
1/24

Combinatorics of explicit substitutions

Maciej Bendkowski1 Pierre Lescanne2

1Jagiellonian University in Kraków
2École normale supérieure de Lyon

Computational Logic and Applications
Paris, May 25th 2018

2/24

Outline

λ-calculus and substitution resolution

λυ-calculus and explicit substitutions

Our contribution

3/24

β-reduction in λ-calculus

Substitution of terms for variables forms the essence of β-reduction
in λ-calculus. For instance, (λx.x(yx)(λz.z))T →β T (yT)(λz.z):

@

λx

@

@

x @

y x

λz

z

T
@

@

T

@

y

T

λz

z

4/24

β-reduction in λ-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T , as in the
following example:

@

λx

@

@

y @

y y

λz

x

T

I We want to avoid the
capture of variable z in T ;

I Requires keeping track
of variable names and
(sometimes) their
renaming;

I In principle feasible, but
in practice it is not a
trivial operation to
execute.

4/24

β-reduction in λ-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T , as in the
following example:

@

λx

@

@

y @

y y

λz

x

T

I We want to avoid the
capture of variable z in T ;

I Requires keeping track
of variable names and
(sometimes) their
renaming;

I In principle feasible, but
in practice it is not a
trivial operation to
execute.

4/24

β-reduction in λ-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T , as in the
following example:

@

λx

@

@

y @

y y

λz

x

T

I We want to avoid the
capture of variable z in T ;

I Requires keeping track
of variable names and
(sometimes) their
renaming;

I In principle feasible, but
in practice it is not a
trivial operation to
execute.

4/24

β-reduction in λ-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T , as in the
following example:

@

λx

@

@

y @

y y

λz

x

T

I We want to avoid the
capture of variable z in T ;

I Requires keeping track
of variable names and
(sometimes) their
renaming;

I In principle feasible, but
in practice it is not a
trivial operation to
execute.

5/24

β-reduction and computational e�ectiveness

Postulate (essentially due to de Bruijn ’78)
The number of β-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational e�ort required to carry out the
computation.

I It hides the non-trivial details of capture-avoiding substitution;
I It does not reflect the cost of substitution resolution;
I and finally, it hides the details of evaluation strategies.

. . . and that is due to the epitheoretic substitution operation.

5/24

β-reduction and computational e�ectiveness

Postulate (essentially due to de Bruijn ’78)
The number of β-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational e�ort required to carry out the
computation.

I It hides the non-trivial details of capture-avoiding substitution;

I It does not reflect the cost of substitution resolution;
I and finally, it hides the details of evaluation strategies.

. . . and that is due to the epitheoretic substitution operation.

5/24

β-reduction and computational e�ectiveness

Postulate (essentially due to de Bruijn ’78)
The number of β-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational e�ort required to carry out the
computation.

I It hides the non-trivial details of capture-avoiding substitution;
I It does not reflect the cost of substitution resolution;

I and finally, it hides the details of evaluation strategies.

. . . and that is due to the epitheoretic substitution operation.

5/24

β-reduction and computational e�ectiveness

Postulate (essentially due to de Bruijn ’78)
The number of β-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational e�ort required to carry out the
computation.

I It hides the non-trivial details of capture-avoiding substitution;
I It does not reflect the cost of substitution resolution;
I and finally, it hides the details of evaluation strategies.

. . . and that is due to the epitheoretic substitution operation.

5/24

β-reduction and computational e�ectiveness

Postulate (essentially due to de Bruijn ’78)
The number of β-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational e�ort required to carry out the
computation.

I It hides the non-trivial details of capture-avoiding substitution;
I It does not reflect the cost of substitution resolution;
I and finally, it hides the details of evaluation strategies.

. . . and that is due to the epitheoretic substitution operation.

6/24

β-reduction and computational e�ectiveness (ii)

Issue I
β-reduction hides the non-trivial details of capture-avoiding
substitution. Variable renaming can take time linear in the term size.

@

λx

@

@

y @

y y

λz

x

T

7/24

β-reduction and computational e�ectiveness (iii)

Issue II
β-reduction does not reflect the cost of substitution resolution.
Variable search can take time linear in the term size.

@

λx

@

@

x @

y x

λz

z

T

8/24

β-reduction and computational e�ectiveness (iv)

Issue III
β-reduction hides the details of evaluation strategies. What if the
substitution is carried out non-strictly, e.g. it is suspended and
evaluated on demand (perhaps even never)?

Real-life1 example of an infinite lists of Fibonacci numbers:

1 fibs = 0 : 1 : next fibs
2 where
3 next (a : b : xs) = (a + b) : next (b : xs)

1Is this the real life? Is this just fantasy? (. . .) [Mercury et al. ’75]

9/24

E�ectuation of substitution

In order to e�ectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

I investigate combinatory logic, or

I investigate calculi of explicit substitution;

�est
Investigate quantitative aspects of substitution. For instance,

I What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

I What is the average-case complexity of abstract machines
executing (terminating) computations of considered calculi? Is
it possible to optimise them based on the structure of typical
computations?

9/24

E�ectuation of substitution

In order to e�ectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

I investigate combinatory logic, or
I investigate calculi of explicit substitution;

�est
Investigate quantitative aspects of substitution. For instance,

I What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

I What is the average-case complexity of abstract machines
executing (terminating) computations of considered calculi? Is
it possible to optimise them based on the structure of typical
computations?

9/24

E�ectuation of substitution

In order to e�ectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

I investigate combinatory logic, or
I investigate calculi of explicit substitution;

�est
Investigate quantitative aspects of substitution. For instance,

I What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

I What is the average-case complexity of abstract machines
executing (terminating) computations of considered calculi? Is
it possible to optimise them based on the structure of typical
computations?

9/24

E�ectuation of substitution

In order to e�ectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

I investigate combinatory logic, or
I investigate calculi of explicit substitution;

�est
Investigate quantitative aspects of substitution. For instance,

I What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

I What is the average-case complexity of abstract machines
executing (terminating) computations of considered calculi? Is
it possible to optimise them based on the structure of typical
computations?

9/24

E�ectuation of substitution

In order to e�ectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

I investigate combinatory logic, or
I investigate calculi of explicit substitution;

�est
Investigate quantitative aspects of substitution. For instance,

I What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

I What is the average-case complexity of abstract machines
executing (terminating) computations of considered calculi? Is
it possible to optimise them based on the structure of typical
computations?

10/24

Reflections on combinatory logic

Normal-order reduction
If a term (combinator) T is normalisable, then the iterative
contraction of the le�most-outermost redex leads to the (unique)
normal form of T .

Sxyz → xz(yz)

Kxy → x

R0 = S � K � KR0 � SR0 � SR0R0

R1 = SR1 � KR1 � SR0R1 � SR1R0 � KR0C �
KSCR0 � KKCR0 � KSCR0R0 � K(SR0)CR0

� SSSR0 � SSKR0 � SS(SR0)R0

R2 = . . .

Figure: Rewriting rules of SK -combinators and the corresponding
normal-order reduction grammars.

11/24

Reflections on combinatory logic (ii)

Theorem (B., Grygiel and Zaionc ’17)
For each k ≥ 1, the asymptotic density µ(Rk/C) of combinators
reducing in k normal-order reduction steps in the set of all
combinators is positive.

In particular, we have:

k µ(Rk/C)
0 0.
1 0.08961
2 0.06417
3 0.05010
4 0.04131
5 0.03570
6 0.03119
7 0.02798

Problem
How to port these results to the realm of
λ-calculus having an external substitution?

. . . use explicit substitutions!

12/24

Outline

λ-calculus and substitution resolution

λυ-calculus and explicit substitutions

Our contribution

13/24

λυ-calculus (lambda upsilon calculus)
A simplistic calculus of explicit substitutions due to Lescanne ’94.

T ::= N | λT | T T | T [S]
S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

Figure: Terms of λυ-calculus.

(λa)b→ a[b/] (Beta)

(ab)[s]→ a[s](b[s]) (App)

(λa)[s]→ λ(a[⇑ (s)]) (Lambda)

0[a/]→ a (FVar)

(Sn)[a/]→ n (RVar)

0[⇑ (s)]→ 0 (FVarLi�)

(Sn)[⇑ (s)]→ n[s][↑] (RVarLi�)

n[↑]→ Sn. (VarShi�)

Figure: Rewriting rules.

14/24

λυ-calculus (ii)

Consider the term K = λx.λy.x ; denoted as λλ1. Certainly,
Kab→β a for each term a (in one step). Note however, that with
explicit substitutions we have

(λλ1)a→ (λ1)[a/]

→ λ(1[⇑ (a/)])

→ λ (0[a/][↑])
→ λ (a[↑]) .

The final shi� operator guarantees that (potential) free indices are
aptly incremented so to avoid potential variable captures. If a is
closed, then a[↑] resolves simply to a, as intended.

15/24

Outline

λ-calculus and substitution resolution

λυ-calculus and explicit substitutions

Our contribution

16/24

Enumerative results

Proposition
Let T (z) and S(z) denote the generating functions corresponding to
λυ-terms and substitutions, respectively. Then,

T (z) =
1−
√

1− 4z
2z

−1 whereas S(z) =
1−
√

1− 4z
2z

(
z

1− z

)
.

In consequence

[zn]T (z) =

0, for n = 0
1

n+ 1

(
2n
n

)
, otherwise

[zn]S(z) =

0, for n = 0
n−1∑
k=0

1
k + 1

(
2k
k

)
otherwise.

17/24

Enumerative results – explicit bijection

ϕ

(
•

R

)
= λϕ(R)

ϕ

(
•

L

)
= Sn

when ϕ(L) = n

ϕ

(
•

L

)
= a[⇑n+1 (s)]

when ϕ(L) = a[⇑n (s)]

ϕ(•) = 0

ϕ

 •
•

R

 = ϕ(R)[↑]

ϕ

 •
•

L R

 = ϕ(L)[ϕ(R)/]

ϕ

(
•

L R

)
= ϕ(L)ϕ(R)

18/24

Enumerative results – correspondence example

For instance, 0[⇑ (λ0/)] 1[↑] corresponds to

•
• •

• •
• •

• • •
•

19/24

Statistical properties

Strict substitution forms
A λυ-term t is in strict substitution form if there exist two pure
(i.e. without explicit substitutions) terms a, b and a sequence
t1, . . . , tn of λυ-terms such that

a[b/]→ t1 → · · · → tn = t

and none of the above reductions is (Beta).
Otherwise, t is said to be in lazy substitution form.

Theorem
Asymptotically almost all λυ-terms are in lazy substitution form.

Proof.
Idea: Consider the class of terms without nested closures.

19/24

Statistical properties

Strict substitution forms
A λυ-term t is in strict substitution form if there exist two pure
(i.e. without explicit substitutions) terms a, b and a sequence
t1, . . . , tn of λυ-terms such that

a[b/]→ t1 → · · · → tn = t

and none of the above reductions is (Beta).
Otherwise, t is said to be in lazy substitution form.

Theorem
Asymptotically almost all λυ-terms are in lazy substitution form.

Proof.
Idea: Consider the class of terms without nested closures.

20/24

Statistical properties (ii)

Substitution suspension
Let s be an substitution and t be a λυ-term. Then, s, all its subterms,
and all the constructors it contains are said to be suspended in t if t
contains a subterm in form of [s]; in other words, when s occurs
under a closure in t .

Theorem
Let Xn be a random variable denoting the number of constructors
not suspended under a closure in a random λυ-term of size n. Then,
the expectation E(Xn) satisfies

E(Xn) −−−→
n→∞

316
3
≈ 105.33.

21/24

Statistical properties (iii)

Proposition
Let R be a redex in the λυ-calculus and Xn be the corresponding
random variable denoting the number of occurrences of R in a
random term of size n. Then, a�er standardisation, Xn admits a
limiting Gaussian law.

In particular, we obtain:

Redex (limit) mean (limit) variance
(Beta) 0.046875n 0.037354n
(App) 0.031250n 0.021973n

(Lambda) 0.031250n 0.025879n
(VarShi�) 0.015625n 0.013916n

(FVar) 0.011719n 0.011124n
(FVarLi�) 0.007812n 0.007355n

(RVar) 0.003906n 0.003799n
(RVarLi�) 0.002604n 0.002557n

22/24

Conclusions

I Standard analytic methods provide insight into the structure of
random λυ-terms, in particular substitution resolution;

I Typical computations are in a strong sense lazy. Substitutions
are evaluated non-strictly. In fact, almost all of the
computation content is suspended;

I Substitution primitives have, on average, an uneven
contribution in typical terms. We can exploit that in micro
optimisations of abstract machines.

22/24

Conclusions

I Standard analytic methods provide insight into the structure of
random λυ-terms, in particular substitution resolution;

I Typical computations are in a strong sense lazy. Substitutions
are evaluated non-strictly. In fact, almost all of the
computation content is suspended;

I Substitution primitives have, on average, an uneven
contribution in typical terms. We can exploit that in micro
optimisations of abstract machines.

22/24

Conclusions

I Standard analytic methods provide insight into the structure of
random λυ-terms, in particular substitution resolution;

I Typical computations are in a strong sense lazy. Substitutions
are evaluated non-strictly. In fact, almost all of the
computation content is suspended;

I Substitution primitives have, on average, an uneven
contribution in typical terms. We can exploit that in micro
optimisations of abstract machines.

23/24

Future work

I What is the cost distribution of substitution resolution, given a
random term of size n? What primitives are its main
contributors?

I Does normal-order reduction (think of non-strict functional
programming languages) has a similar, average-case
"distribution shape" as the one for combinatory logic?

23/24

Future work

I What is the cost distribution of substitution resolution, given a
random term of size n? What primitives are its main
contributors?

I Does normal-order reduction (think of non-strict functional
programming languages) has a similar, average-case
"distribution shape" as the one for combinatory logic?

24/24

Thank you

Thank you for your a�ention!
(Strict questions and lazy answers)

