formulas (e.g., those known
to have exponentially long proofs)
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A look at parallel algorithms for
provers and testers
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Finding the first solution in parallel, with backtracking
generator

we have built a custom multi-threading manager, for
non-deterministic generators
message queue-based inter-thread communication:
nondet_first/3

thread-pool: 2/3 of the available threads
workers pull goals provided by nondeterministic generator
each worker backtracks on its slice of work independently
first successful worker returns answer and stops all threads
code at https://github.com/ptarau/TypesAndProofs/blob/
master/nd_threads.pro
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Parallel generation of random implicational tautologies

we use nondet_first/3 to lift our sequential implicational
formula generator ranImpFormulas to a parallel one
ran_typed_ground(Seed,PartCount,TreeCount,Prover,X:G):-
Gen=ranImpFormulas(Seed,PartCount,TreeCount,G),
Exec=call(Prover,G),
nondet_first(G,Exec,Gen),
ljs(X,G),
!.

once our (possibly faster) Prover succeeds, the predicate ljs/2 is
used to find the actual proof in the form of a lambda term
using Seed=2018, and an implicational formula of size 60 with up to
40 distinct variables, we obtain:
?- ran_typed_ground(2018,60,40,bprove,X:G).
X = l(A, l(B, l(C, l(D, l(E, l(F, l(G, C))))))),
G = ((0->(1->2)->3)->4->5->.. -> ...)->5).
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Can we generate (automatically) a tautology so hard that
we cannot prove or refute it? YES!

we often generate larger tautologies than those obtained as types of
lambda terms using Boltzmann samplers, the large number of parallel
threads (e.g., iMacPro with 18 cores/36 threads) will favor random
implicational formulas having short proofs over those with longer
proofs
so this method can win over tautologies generated with Boltzmann
samplers, even if most of these tend to be easier to solve
but the problem is now harder: prove becomes prove or refute
as we can push size above 1000 we have easily have some that we
cannot solve (prove or refute):
?- Seed is random(1000),timed_call(600,

ran_typed_ground(Seed,100,50,hprove,T),Time).
Seed = 82,
Time = timeout_after(600).
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Parallel generation of normal forms and their types

we ensure all parallel threads are driven by a unique random seed so
that we can replicate runs
the actual work is performed by parRanTypableNF/8 which simply
tries as many sequential generators as the number of available threads

?- parRanTypedTNF(42,50,40,1,X:T,Size).
X = l(A, l(B, a(a(C, a(C, l(D, l(E,...l...)), I), J))))))),
T = (L->((M->M)->(N->O->N)->P->N->O->N)->...->N->O->N)->
((Q->(M->M)->(N-> ...)->P-> ... -> ...)->P)->P->N->O->N),
Size = 43.

this generates, using the seed 42, a random lambda term in normal
form and its type, of (approximately) sizes 40 and 50 respectively in a
few seconds
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Parallelizing the provers

given the small granularity of the search component of our provers,
our initial attempts did not indicate performance gains
multiple term copies between message queues turned out to be
costlier than the benefits of parallel search with a very large number
of very light tasks
⇒ statically create equivalent term variants so that multiple distinct
proof sequences are tried in parallel
e.g., in H :−B1,B2, ...,Bn randomly permute the terms B1,B2...Bn

?- ihard(Hard),time(bprove(Hard)).
% 13,152,259,741 inferences, 2215.060 CPU in 2217.478 seconds

?- ihard(Hard),time(parProveHorn(hprove,Hard)).
% 25,442 inferences, 0.012 CPU in 0.684 seconds ...
false. % <= refuted as non-tautology

the formula of size 100 is instantly solved with the parallelized
hprove/1 while it takes more than 2000 seconds with bprove/1
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Related work I

the related work derived from Gentzen’s LJ calculus is in the
hundreds if not in the thousands of papers and books
[1, 2]: our starting points for deriving our provers, directly from the
LJT calculus
similar calculi, key ideas of which made it into the Coq proof
assistant’s code: in [3]
[4] described in full detail in [5], finds and/or counts inhabitants of
simple types in long normal form
interestingly, these algorithms have not crossed, at our best
knowledge, to the other side of the Curry-Howard isomorphism in the
form of theorem provers
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Related work II

overviews of closely related calculi, using the implicational subset of
propositional intuitionistic logic are [6, 2].
using hypothetical implications in Prolog, although all with a different
semantics than Gentzen’s LJ calculus or its LJT variant, go back as
early as [7], followed by a series of Lambda-Prolog and linear
logic-related books and papers, e.g., [8]
the similarity to the propositional subsets of N-Prolog [7] and
λ -Prolog [8] comes from their close connection to intuitionistic logic
but neither derive implementations from a pure LJ-based calculus or
have termination properties implemented along the lines the LJT
calculus
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Conclusions and future work
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Conclusions and future work

our empirically oriented approach has found variants of lean
propositional intuitionistic provers that are comparable to their more
complex peers, derived from similar calculi
besides the derivation of our lean theorem provers, our code base at
https://github.com/ptarau/TypesAndProofs also
provides an extensive test-driven development framework built on
several cross-testing opportunities between type inference algorithms
for lambda terms and theorem provers for propositional intuitionistic
logic
the embedded Horn clause provers might be worth formalizing as a
calculus and subject to deeper theoretical analysis
extension to full propositional and first order intuitionistic logic seems
easy
given that they share their main data structures with Prolog, it seems
interesting to attempt their partial evaluation or compilation to Prolog
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