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Formulas in the implication system

A Boolean formula is seen as a binary tree, with the internal
nodes decorated with the connective → and the leaves with
the single variable α:
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α α

α

((α→ α)→ α)→ (α→ ((α→ α)→ α))
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Boolean functions in the implication system [S80,MTZ00]

In the implication system with one variable α, formulas are
representing the function α 7→ true or the function α 7→ α.
All tautologies are intuitionistic tautologies in this context.

→

→

→

α α

α

→

α →

→

α α

α

A tautology : it represents the
function α 7→ true.

→

→

α α

→

→

α α

α

It represents the function
α 7→ α.

The asymptotic ratio of tautologies is the limit of the proportion of
tautologies of size n among all formulas of size n, when n tends to
infinity. 4



Asymptotic ratio of tautologies

Theorem: [MTZ00]

The asymptotic ratio of tautologies in the implication system with

one variable is
1
2

+

√
5

10
≈ 0.72361 . . .
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Asymptotic ratio of tautologies

Lemma: [MTZ00]

A formula τ → µ is not a tautology iff τ is a tautology and µ is not
a tautology. Let Catn−1, Tn and Nn be respectively the number of
formulas (resp. tautologies and non-tautologies) of size n,

Nn =
n−1∑
k=1

Tk · Nn−k ; N1 = 1; Tn = Catn−1 − Nn.
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Simple tautologies

A simple tautology has one of its premises reduced to α.

α α

→
→

α

→
α → →

α

α

→
→

→
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→
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α

→ →
α
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→ →
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α

→
α

α

→
α
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→
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Simple tautologies

A simple tautology has one of its premises reduced to α.

Theorem: [MTZ00]

The asymptotic ratio of simple tautologies in the implication

system with one variable is
5
9
≈ 0.55556 . . .
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What about if we change the notion of formula ?

α α
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α

→
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→

→
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→
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In the compacted context:
Both children of a node are not of the same nature.
At each internal node, the pointers in the left substructure are
deeply related to the right substructure.
The distribution of the size is completely disturbed.

We want an exhaustive study for small compacted trees.
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The Unranking method for binary trees [NW75,MM03]

1 Defining a total order over trees (of the same size).
2 Constructing the tree only by using its rank number.

(0, 1) (0, 2) (0, 3) (1, 3) (0, 4)

α

α

→

α α

→

α

→

α

→

→

αα

α
α

→

α

→

α

→

α

(1, 4) (2, 4) (3, 4) (4, 4)

α

→

→

→

αα

α

→

→

→α

αα

α →

→

α

→ α

α

α →

→

αα α

→

α
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Boustrophedon text[FZVC94]

Instead of reading the formula from left to right (increasing k):

B(n) =
n−1∑
k=1

B(k) · B(n − k)

We read it as a Boustrophedon text
https://en.wikipedia.org/wiki/Boustrophedon

B(n) as :
B(1)B(n−1)+B(n−1)B(1)+B(2)B(n−2)+B(n−2)B(2)+B(3)B(n−3)+. . .
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Composition of trees

Boustrophedonic order [FZVC94]

Read B(n) as :
B(1)B(n−1)+B(n−1)B(1)+B(2)B(n−2)+B(n−2)B(2)+B(3)B(n−3)+. . .

α and β being two trees of sizes resp. sα < sβ then α < β
α and β being two trees of size n: α < β iif α decomposes as
B(i)B(n − i) and β as B(j)B(n − j) with
min(i , n − i) < min(j , n − j) or
min(i , n− i) = min(j , n− j) and (α` < β` or α` = β` and αr < βr )

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

α

→

α

→

α

→

α

α

→

→

→

αα

α

→

→

→α

αα

α →

→

α

→ α

α

α →

→

αα α

→

α
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After 1 hour computations. . .

An complete description of all trees of size at most 17:

> 48 million objects.

proportion of tautologies
proportion of simple tautologies
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Examples / Random Sampling

(0, 50) is a tautology (computed without my computer).

(340366701794652049424185611, 50) is a tautology:

n = 340366701794652049424185611
n > B(1)*B(49) ?
True
n = n - B(1)*B(49)

n > B(49)*B(1) ?
True
n = n - B(49)*B(1)

n > B(2)*B(48) + B(48)*B(2) ?
True
n = n - B(2)*B(48) - B(48)*B(2)

n > B(3)*B(47) ?
False

size decomposition: 50→ 3× 47

Euclidean division:
define p and r such that

n = p ∗ B(47) + r

the tree
(340366701794652049424185611, 50)
corresponds to

(1, 3)×(1233029084398051305296511, 47)

(1, 3) :

→

→

αα

α

The tree is a tautology.
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The tree (340366701794652049424185611, 50)

α →

α →

→

α →

→

α →

→

α

→

αα

α

α

→

→→

→

α

→

α

→

→

α

→

→ α

α

α

α

α

α

→

→

→

→

→α

→
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→

α

α

α

→

→

→

→

α →

→

→

→

α

αα

→

α

α

→ α

α

αα →

→

→

→

α

→ →

α

α

→

→

α

α

α→

α

→
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α

→

α

α

αα

→α

→α

α

α
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Let us turn to compacted formulas

Implication (relaxed) circuit

An implication circuit with one variable is a
relaxed compacted binary tree whose internal
nodes are decorated with the → connective
and the leaf by the unique variable α.

Implication compacted circuit
An implication compacted circuit with one
variable is a compacted binary tree whose
internal nodes are decorated with the →
connective and the leaf by the unique
variable α.

→

α

→

→→

→

→

→

→

→

The size of the circuit is its total number of nodes.

15



Here two large circuits of size 50 (uniformly sampled)

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

α

→→

→ →

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

α

→

→

→

→

→

→

→→→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→
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Implication circuits

∆| The number of (relaxed) circuits of size n is equal to δn,0 :

Let n, p ∈ N : δ0,p = p for p ≥ 0,

δ1,0 = 1, δ1,p = p2 for p ≥ 1,

δn,p =
n−1∑
i=0

δn−1−i,p+i δi,p, for n ≥ 2.

δn,0 = 0, 1, 1, 3, 16, 127, 1363, 18628, 311250, 6173791, 142190703, . . .

Γ| The number of compacted circuits of size n is equal to γn,0 :

Let n, p ∈ N : γ0,p = p for p ≥ 0,

γ1,0 = 1, γ1,p = p2 − (p − 1) for p ≥ 1,

γn,p =
n−1∑
i=0

γn−1−i,p+i γi,p, for n ≥ 2.

γn,0 = 0, 1, 1, 3, 15, 111, 1119, 14487, 230943, 4395855, 97608831, . . .
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Unranking method for circuit building
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bidden pairs of
children:

(8, 6)
(7, 1)
(2, 1)
(4, 5)
(4, 3)
(3, 0)
(2, 2)
(0, 1)
(0, 0)

The circuit in Γ decomposes as γ2,6 γ6,0.
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Unranking algorithm

function build(j , n, p, num,F )
if n = 0 then

return (num,F ,point(j))

if n = 1 and p = 0 then
return (num + 1,F ,node(j , ∅, ∅))

if n = 1 then
(F ′,C1,C2) := children(j , num,F )
return (num + 1,F ′,node(j ,C1,C2)

(j ′, i) := decompo(j , n, p)
# [γn−2,1γ1,p, γn−3,2γ2,p, γn−4,3γ3,p, . . . ]

(num′,F ′,C2) := build(j ′ // γn−1−i,p+i , i , p, num,F )
(num′,F ′,C1) := build(j ′ % γn−1−i,p+i , n − 1− i , p + i , num′,F ′)
C := node(num′,C1,C2)
F ′ := insert(pair(C1,C2),F ′)

return (num′ + 1,F ′,C )
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Smallest circuits
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The smallest relaxed circuit that is not a compacted circuit: →

α

→

→
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Proportion of tautologies by exhaustive computations

Compacted tautologies (> 102 million objects).
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Proportion of compacted tautologies

Unif. sampling of 10 000 objects of sizes: 15, 20, 50, 100, 250, 500.
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Proportion of tautologies by exhaustive computations

relaxed tautologies (> 148 million objects).
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Proportion of compacted tautologies

Unif. sampling of 10 000 objects of sizes: 15, 20, 50, 100, 250, 500.
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Proportion of tautologies by exhaustive computations

compacted tautologies relaxed tautologies

[1, 0.000000000000000], [1, 0.000000000000000],
[2, 1.00000000000000], [2, 1.00000000000000],
[3, 0.666666666666667], [3, 0.666666666666667],
[4, 0.800000000000000], [4, 0.812500000000000],
[5, 0.792792792792793], [5, 0.803149606299213],
[6, 0.813226094727435], [6, 0.820983125458547],
[7, 0.823634983088286], [7, 0.830899720850333],
[8, 0.832162048644038], [8, 0.838628112449799],
[9, 0.839259711705686], [9, 0.845171143629579],
[10, 0.845015488403913] [10, 0.850526029117389]
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Proportion of compacted tautologies

compacted tautologies relaxed tautologies
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Proportion of compacted simple tautologies

Compacted simple tautologies
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Enumeration of compacted simple tautologies

The number of compacted simple tautologies circuits of size n is equal to
gn :

Let n, p ∈ N : g1 = 1

gn =

(
n−1∑
i=1

δn−1−i,i gi

)
+ γn−1,0 − gn−1, for n ≥ 2.

Theorem

For n ≥ 3, the proportion of compacted simple tautologies is 1
3 .
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Proportion of relaxed simple tautologies

Relaxed simple tautologies

[41, 0.684056986643822],
[42, 0.684056984059399],
[43, 0.684056981893088],
[44, 0.684056980071575],
[45, 0.684056978535396],
[46, 0.684056977236133],
[47, 0.684056976134217],
[48, 0.684056975197194],
[49, 0.684056974398355],
[50, 0.684056973715648]
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Mean value of the number of premises of circuits

solid line: mean value dashed line: mean value normalized by log(size)
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Perspectives

Many properties to prove !!
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