Polynomial tuning of multiparametric combinatorial samplers

 $\frac{Maciej \; Bendkowski^3}{Sergey \; Dovgal^{1,2,4}} \; \; Olivier \; Bodini^1$

¹Université Paris-13, ²Université Paris-Diderot ³Jagiellonian University in Kraków ⁴Moscow Institute of Physics and Technology

Computational Logic and Applications, Paris, May 25th 2018

Outline

Combinatorial sampling techniques

Multivariate tuning

Applications

Warm-up – combinatorial samplers for binary trees

$$B = Z + B = B$$

$$B(z) = z + zB^{2}(z)$$

<u>Recursive method</u> exact-size sampling (Nijenhuis and Wilf, 1978)

• if
$$n = 1$$
 return \mathcal{Z} ,

 otherwise, sample k from probability distribution

$$\mathbb{P}(k) = \frac{b_k b_{n-k-1}}{b_n}$$

and recurse accordingly.

Boltzmann samplers approximate-size sampling (Duchon et al., 2004)

$$-B := \begin{cases} \mathcal{Z} & \mathbb{P}_{\mathcal{Z}} = \frac{z}{B(z)}, \\ & &$$

Univariate Boltzmann samplers - outcome distribution

• $\mathbb{P}(\Gamma B \text{ outputs tree } \tau) = \frac{z^{|\tau|}}{B(z)}$ (uniform conditioned on size);

• Expected output size is $z \frac{B'(z)}{B(z)}$ (increasing function of z).

How long do we wait for an object of size in $[n(1-\varepsilon), n(1+\varepsilon)]$?

 $O_{\varepsilon}(n)$ for binary trees.

Combinatorial samplers - summary

For general, admissible combinatorial specifications, sampling objects of size *n* takes, respectively:

- $O(n^2)$ using the recursive method;
- O(n²) using exact-size Boltzmann sampling;
- O(n) using approximate-size Boltzmann sampling.

Multiparametric sampling - example

Problem

Generate uniformly at random plane trees with

- n nodes in total,
- *j* leaves in total,
- and *k* nodes with 3 children.

Multiparametric sampling - state of the art

Problem

Given an admissible, algebraic¹ combinatorial specification S and an expectation vector X controlling k parameters of associated objects, generate a uniformly random object with expectation profile X.

Status (exact-parameter case):

- Dynamic programming using the recursive method O(n^{k+1}) (essentially Nijenhuis and Wilf, 1978);
- Boltzmann sampling using multidimensional oracles O(n^{1+k/2}) (Bodini and Ponty, 2010);

Our contributions:

- (target parameter expectations) $n \cdot Poly(k)$;
- (exact-size, approximate-size parameters for strongly-connected rational languages) n + O(1).

¹extensions are also available

Outline

Combinatorial sampling techniques

Multivariate tuning

Applications

Multivariate Boltzmann model

Probability model

Let $C(\mathbf{z}) = \sum_{\mathbf{p} \ge \mathbf{0}} c_{\mathbf{p}} \mathbf{z}^{\mathbf{p}}$ be a multivariate generating function associated with the class C. Then, the probability $\mathbb{P}_{\mathbf{z}}(\omega)$ of generating object ω of (composite-)size \mathbf{p} takes the form

$$\mathbb{P}_{\mathbf{z}}(\omega) = \frac{\mathbf{z}^{\mathbf{p}}}{C(\mathbf{z})} = \frac{z_1^{p_1} \cdots z_k^{p_k}}{C(z_1, \dots, z_k)}$$

In consequence, the expectation of $\mathbb{E}_{z}(N_{i})$ of parameter z_{i} takes the form

$$\mathbb{E}_{\mathbf{z}}(N_i) = z_i \frac{\frac{\partial}{\partial z_i} C(\mathbf{z})}{C(\mathbf{z})} \quad .$$

Multivariate Boltzmann model - example

Q: How to quickly sample Motzkin trees, uniformly at random conditioned on size, with roughly 30% of unary nodes?

Tuning as an optimisation problem

Let
$$\nabla_{\mathbf{z}} f(\mathbf{z}) = \left(\frac{\partial}{\partial z_1} f(\mathbf{z}), \dots, \frac{\partial}{\partial z_k} f(\mathbf{z})\right)^\top$$
 denote the gradient vector with respect to $\mathbf{z} = (z_1, \dots, z_k)$. Then, solving

$$\mathbb{E}_{z}(N) = p$$

is equivalent to

$$\nabla_{\boldsymbol{z}}\left[\log C(\boldsymbol{e}^{\boldsymbol{z}})-\boldsymbol{z}^{\top}\boldsymbol{p}\right]=\boldsymbol{0}.$$

Theorem (B., Bodini, Dovgal)

Fix the expectations $\mathbb{E}_z(N) = p$. Then, the associated tuning vector z is equal to e^{ξ} where ξ comes from the following minimisation problem:

$$\log C(\boldsymbol{e}^{\boldsymbol{\xi}}) - \boldsymbol{p}^{\top} \boldsymbol{\xi}
ightarrow \min_{\boldsymbol{\xi}}$$
.

Log-exp transform for algebraic systems

Theorem (B., Bodini, Dovgal)

Let $C = \Phi(C, \mathbb{Z})$ be an algebraic system. Fix the expectations $\mathbb{E}_z(N) = p$ of objects sampled from C_1 . Then, the corresponding tuning problem is equivalent to the following log-exp transformed convex minimisation problem:

$$\left\{egin{aligned} &c_1 - oldsymbol{p}^{ op} oldsymbol{\xi} op \min_{oldsymbol{\xi},oldsymbol{c}} \ , \ &\log oldsymbol{\Phi}(e^{oldsymbol{c}}, e^{oldsymbol{\xi}}) - oldsymbol{c} \leq 0. \end{aligned}
ight.$$

Log-exp transform — example

$$\begin{cases} A \ge zxB^2 + zyC \\ B \ge zxB + zA \\ C \ge z + zA \end{cases} \Rightarrow \begin{cases} \alpha \ge e^{\zeta}e^{\xi}e^{2\beta} + e^{\zeta}e^{\eta}e^{\gamma} \\ \beta \ge e^{\zeta}e^{\xi}e^{\beta} + e^{\zeta}e^{\alpha} \\ \gamma \ge e^{\zeta} + e^{\zeta}e^{\alpha} \end{cases}$$

Associated convex minimisation problem:

$$\begin{cases} \alpha - \mathbb{E}_{z}\zeta - \mathbb{E}_{x}\xi - \mathbb{E}_{y}\eta \to \min_{\zeta,\xi,\eta,\alpha} \\ \alpha \ge \log\left(e^{\zeta}e^{\xi}e^{2\beta} + e^{\zeta}e^{\eta}e^{\gamma}\right) \\ \beta \ge \log\left(e^{\zeta}e^{\xi}e^{\beta} + e^{\zeta}e^{\alpha}\right) \\ \gamma \ge \log\left(e^{\zeta} + e^{\zeta}e^{\alpha}\right) \end{cases}$$

Convex optimisation complexity

Theorem (Nesterov and Nemirovskii, 1994)

Convex optimisation programs can be effectively optimised using polynomial-time interior-point methods. As a consequence, for multiparametric combinatorial systems with description length L, the tuning problem can be solved with precision ε in time

$$O\left(L^{3.5}\log\frac{1}{\varepsilon}\right)$$

Singular samplers for algebraic systems

Theorem (B., Bodini, Dovgal)

Let $C = \Phi(C, Z, U)$ be an algebraic system with Z marking the object size. Fix the expectations p of atoms U. Set $z = e^{\xi}$ and $u = e^{\eta}$. Then, (z, u) from the following convex program tune the corresponding singular Boltzmann sampler:

$$egin{cases} \xi + oldsymbol{p}^ op oldsymbol{\eta} op \max_{\xi,oldsymbol{\eta},oldsymbol{c}} \ \log oldsymbol{\Phi}(e^{oldsymbol{c}},e^{\xi},e^{oldsymbol{\eta}}) - oldsymbol{c} \leq 0 \end{cases}$$

Outline

Combinatorial sampling techniques

Multivariate tuning

Applications

Open source implementation — Boltzmann Brain Example – boolean formulae over $\{\neg, \lor, \land\}$:

Code available at

2

3

4

6

7

https://github.com/maciej-bendkowski/boltzmann-brain https://github.com/maciej-bendkowski/multiparametric-combinatorial-samplers

Boltzmann Brain - example output sampler

Toy example - random tilings

Problem

Tile a stripe $7 \times n$ with 126 different types of tiles such that the area covered by each tile is (approximately) uniform.

Note: The associated automaton has

- over 2,000 states, and
- over 28,000 transitions.

Random tilings - example

Simply-generated trees with node degree constraints

Simple varieties of plane trees with fixed sets of admissible node degrees, satisfying the general equation

 $y(z) = z\phi(y(z))$ for some polynomial $\phi \colon \mathbb{C} \to \mathbb{C}$.

For instance, consider plane trees $\phi(y(z)) = a_0 + a_1 y(z) + a_2 y(z)^2 + \dots + a_9 y(z)^9.$

We tune the corresponding algebraic specification so to achieve a target frequency of 1% for all nodes of degrees $d \ge 2$. Frequencies of nodes with degrees $d \le 1$ are left undistorted.

Node degree	0	1	2	3	4	5	6	7	8	9
Tuned frequency			1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%
Observed frequency	35.925%	56.168%	0.928%	0.898%	1.098%	0.818%	1.247%	0.938%	1.058%	0.918%
Default frequency	50.004%	24.952%	12.356%	6.322%	2.882%	1.984%	0.877%	0.378%	0.169%	0.069%

Table: Empirical frequencies of the node degree distribution.

Simply-generated trees with node degree constraints – example

 λ -terms with given de Bruijn index distribution

TABLE 3. Empirical frequencies (with respect to the term size) of index distribution.

Index	<u>0</u>	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
Tuned frequency	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%
Observed frequency	7.50%	7.77%	8.00%	8.23%	8.04%	7.61%	8.53%	7.43%	9.08%
Default frequency	21.91%	12.51%	5.68%	2.31%	0.74%	0.17%	0.20%	0.07%	

λ -terms with given de Bruijn index distribution – example

Closed λ -terms for property-based software testing

Some interesting parameters:

- number of variables,
- de Bruijn index distribution,
- Number of head lambdas,
- Number of redexes, i.e. $\sqrt[\infty]{5}$

Motivation

. . .

Generate closed lambda terms (programs) with skewed distribution to find bugs in functional language compilers such as Haskell's GHC. Integer partitions and the Bose-Einstein condensate

Example:

$$16 = 1 + 1 + 3 + 4 + 7$$

 $\mathcal{P} = mset(mset_{\geq 1}(\mathcal{Z}))$

Generalisation from statistical physics (Bose-Einstein)

In the model of *d*-dimensional harmonic trap the number of states for particle with energy λ is $\binom{d+\lambda-1}{\lambda}$. Each state is represented as a multiset of λ elements having *d* different colours.

$$\mathcal{E} = \mathsf{mset}(\mathsf{mset}_{\geq 1}(\mathcal{Z}_1 + \mathcal{Z}_2 + \cdots + \mathcal{Z}_d))$$

d-dimensional quantum harmonic oscillator

Weighted partition	Random particle assembly			
Sum of numbers	Total energy			
Number of colours	Dimension (<i>d</i>)			
Row of Young table	Particle			
Number of rows	Number of particles			
Number of squares in the row	Energy of a particle (λ)			

Problem

Generate random assemblies with given (expected) numbers (n_1, n_2, \ldots, n_d) of colours (dimension).

Weighted integer partitions

(5,8, and 9 colours, respectively)

Thank you!

Thank you for your attention!