# Statistical properties of random lambda-terms in de-Bruijn notation\*

Maciej Bendkowski<sup>3</sup> Olivier Bodini<sup>1</sup> Sergey Dovgal<sup>1,2,4</sup>

<sup>1</sup>Université Paris-13, <sup>2</sup>Université Paris-Diderot <sup>3</sup>Jagiellonian University <sup>4</sup>Moscow Institute of Physics and Technology



CLA-2017, Götenburg, Sweden

\* in progress

イロト イロト イヨト イヨト

Bendkowski, Bodini, D.

Statistics of lambda-terms

Plain and closed lambda-terms

- 1 Problem and Motivation
- 2 Statistics of lambda-terms
- 3 Open problems

200

Problem and Motivation Statistics of lambda-terms

Open problems

Plain and closed lambda-terms

# Outline



2 Statistics of lambda-terms

3 Open problems

Bendkowski, Bodini, D. Statistics of lambda-terms

< □ > < □ > < □ > < □ > <</li>

Ξ

200

Plain and closed lambda-terms

### Example of lambda-term in de-Bruijn notation



#### A closed lambda-term $\lambda x.\lambda y.\lambda z.xz(yz)$

Bendkowski, Bodini, D.

Statistics of lambda-terms

イロト イロト イヨト イヨト

Ξ

Plain and closed lambda-terms

# Grammar of plain lambda-terms



Bendkowski, Bodini, D.

Statistics of lambda-terms

Plain and closed lambda-terms

# Redex and beta-reduction



$$(\lambda n.n \times 2)7 \xrightarrow{\beta} 7 \times 2$$
  
 $\Omega = (\lambda x.xx)(\lambda x.xx)$   
 $\Omega \xrightarrow{\beta} \Omega$ 

< □ > < □ > < □ > < □ > <</li>

Ξ

200

5/31

Bendkowski, Bodini, D. Statistics of lambda-terms

Plain and closed lambda-terms

# Redex and beta-reduction



Ξ

200

Plain and closed lambda-terms

# Main question

Investigate statistical properties of random plain / closed lambda-terms in de-Bruijn notation:

 $\Rightarrow$ 

- number of lambdas, variables, abstractions,. . .
- length to the leftmost outermost redex,
- unary height, longest lambda-run

• . . .

Statistical properties Random generation

Property-based testing

・ロト ・ 同ト ・ ヨト ・ ヨト

Plain and closed lambda-terms

# Size notion of lambda-terms

- [Bodini, Gardy, Gittenberger, Jacquot '13]
   Closed lambda-terms with variable size = 1.
- [David, Grygiel, Kozik, Raffalli, Theyssier, Zaionc '13]
   Closed lambda-terms with variable size = 0.
- [Gittenberger, Gołębiewski '16]
   Natural counting of lambda-terms.

$$|0| = a, \quad |S| = b, \quad |\lambda| = d, \quad |\mathbb{Q}| = d$$

Bendkowski, Bodini, D. Statistics of lambda-terms

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Plain and closed lambda-terms

## Size notion of lambda-terms

- [Bodini, Gardy, Gittenberger, Jacquot '13]
   Closed lambda-terms with variable size = 1.
- [David, Grygiel, Kozik, Raffalli, Theyssier, Zaionc '13]
   Closed lambda-terms with variable size = 0.
- [Gittenberger, Gołębiewski '16]
   Natural counting of lambda-terms

$$|0| = a, \quad |S| = b, \quad |\lambda| = d, \quad |\mathbb{Q}| = d$$

Bendkowski, Bodini, D. Statistics of lambda-terms

Plain and closed lambda-terms

### Size notion of lambda-terms

- [Bodini, Gardy, Gittenberger, Jacquot '13]
   Closed lambda-terms with variable size = 1.
- [David, Grygiel, Kozik, Raffalli, Theyssier, Zaionc '13]
   Closed lambda-terms with variable size = 0.
- [Gittenberger, Gołębiewski '16]
   Natural counting of lambda-terms.

$$|0| = a$$
,  $|S| = b$ ,  $|\lambda| = d$ ,  $|\mathfrak{Q}| = d$ 

Bendkowski, Bodini, D. Statistics of lambda-terms

Plain and closed lambda-terms

# What is "random"?

Thanks to previous talks

- Natural size notion of lambda-term.
   Stay tuned for the definition and comparison to other models.
- Sample lambda-terms of size *n* uniformly (*leitmotif* of this talk, but not the only possibility)
- Sample lambda-terms of size *n* and parameter value *k* uniformly.

Bivariate generating function + tuning of Boltzmann sampler.

Choose any subset of parameters, fix their values and sample at uniform from the desired set.
 [Bodini, Ponty '10]: Newton iteration or asymptotic approximations
 [Bodini, D. '17]: Fast exact tuning in O(log<sup>2</sup>(size) · #vars<sup>7</sup> · (#vars+#eqs)).

イロト イロト イヨト イヨト

Plain and closed lambda-terms

# What is "random"?

Thanks to previous talks

- Natural size notion of lambda-term.
   Stay tuned for the definition and comparison to other models.
- Sample lambda-terms of size *n* uniformly (*leitmotif* of this talk, but not the only possibility)
- Sample lambda-terms of size *n* and parameter value *k* uniformly.

Bivariate generating function + tuning of Boltzmann sampler.

Choose any subset of parameters, fix their values and sample at uniform from the desired set.
 [Bodini, Ponty '10]: Newton iteration or asymptotic approximations
 [Bodini, D. '17]: Fast exact tuning in O(log<sup>2</sup>(size) · #vars<sup>7</sup> · (#vars+#eqs)).

イロト イヨト イヨト イヨト

Plain and closed lambda-terms

# What is "random"?

Thanks to previous talks

- Natural size notion of lambda-term.
   Stay tuned for the definition and comparison to other models.
- Sample lambda-terms of size *n* uniformly (*leitmotif* of this talk, but not the only possibility)
- Sample lambda-terms of size *n* and parameter value *k* uniformly.

Bivariate generating function + tuning of Boltzmann sampler.

Choose any subset of parameters, fix their values and sample at uniform from the desired set.
 [Bodini, Ponty '10]: Newton iteration or asymptotic approximations
 [Bodini, D. '17]: Fast exact tuning in O(log<sup>2</sup>(size) · #vars<sup>7</sup> · (#vars+#eqs)).

イロト イポト イモト イモト 三日

Plain and closed lambda-terms

# What is "random"?

Thanks to previous talks

- Natural size notion of lambda-term.
   Stay tuned for the definition and comparison to other models.
- Sample lambda-terms of size *n* uniformly (*leitmotif* of this talk, but not the only possibility)
- Sample lambda-terms of size *n* and parameter value *k* uniformly.

Bivariate generating function + tuning of Boltzmann sampler.

• Choose *any subset* of parameters, fix their values and sample at uniform from the desired set.

[Bodini, Ponty '10]: Newton iteration or asymptotic approximations [Bodini, D. '17]: Fast exact tuning in  $O(\log^2(\text{size}) \cdot \#\text{vars}^7 \cdot (\#\text{vars}+\#\text{eqs}))$ .

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Problem and Motivation Statistics of lambda-terms

Open problems

Plain and closed lambda-terms

# Closed lambda-terms?



The value of each index shouldn't exceed maximal unary distance to parent lambda.

イロト イポト イヨト イヨト

Bendkowski, Bodini, D.

Statistics of lambda-terms

Э

Plain and closed lambda-terms

### *m*-open lambda-terms

#### **Def.** A lambda-term *T* is *m*-open if $\lambda^m T$ is closed.

- **Observation**. *m* = 0 corresponds to closed terms
- **Def.**  $L_m$  class of *m*-open lambda-terms.
- **Def.**  $L_{\infty}$  class of plain lambda-terms.
- **Observation.**  $L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_{\infty}$

Plain and closed lambda-terms

### *m*-open lambda-terms

Def. A lambda-term *T* is *m*-open if λ<sup>m</sup>T is closed.
 Observation. *m* = 0 corresponds to closed terms
 Def. L<sub>m</sub> - class of *m*-open lambda-terms.
 Def. L<sub>∞</sub> - class of plain lambda-terms.
 Observation. L<sub>0</sub> ⊂ L<sub>1</sub> ⊂ L<sub>2</sub> ⊂ ... ⊂ L<sub>∞</sub>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plain and closed lambda-terms

### *m*-open lambda-terms

- **Def.** A lambda-term *T* is *m*-open if  $\lambda^m T$  is closed.
- **Observation.** m = 0 corresponds to closed terms
- **Def.**  $L_m$  class of *m*-open lambda-terms.
- **Def.**  $L_{\infty}$  class of plain lambda-terms.
- **Observation.**  $L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_{\infty}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plain and closed lambda-terms

### *m*-open lambda-terms

- **Def.** A lambda-term *T* is *m*-open if  $\lambda^m T$  is closed.
- **Observation.** m = 0 corresponds to closed terms
- **Def.**  $L_m$  class of *m*-open lambda-terms.
- **Def.**  $L_{\infty}$  class of plain lambda-terms.

**Observation.**  $L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_{\infty}$ 

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Plain and closed lambda-terms

### *m*-open lambda-terms

- **Def.** A lambda-term *T* is *m*-open if  $\lambda^m T$  is closed.
- **Observation.** m = 0 corresponds to closed terms
- **Def.**  $L_m$  class of *m*-open lambda-terms.
- **Def.**  $L_{\infty}$  class of plain lambda-terms.
- **• Observation.**  $L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_{\infty}$

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Plain and closed lambda-terms

# Closed terms specification



Bendkowski, Bodini, D.

Statistics of lambda-terms

< ロ ト < 回 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < 臣 ト < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > <

Ξ

Plain and closed lambda-terms

### Asymptotic number of plain lambda-terms

**Theorem.** As  $n \to \infty$ , the number of plain lambda-terms of size *n* is asymptotically

$$\frac{b_{\infty} n^{-3/2}}{2\sqrt{\pi}} \left(\frac{1}{\rho}\right)^n, \quad (1-\rho)^3 = 4\rho^2 \ .$$

$$\rho \approx 0.29559$$

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Plain and closed lambda-terms

# Asymptotic number of *m*-open lambda-terms

**Theorem.** As  $n \to \infty$ , the number of plain lambda-terms of size *n* is asymptotically

$$rac{b_\infty n^{-3/2}}{2\sqrt{\pi}} \left(rac{1}{
ho}
ight)^n, \quad (1-
ho)^3 = 4
ho^2 \; \; .$$

**Theorem.** The asymptotic probability that a random plain lambda-term of size *n* is *m*-open tends to some positive constant  $p_m$  as  $n \to \infty$ . This distribution is *computable*.

Plain and closed lambda-terms

## Asymptotic number of *m*-open lambda-terms

**Theorem.** The asymptotic probability that a random plain lambda-term of size *n* is *m*-open tends to some positive constant  $p_m$  as  $n \to \infty$ . This distribution is *computable*.

**Open question.** What is the behaviour of the sequence  $(p_k)_{k=0}^{\infty}$  which is a cumulative distribution function? We only know that  $p_{m+1} \ge p_m$  and  $p_m \to 1$  as  $m \to \infty$ .

Plain and closed lambda-terms

### Asymptotic number of *m*-open lambda-terms

**Theorem.** The asymptotic probability that a random plain lambda-term of size *n* is *m*-open tends to some positive constant  $p_m$  as  $n \to \infty$ . This distribution is *computable*.

**Open question.** What is the behaviour of the sequence  $(p_k)_{k=0}^{\infty}$  which is a cumulative distribution function? We only know that  $p_{m+1} \ge p_m$  and  $p_m \to 1$  as  $m \to \infty$ . The reccurence can be considered either forward or backwards:

$$\left\{egin{array}{ll} a_{m+1} &= a_m/
ho - a_m^2 - rac{1-
ho^m}{1-
ho}, \ b_{m+1} &= b_m/
ho - 2a_m b_m, \ p_m &= b_m/b_\infty \end{array}
ight.$$

Bendkowski, Bodini, D.

Statistics of lambda-terms

Zoo of different statistics Marking techniques

# Outline

1 Problem and Motivation

2 Statistics of lambda-terms

3 Open problems

Bendkowski, Bodini, D. Statistics of lambda-terms

Ξ

200

Zoo of different statistics Marking techniques

# Zoo of different statistics

#### Marking techniques

Number of lambdas

Number of variables

Number of abstractions

Number of redexes

Value of de-Bruijn index

Number of head abstractions

**Extremal techniques** 

Maximal de-Bruijn index value

Unary height of a random term

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Longest lambda-run

Advanced marking

Number of free variables

Number of closed subterms

Expected search time for  $\beta$ -reduction

Number of variables bound to top lambda

Zoo of different statistics Marking techniques

# Marking techniques

#### **Marking techniques**

Number of lambdas

Number of variables

Number of abstractions

Number of redexes

Number of head abstractions

Value of de-Bruijn index

・ロト ・ 四ト ・ ヨト ・ ヨト

# Statistics with gaussian distribution

Theorem.In random plain lambda-term of size n $\mathbb{E}_n(\# \text{ lambdas}) = C_\lambda \cdot n + O(n^{1/2})$ , $\mathbb{E}_n(\# \text{ applications}) = C_{\mathbb{Q}} \cdot n + O(n^{1/2})$ , $\mathbb{E}_n(\# \text{ variables}) = C_N \cdot n + O(n^{1/2})$ , $\mathbb{E}_n(\# \text{ redexes}) = C_{\text{redex}} \cdot n + O(n^{1/2})$ ,

The distribution is asymptotically Gaussian, i.e.

$$\frac{\# - \mathbb{E}^{\#}}{\mathbb{V}^{\#}} \stackrel{d}{\to} \mathcal{N}(0, 1)$$

Bendkowski, Bodini, D. Statistics of lambda-terms

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

# Statistics with gaussian distribution

**Theorem.** In random **closed** lambda-term of size *n* 

- $\blacksquare \qquad \mathbb{E}_n(\# \text{ lambdas}) = C_\lambda \cdot n + O(n^{1/2}) \ ,$
- $\blacksquare \qquad \mathbb{E}_n(\text{\# applications}) = C_{\mathbb{Q}} \cdot n + O(n^{1/2}) ,$
- $\blacksquare \qquad \mathbb{E}_n(\# \text{ variables}) = C_{\mathcal{N}} \cdot n + O(n^{1/2}),$
- $\blacksquare \qquad \mathbb{E}_n(\# \text{ redexes}) = C_{\text{redex}} \cdot n + O(n^{1/2}) ,$

The constants  $C_{\lambda}$ ,  $C_{\mathbb{Q}}$ ,  $C_{\mathcal{N}}$ ,  $C_{\text{redex}}$  are the same as in the plain case.

$$\frac{\# - \mathbb{E}^{\#}}{\mathbb{V}^{\#}} \stackrel{d}{\to} \mathcal{N}(0, 1)$$

Bendkowski, Bodini, D. Statistics of lambda-terms 19/31

イロトスポトメラトメラト・ラ

Zoo of different statistics Marking techniques

# Head abstractions

#### Theorem.

The number of head abstractions in random plain lambda-term has a limiting distribution  $Geom(\rho)$ , i.e.

 $\mathbb{P}(\# \text{ head abstractions } \leq m) = 1 - \rho^{m+1}$ 

The number of head abstractions in random closed lambda-term has cumulative distribution function

$$\mathbb{P}(\# \text{ head abstractions } \leq m) = 1 - \rho^{m+1} \frac{p_{m+1}}{p_0}$$

Bendkowski, Bodini, D. Statistics of lambda-terms

Zoo of different statistics Marking techniques

## Head abstractions

#### Theorem.

The number of head abstractions in random plain lambda-term has a limiting distribution  $Geom(\rho)$ , i.e.

 $\mathbb{P}(\# \text{ head abstractions } \leq m) = 1 - \rho^{m+1}$ 

The number of head abstractions in random closed lambda-term has cumulative distribution function

$$\mathbb{P}(\# \text{ head abstractions } \leq m) = 1 - \rho^{m+1} \frac{p_{m+1}}{p_0}$$

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Zoo of different statistics Marking techniques

# Distribution of de-Bruijn index

#### Theorem.

- In large random plain lambda-terms, the value of de Bruijn index has a limiting distribution which is Geom(ρ).
- In large random **closed** lambda-terms, the value of de Bruijn index has a *computable* limiting distribution.

$$\mathbb{P}_m \sim \frac{\rho^{2m}}{(1-2\rho a_0)\dots(1-2\rho a_{m-1})}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Zoo of different statistics Marking techniques

# Distribution of de-Bruijn index

#### Theorem.

- In large random plain lambda-terms, the value of de Bruijn index has a limiting distribution which is Geom(ρ).
- In large random **closed** lambda-terms, the value of de Bruijn index has a *computable* limiting distribution.

$$\mathbb{P}_m \sim \frac{\rho^{2m}}{(1-2\rho a_0)\dots(1-2\rho a_{m-1})}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Zoo of different statistics Marking techniques

# Advanced marking

#### Advanced marking

Number of free variables

Number of closed subterms

Expected search time for  $\beta$ -reduction

Number of variables bound to head lambda

・ロト ・ 四ト ・ ヨト ・ ヨト

Zoo of different statistics Marking techniques

# Number of free variables

**Theorem.** Inside large plain lambda-terms the number of free variables has a *computable* discrete limiting distribution, in particular, the average number of free variables is a constant

$$\mathbb{E}_n \sim rac{2}{(1-
ho)^3}$$

Bendkowski, Bodini, D. Statistics of lambda-terms

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

San

Zoo of different statistics Marking techniques

# Number of free variables

**Theorem.** Inside large plain lambda-terms the number of free variables has a *computable* discrete limiting distribution, in particular, the average number of free variables is a constant

**"Paradox"** Almost all the variables are bounded but not all the terms are closed!

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Zoo of different statistics Marking techniques

# Number of free variables

**Theorem.** Inside large plain lambda-terms the number of free variables has a *computable* discrete limiting distribution, in particular, the average number of free variables is a constant

**"Paradox"** Almost all the variables are bounded but not all the terms are closed!

**Intuition.** Distribution of db-index is geometric, but unary height is  $O(\sqrt{n})$ . A small proportion of variables makes the term open with positive probability.

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Zoo of different statistics Marking techniques

# Number of closed subterms

**Theorem.** Inside large plain (also closed) lambda-terms the number of closed subterms satisfies

$$\mathbb{E}_n \sim \Theta(n), \quad \mathbb{V}_n \sim \Theta(1)$$

**Open question.** What is the distribution?

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Zoo of different statistics Marking techniques

# Expected search time for $\beta$ -reduction

**Theorem.** Inside large plain lambda-terms the number of steps until first redex discovery has a *computable* discrete limiting distribution, in particular, the expected time is a computable constant.

イロト イロト イヨト イヨト

# Average number of variables bound to top lambda

**Theorem.** Inside large plain lambda-terms choose an abstraction uniformly at random among abstractions at unary height 1.

- $\blacksquare \ \mathbb{E}$  (number of vars bound by top lambda)  $\sim \mathit{C}$
- The same holds for lambda at fixed unary height *m*. The constant is not necessary the same.

#### **Open question 1.**

- Limiting discrete distribution?
- The same holds for closed lambda-terms?

**Open question 2.**\* Number of binding lambdas?

イロト イポト イモト イモト 三日

Zoo of different statistics Marking techniques

#### **Extremal techniques**

Maximal de-Bruijn index value

Unary height of a random term

Longest lambda-run

《口》《圖》《臣》《臣》

Ξ

990

Zoo of different statistics Marking techniques

### Extremal statistics

**Theorem.** In random plain lambda-term of size n  $\blacksquare \mathbb{E}_n(\text{longest lambda-run}) \sim \frac{\log n}{\log(1/\rho)} + O(\log \log n),$   $\blacksquare \mathbb{E}_n(\text{maximal de Bruijn index}) \sim \frac{\log n}{\log(1/\rho)} + O(\log \log n),$   $\blacksquare \mathbb{E}_n(\text{unary height}) \sim \Theta(\sqrt{n}).$ **Conjecture.** The same is true for closed lambda-terms.

イロト イポト イモト イモト 三日

# Outline

1 Problem and Motivation

2 Statistics of lambda-terms

#### 3 Open problems

Bendkowski, Bodini, D. Statistics of lambda-terms 29/31

Ξ

# Open problems

Supposedly hard

#### Combinatorics of lambda-term after beta-reduction procedure

Closed BCI, BCK, λ-l terms.
 Each lambda binds (·) variables

 $\leq 1 \text{ BCI}$  $= 1 \lambda \text{-I}$ > 1 BCK

Riccati PDE, multivariate saddle-point, etc

[Lescanne '17] SwissCheese: keeping a large vector of information to track the number of variables on every level

Number of binding lambdas

Phase transitions with respect to *abcd* size notion

# Open problems

Supposedly hard

Combinatorics of lambda-term after beta-reduction procedure

Closed BCI, BCK, λ-I terms.
 Each lambda binds (·) variables

- $\blacksquare \le 1 \text{ BCI}$
- $= 1 \lambda \mathbf{I}$
- $\blacksquare \ge 1 \text{ BCK}$

Riccati PDE, multivariate saddle-point, etc.

[Lescanne '17] SwissCheese: keeping a large vector of information to track the number of variables on every level

Number of binding lambdas

Phase transitions with respect to *abcd* size notion

A B > A B > A B > B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

# Open problems

Supposedly hard

Combinatorics of lambda-term after beta-reduction procedure

Closed BCI, BCK, λ-I terms.
 Each lambda binds (·) variables

- $\blacksquare \leq 1 \text{ BCI}$
- $= 1 \lambda \mathbf{I}$
- $\blacksquare \ge 1 \text{ BCK}$

Riccati PDE, multivariate saddle-point, etc.

[Lescanne '17] SwissCheese: keeping a large vector of information to track the number of variables on every level

Number of binding lambdas

Phase transitions with respect to *abcd* size notion

Bendkowski, Bodini, D. Statistics of lambda-terms

A B > A B > A B > B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

# Open problems

Supposedly hard

Combinatorics of lambda-term after beta-reduction procedure

Closed BCI, BCK, λ-I terms.
 Each lambda binds (·) variables

- $\blacksquare \leq 1 \text{ BCI}$
- $= 1 \lambda \mathbf{I}$
- $\blacksquare \ge 1 \text{ BCK}$

Riccati PDE, multivariate saddle-point, etc.

[Lescanne '17] SwissCheese: keeping a large vector of information to track the number of variables on every level

- Number of binding lambdas
- Phase transitions with respect to *abcd* size notion

A B > A B > A B > B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

# That's all!

Thank you for your attention!

Bendkowski, Bodini, D. Statistics of lambda-terms 31/31

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

1