Combinatorics of explicit substitutions

Maciej Bendkowski' Pierre Lescanne?

1Jagiellonian University in Krakéw
2Ecole normale supérieure de Lyon

Computational Logic and Applications
Paris, May 25th 2018

Outline

A-calculus and substitution resolution

[S-reduction in A-calculus

Substitution of terms for variables forms the essence of S-reduction
in A-calculus. For instance, (Ax.x(yx)(Az.2))T —3 T(yT)(Az.2):

[B-reduction in A-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T, as in the
following example:

[B-reduction in A-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T, as in the
following example:

> We want to avoid the
capture of variable z in T;

[B-reduction in A-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T, as in the
following example:

> We want to avoid the
capture of variable z in T;

> Requires keeping track
of variable names and
(sometimes) their
renaming,

[B-reduction in A-calculus (ii)

However, what if we substitute T with free variables under an
abstraction? For instance, what if z occurs freely in T, as in the
following example:

> We want to avoid the
capture of variable z in T;

> Requires keeping track
of variable names and
(sometimes) their
renaming,

> In principle feasible, but
in practice it is not a
trivial operation to
execute.

B-reduction and computational effectiveness

Postulate (essentially due to de Bruijn '78)

The number of S-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational effort required to carry out the
computation.

B-reduction and computational effectiveness

Postulate (essentially due to de Bruijn '78)

The number of S-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational effort required to carry out the
computation.

> It hides the non-trivial details of capture-avoiding substitution;

B-reduction and computational effectiveness

Postulate (essentially due to de Bruijn '78)

The number of S-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational effort required to carry out the
computation.

> It hides the non-trivial details of capture-avoiding substitution;

» It does not reflect the cost of substitution resolution;

B-reduction and computational effectiveness

Postulate (essentially due to de Bruijn '78)

The number of S-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational effort required to carry out the
computation.

> It hides the non-trivial details of capture-avoiding substitution;
» It does not reflect the cost of substitution resolution;

> and finally, it hides the details of evaluation strategies.

B-reduction and computational effectiveness

Postulate (essentially due to de Bruijn '78)

The number of S-reductions required to normalise a given term (in
other words, evaluate the encoded computation) does not quite
reflect the computational effort required to carry out the
computation.

> It hides the non-trivial details of capture-avoiding substitution;
» It does not reflect the cost of substitution resolution;

> and finally, it hides the details of evaluation strategies.

... and that is due to the epitheoretic substitution operation.

B-reduction and computational effectiveness (ii)

Issue |
B-reduction hides the non-trivial details of capture-avoiding
substitution. Variable renaming can take time linear in the term size.

B-reduction and computational effectiveness (iii)

Issue Il
B-reduction does not reflect the cost of substitution resolution.
Variable search can take time linear in the term size.

B-reduction and computational effectiveness (iv)

Issue Il

B-reduction hides the details of evaluation strategies. What if the
substitution is carried out non-strictly, e.g. it is suspended and
evaluated on demand (perhaps even never)?

Real-life' example of an infinite lists of Fibonacci numbers:

1 | fibs =0 : 1 : next fibs
2 where
3 next (a : b : xs) = (a+b) : next (b: xs)

'Is this the real life? Is this just fantasy? (...) [Mercury et al. '75]

Effectuation of substitution

In order to effectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

> investigate combinatory logic, or

Effectuation of substitution

In order to effectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

> investigate combinatory logic, or

> investigate calculi of explicit substitution;

Effectuation of substitution

In order to effectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

> investigate combinatory logic, or

> investigate calculi of explicit substitution;

Quest

Investigate quantitative aspects of substitution. For instance,

Effectuation of substitution

In order to effectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

> investigate combinatory logic, or

> investigate calculi of explicit substitution;

Quest

Investigate quantitative aspects of substitution. For instance,

» What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

Effectuation of substitution

In order to effectuate substitution, its resolution should be
internalised into the calculus itself. Possible solutions:

> investigate combinatory logic, or

> investigate calculi of explicit substitution;

Quest

Investigate quantitative aspects of substitution. For instance,

» What is the average-case cost of resolving substitutions in
computations (terms) of size n? How does it change depending
on the assumed evaluation strategy? What contributes to its
execution time?

> What is the average-case complexity of abstract machines
executing (terminating) computations of considered calculi? Is
it possible to optimise them based on the structure of typical
computations?

Reflections on combinatory logic

Normal-order reduction

If a term (combinator) T is normalisable, then the iterative
contraction of the leftmost-outermost redex leads to the (unique)
normal form of T.

Sxyz — xz(yz) Ry = S@® K® KRy D SRy ® SRyRy
Kxy — x Ri = SR; ® KRy & SRyR; & SR1Ry ® KRy C &
KSCRy & KKCRy & KSCRyRy ® K(SRy)CRy
@ SSSRy & SSKRy & SS(SRy)Ro
R, =

Figure: Rewriting rules of SK-combinators and the corresponding
normal-order reduction grammars.

Reflections on combinatory logic (ii)

Theorem (B., Grygiel and Zaionc ’17)

For each k > 1, the asymptotic density p(Ry/C) of combinators
reducing in k normal-order reduction steps in the set of all
combinators is positive.

In particular, we have:

Problem
How to port these results to the realm of
A-calculus having an external substitution?

1(R/C)
0.
0.08961
0.06417
0.05010
0.04131 ... use explicit substitutions!
0.03570
0.03119
0.02798

\loxm.hww—ao‘»

Outline

Av-calculus and explicit substitutions

Av-calculus (lambda upsilon calculus)

A simplistic calculus of explicit substitutions due to Lescanne '94.

To=N|AT|TT | TI[S] (Aa)b — a[b/] (Beta)
Se=T/| 1(S)] 1 (ab)[s] = a[s](b[s]) (App)
N =0]|SN. (Xa)[s] — A(a[f (s)]) (Lambda)
' 0[a/] = a (FVar)
Figure: Terms of Av-calculus. (Sn)[a/] — n (RVar)
o[(s)] — 0 (FVarLift)

(Sn)[r (s)] = nls][1] (RVarLift)

n[t] — Sn. (VarShift)

Figure: Rewriting rules.

Av-calculus (ii)

Consider the term K = Ax.\y.x; denoted as A\1. Certainly,
Kab — 5 a for each term a (in one step). Note however, that with
explicit substitutions we have

(AD)a — (A1)[a/]
— AN (a/)])
— A (0[a/][1])
— A(d[1]).
The final shift operator guarantees that (potential) free indices are

aptly incremented so to avoid potential variable captures. If a is
closed, then a[1] resolves simply to a, as intended.

Outline

Our contribution

Enumerative results

Proposition

Let T(z) and S(z) denote the generating functions corresponding to
Av-terms and substitutions, respectively. Then,

1—V1—4 1—V/1—4
T(z) = STV T 1 whereas S(z) = z < z) .
2z 2z 1—-z
In consequence
0, forn=0
[2"]T(z) = 1 (2n> ,
, otherwise
n+1\n
0, forn=0
[2]S(z) = { &= 1 [2k _
— otherwise.
k+1\ k

Enumerative results — explicit bijection

=)

<,0<.\R> = Ap(R) o(e) =

° ./.
¢<L/) — sn @ < = @(R)[1]

Enumerative results — correspondence example

For instance, 0[f} (A0/)] 1[1] corresponds to

Statistical properties

Strict substitution forms

A Av-term t is in strict substitution form if there exist two pure
(i.e. without explicit substitutions) terms a, b and a sequence
ti, ..., t, of Au-terms such that

ab/l = tr —» - = t,=t

and none of the above reductions is (Beta).
Otherwise, t is said to be in lazy substitution form.

Theorem
Asymptotically almost all Av-terms are in lazy substitution form.

Statistical properties

Strict substitution forms

A Av-term t is in strict substitution form if there exist two pure
(i.e. without explicit substitutions) terms a, b and a sequence
ti, ..., t, of Au-terms such that

ab/l = tr —» - = t,=t

and none of the above reductions is (Beta).
Otherwise, t is said to be in lazy substitution form.

Theorem
Asymptotically almost all Av-terms are in lazy substitution form.

Proof.
Idea: Consider the class of terms without nested closures.

Statistical properties (ii)

Substitution suspension

Let s be an substitution and t be a Av-term. Then, s, all its subterms,
and all the constructors it contains are said to be suspended in t if t
contains a subterm in form of [s]; in other words, when s occurs
under a closure in t.

Theorem

Let X, be a random variable denoting the number of constructors
not suspended under a closure in a random Av-term of size n. Then,
the expectation E(X,) satisfies

316
E(Xn) —— =~ 105.33.

n—00

Statistical properties (iii)

Proposition

Let R be a redex in the Av-calculus and X, be the corresponding
random variable denoting the number of occurrences of Rin a
random term of size n. Then, after standardisation, X,, admits a
limiting Gaussian law.

In particular, we obtain:

Redex (limit) mean | (limit) variance
(Beta) 0.046875n 0.037354n
(App) 0.031250n 0.021973n
(Lambda) 0.031250n 0.025879n
(VarShift) 0.015625n 0.013916n
(FVar) 0.011719n 0.011124n
(FVarLift) 0.007812n 0.007355n
(RVar) 0.003906n 0.003799n
(RVarLift) 0.002604n 0.002557n

Conclusions

» Standard analytic methods provide insight into the structure of
random Av-terms, in particular substitution resolution;

Conclusions

» Standard analytic methods provide insight into the structure of
random Av-terms, in particular substitution resolution;

» Typical computations are in a strong sense lazy. Substitutions
are evaluated non-strictly. In fact, almost all of the
computation content is suspended,

Conclusions

» Standard analytic methods provide insight into the structure of
random Av-terms, in particular substitution resolution;

» Typical computations are in a strong sense lazy. Substitutions
are evaluated non-strictly. In fact, almost all of the
computation content is suspended,

> Substitution primitives have, on average, an uneven
contribution in typical terms. We can exploit that in micro
optimisations of abstract machines.

Future work

> What is the cost distribution of substitution resolution, given a
random term of size n? What primitives are its main
contributors?

Future work

> What is the cost distribution of substitution resolution, given a
random term of size n? What primitives are its main
contributors?

» Does normal-order reduction (think of non-strict functional
programming languages) has a similar, average-case
"distribution shape" as the one for combinatory logic?

Thank you

Thank you for your attention!
(Strict questions and lazy answers)

