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A-calculus and substitution resolution



[S-reduction in A-calculus

Substitution of terms for variables forms the essence of S-reduction
in A-calculus. For instance, (Ax.x(yx)(Az.2))T —3 T(yT)(Az.2):
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However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T, as in the
following example:

> We want to avoid the
capture of variable z in T;

> Requires keeping track
of variable names and
(sometimes) their
renaming,

> In principle feasible, but
in practice it is not a
trivial operation to
execute.
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Postulate (essentially due to de Bruijn '78)

The number of S-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational effort required to carry out the
computation.

> It hides the non-trivial details of capture-avoiding substitution;
» It does not reflect the cost of substitution resolution;

> and finally, it hides the details of evaluation strategies.

... and that is due to the epitheoretic substitution operation.




B-reduction and computational effectiveness (ii)

Issue |
B-reduction hides the non-trivial details of capture-avoiding
substitution. Variable renaming can take time linear in the term size.




B-reduction and computational effectiveness (iii)

Issue Il
B-reduction does not reflect the cost of substitution resolution.
Variable search can take time linear in the term size.




B-reduction and computational effectiveness (iv)

Issue Il

B-reduction hides the details of evaluation strategies. What if the
substitution is carried out non-strictly, e.g. it is suspended and
evaluated on demand (perhaps even never)?

Real-life' example of an infinite lists of Fibonacci numbers:

1 | fibs =0 : 1 : next fibs
2 where
3 next (a : b : xs) = (a+b) : next (b: xs)

'Is this the real life? Is this just fantasy? (...) [Mercury et al. '75]
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Effectuation of substitution

In order to effectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

> investigate combinatory logic, or

> investigate calculi of explicit substitution;

Quest

Investigate quantitative aspects of substitution. For instance,

» What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

> What is the average-case complexity of abstract machines
executing (terminating) computations of considered calculi? Is
it possible to optimise them based on the structure of typical
computations?



Reflections on combinatory logic

Normal-order reduction

If a term (combinator) T is normalisable, then the iterative
contraction of the leftmost-outermost redex leads to the (unique)
normal form of T.

Sxyz — xz(yz) Ry = S@® K® KRy D SRy ® SRyRy
Kxy — x Ri = SR; ® KRy & SRyR; & SR1Ry ® KRy C &
KSCRy & KKCRy & KSCRyRy ® K(SRy)CRy
@ SSSRy & SSKRy & SS(SRy)Ro
R, =

Figure: Rewriting rules of SK-combinators and the corresponding
normal-order reduction grammars.



Reflections on combinatory logic (ii)

Theorem (B., Grygiel and Zaionc ’17)

For each k > 1, the asymptotic density p(Ry/C) of combinators
reducing in k normal-order reduction steps in the set of all
combinators is positive.

In particular, we have:

Problem
How to port these results to the realm of
A-calculus having an external substitution?

1(R/C)
0.
0.08961
0.06417
0.05010
0.04131 ... use explicit substitutions!
0.03570
0.03119
0.02798

\loxm.hww—ao‘»
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Av-calculus (lambda upsilon calculus)

A simplistic calculus of explicit substitutions due to Lescanne '94.

To=N|AT|TT | TI[S] (Aa)b — a[b/] (Beta)
Se=T/| 1(S)] 1 (ab)[s] = a[s](b[s]) (App)
N =0]|SN. (Xa)[s] — A(a[f (s)]) (Lambda)
' 0[a/] = a (FVar)
Figure: Terms of Av-calculus. (Sn)[a/] — n (RVar)
o[ (s)] — 0 (FVarLift)

(Sn)[r (s)] = nls][1] (RVarLift)

n[t] — Sn. (VarShift)

Figure: Rewriting rules.



Av-calculus (ii)

Consider the term K = Ax.\y.x; denoted as A\1. Certainly,
Kab — 5 a for each term a (in one step). Note however, that with
explicit substitutions we have

(AD)a — (A1)[a/]
— AN (a/)])
— A (0[a/][1])
— A(d[1]).
The final shift operator guarantees that (potential) free indices are

aptly incremented so to avoid potential variable captures. If a is
closed, then a[1] resolves simply to a, as intended.



Outline

Our contribution



Enumerative results

Proposition

Let T(z) and S(z) denote the generating functions corresponding to
Av-terms and substitutions, respectively. Then,

1—V1—4 1—V/1—4
T(z) = STV T 1 whereas S(z) = z < z ) .
2z 2z 1—-z
In consequence
0, forn=0
[2"]T(z) = 1 (2n> ,
, otherwise
n+1\n
0, forn=0
[2]S(z) = { &= 1 [2k _
— otherwise.
k+1\ k



Enumerative results — explicit bijection

=)

<,0<.\R> = Ap(R) o(e) =

° ./.
¢<L/ ) — sn @ < = @(R)[1]




Enumerative results — correspondence example

For instance, 0[f} (A0/)] 1[1] corresponds to



Statistical properties

Strict substitution forms

A Av-term t is in strict substitution form if there exist two pure
(i.e. without explicit substitutions) terms a, b and a sequence
ti, ..., t, of Au-terms such that

ab/l = tr —» - = t,=t

and none of the above reductions is (Beta).
Otherwise, t is said to be in lazy substitution form.

Theorem
Asymptotically almost all Av-terms are in lazy substitution form.
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Strict substitution forms

A Av-term t is in strict substitution form if there exist two pure
(i.e. without explicit substitutions) terms a, b and a sequence
ti, ..., t, of Au-terms such that

ab/l = tr —» - = t,=t

and none of the above reductions is (Beta).
Otherwise, t is said to be in lazy substitution form.

Theorem
Asymptotically almost all Av-terms are in lazy substitution form.

Proof.
Idea: Consider the class of terms without nested closures.



Statistical properties (ii)

Substitution suspension

Let s be an substitution and t be a Av-term. Then, s, all its subterms,
and all the constructors it contains are said to be suspended in t if t
contains a subterm in form of [s]; in other words, when s occurs
under a closure in t.

Theorem

Let X, be a random variable denoting the number of constructors
not suspended under a closure in a random Av-term of size n. Then,
the expectation E(X,) satisfies

316
E(Xn) —— =~ 105.33.

n—00



Statistical properties (iii)

Proposition

Let R be a redex in the Av-calculus and X, be the corresponding
random variable denoting the number of occurrences of Rin a
random term of size n. Then, after standardisation, X,, admits a
limiting Gaussian law.

In particular, we obtain:

Redex (limit) mean | (limit) variance
(Beta) 0.046875n 0.037354n
(App) 0.031250n 0.021973n
(Lambda) 0.031250n 0.025879n
(VarShift) 0.015625n 0.013916n
(FVar) 0.011719n 0.011124n
(FVarLift) 0.007812n 0.007355n
(RVar) 0.003906n 0.003799n
(RVarLift) 0.002604n 0.002557n
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Conclusions

» Standard analytic methods provide insight into the structure of
random Av-terms, in particular substitution resolution;

» Typical computations are in a strong sense lazy. Substitutions
are evaluated non-strictly. In fact, almost all of the
computation content is suspended,

> Substitution primitives have, on average, an uneven
contribution in typical terms. We can exploit that in micro
optimisations of abstract machines.
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Future work

> What is the cost distribution of substitution resolution, given a
random term of size n? What primitives are its main
contributors?

» Does normal-order reduction (think of non-strict functional
programming languages) has a similar, average-case
"distribution shape" as the one for combinatory logic?



Thank you

Thank you for your attention!
(Strict questions and lazy answers)



