
1/29

Polynomial tuning of multiparametric

combinatorial samplers

Maciej Bendkowski
3

Olivier Bodini
1

Sergey Dovgal
1,2,4

1
Université Paris-13,

2
Université Paris-Diderot

3
Jagiellonian University in Kraków

4
Moscow Institute of Physics and Technology

Computational Logic and Applications,

Paris, May 25th 2018

2/29

Outline

Combinatorial sampling techniques

Multivariate tuning

Applications

3/29

Warm-up — combinatorial samplers for binary trees

B
= Z +

Z

B B

B(z) = z + zB2(z)

Recursive method

exact-size sampling

(Nijenhuis and Wilf, 1978)

Boltzmann samplers

approximate-size sampling

(Duchon et al., 2004)

I if n = 1 return Z ,

I otherwise, sample k from

probability distribution

P(k) =
bkbn−k−1

bn

and recurse accordingly.

ΓB :=

Z PZ =

z
B(z)

,

Z

ΓB ΓB PΓB =
zB2(z)

B(z)
.

4/29

Univariate Boltzmann samplers — outcome distribution

I P(ΓB outputs tree τ) = z|τ |
B(z) (uniform conditioned on size);

I Expected output size is z B′(z)
B(z) (increasing function of z).

How long do we wait for an object of size in [n(1− ε), n(1 + ε)]?

0 2 4 6 8 10 12 14 16 18 20
size of generated object

0.00

0.05

0.10

0.15

0.20

0.25

pr
ob

ab
ilit

y

Oε(n) for binary trees.

5/29

Combinatorial samplers — summary

For general, admissible combinatorial specifications, sampling

objects of size n takes, respectively:

I O(n2) using the recursive method;

I O(n2) using exact-size Boltzmann sampling;

I O(n) using approximate-size Boltzmann sampling.

6/29

Multiparametric sampling — example

Problem
Generate uniformly at random plane trees with

I n nodes in total,

I j leaves in total,

I and k nodes with 3 children.

T
= z +

z

T T
. . .

︸ ︷︷ ︸
0,1,2,4,5,... = N\{3}

+

z

T T T

7/29

Multiparametric sampling — state of the art

Problem
Given an admissible, algebraic

1
combinatorial specification S and an

expectation vector X controlling k parameters of associated objects,

generate a uniformly random object with expectation profile X .

Status (exact-parameter case):

I Dynamic programming using the recursive method O(nk+1)
(essentially Nijenhuis and Wilf, 1978);

I Boltzmann sampling using multidimensional oracles O(n1+k/2)
(Bodini and Ponty, 2010);

Our contributions:

I (target parameter expectations) n · Poly(k);

I (exact-size, approximate-size parameters for

strongly-connected rational languages) n + O(1).

1

extensions are also available

8/29

Outline

Combinatorial sampling techniques

Multivariate tuning

Applications

9/29

Multivariate Boltzmann model

Probability model

Let C(z) =
∑

p≥0 cpz
p

be a multivariate generating function

associated with the class C. Then, the probability Pz(ω) of

generating object ω of (composite-)size p takes the form

Pz(ω) =
zp

C(z)
=

zp1

1
· · · zpkk

C(z1, . . . , zk)
.

In consequence, the expectation of Ez(Ni)
of parameter zi takes the form

Ez(Ni) = zi

∂

∂zi
C(z)

C(z)
.

10/29

Multivariate Boltzmann model — example

Q: How to quickly sample Motzkin trees, uniformly at random

conditioned on size, with roughly 30% of unary nodes?

M
= z +

z

M

30%

+

z

M M

M(z, u) = z + uzM(z, u) + zM(z, u)2

Ez,u(Nu) = u

∂

∂u
M(z, u)

M(z, u)
.

11/29

Tuning as an optimisation problem

Let ∇z f (z) =

(
∂

∂z1

f (z), . . . ,
∂

∂zk
f (z)

)>
denote the gradient

vector with respect to z = (z1, . . . , zk). Then, solving

Ez(N) = p

is equivalent to

∇z

[
logC(ez)− z>p

]
= 0.

Theorem (B., Bodini, Dovgal)

Fix the expectations Ez(N) = p. Then, the associated tuning vector

z is equal to eξ where ξ comes from the following minimisation

problem:

logC(eξ)− p>ξ → min

ξ
.

12/29

Log-exp transform for algebraic systems

Theorem (B., Bodini, Dovgal)

Let C = Φ(C,Z) be an algebraic system. Fix the expectations

Ez(N) = p of objects sampled from C1. Then, the corresponding

tuning problem is equivalent to the following log-exp transformed

convex minimisation problem:{
c1 − p>ξ → minξ,c ,

log Φ(ec, eξ)− c ≤ 0.

13/29

Log-exp transform — example

A ≥ zxB2 + zyC

B ≥ zxB + zA

C ≥ z + zA

⇒

α ≥ eζeξe2β + eζeηeγ

β ≥ eζeξeβ + eζeα

γ ≥ eζ + eζeα

Associated convex minimisation problem:
α− Ezζ − Exξ − Eyη → minζ,ξ,η,α

α ≥ log

(
eζeξe2β + eζeηeγ

)
β ≥ log

(
eζeξeβ + eζeα

)
γ ≥ log

(
eζ + eζeα

)

14/29

Convex optimisation complexity

Theorem (Nesterov and Nemirovskii, 1994)

Convex optimisation programs can be e�ectively optimised using

polynomial-time interior-point methods. As a consequence, for

multiparametric combinatorial systems with description length L,

the tuning problem can be solved with precision ε in time

O
(
L3.5

log

1

ε

)
.

15/29

Singular samplers for algebraic systems

Theorem (B., Bodini, Dovgal)

Let C = Φ(C,Z,U) be an algebraic system with Z marking the

object size. Fix the expectations p of atoms U . Set z = eξ and

u = eη . Then, (z,u) from the following convex program tune the

corresponding singular Boltzmann sampler:{
ξ + p>η → maxξ,η,c

log Φ(ec, eξ, eη)− c ≤ 0 .{
z → max,

T ≥ z + zT 2

⇒

{
ζ → max,

b ≥ log(eζ + eζe2b)

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

−10 −8 −6 −4 −2
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

16/29

Outline

Combinatorial sampling techniques

Multivariate tuning

Applications

17/29

Open source implementation — Boltzmann Brain

Example – boolean formulae over {¬,∨,∧}:

F
=

¬

F

30%

+
∨

F F

+
∧

F F

+ seq≥1(z)

F (z) = uzF (z) + 2zF (z)2 +
z

1− z

1 Fun = Neg Fun [0.3]

2 | And Fun Fun
3 | Or Fun Fun
4 | Variable Index (0)

5

6 Index = Zero
7 | Succ Index

Code available at

https://github.com/maciej-bendkowski/boltzmann-brain
https://github.com/maciej-bendkowski/multiparametric-combinatorial-samplers

https://github.com/maciej-bendkowski/boltzmann-brain
https://github.com/maciej-bendkowski/multiparametric-combinatorial-samplers

18/29

Boltzmann Brain — example output sampler

19/29

Toy example — random tilings

Problem
Tile a stripe 7× n with 126 di�erent types of tiles such that the area

covered by each tile is (approximately) uniform.

Note: The associated automaton has

I over 2, 000 states, and

I over 28, 000 transitions.

20/29

Random tilings — example

21/29

Simply-generated trees with node degree constraints

Simple varieties of plane trees with fixed sets of admissible node

degrees, satisfying the general equation

y(z) = zφ(y(z)) for some polynomial φ : C→ C .

For instance, consider plane trees

φ(y(z)) = a0 + a1y(z) + a2y(z)2 + · · ·+ a9y(z)9

.

We tune the corresponding algebraic specification so to achieve a

target frequency of 1% for all nodes of degrees d ≥ 2. Frequencies

of nodes with degrees d ≤ 1 are le� undistorted.

Node degree 0 1 2 3 4 5 6 7 8 9

Tuned frequency - - - - - - 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00%
Observed frequency 35.925% 56.168% 0.928% 0.898% 1.098% 0.818% 1.247% 0.938% 1.058% 0.918%
Default frequency 50.004% 24.952% 12.356% 6.322% 2.882% 1.984% 0.877% 0.378% 0.169% 0.069%

Table: Empirical frequencies of the node degree distribution.

22/29

Simply-generated trees with node degree constraints –

example

23/29

λ-terms with given de Bruijn index distribution

L = zL + zL2 + u1z + u2z2 + . . .+ u8z8 +
z9

1− z

L
=

λ

L

+
@

L L

+ seq≥1(z)

24/29

λ-terms with given de Bruijn index distribution – example

25/29

Closed λ-terms for property-based so�ware testing

λ

λ

λ

@

@

2 0

@

1 0

Some interesting parameters:

I number of variables,

I de Bruijn index distribution,

I Number of head lambdas,

I Number of redexes, i.e.

@

λ

·
·

I . . .

Motivation
Generate closed lambda terms

(programs) with skewed distribution

to find bugs in functional language

compilers such as Haskell’s GHC.

26/29

Integer partitions and the Bose–Einstein condensate

Example:

16 = 1 + 1 + 3 + 4 + 7

P = mset(mset≥1(Z))

Generalisation from statistical physics (Bose–Einstein)

In the model of d-dimensional harmonic trap the number of states

for particle with energy λ is

(d+λ−1

λ

)
. Each state is represented as a

multiset of λ elements having d di�erent colours.

E = mset(mset≥1(Z1 + Z2 + · · ·+ Zd))

27/29

d-dimensional quantum harmonic oscillator

Weighted partition Random particle assembly

Sum of numbers Total energy

Number of colours Dimension (d)

Row of Young table Particle

Number of rows Number of particles

Number of squares in the row Energy of a particle (λ)

Problem
Generate random assemblies with given (expected) numbers

(n1, n2, . . . , nd) of colours (dimension).

28/29

Weighted integer partitions

(5,8, and 9 colours, respectively)

29/29

Thank you!

Thank you for your a�ention!

