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Example of lambda-term in de-Bruijn notation
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A closed lambda-term λx.λy.λz.xz(yz)
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Grammar of plain lambda-terms

L =
λ

L

+
@

L L

+ N

L — plain lambda-term

λ — abstraction

@ — application

N — variable; de Bruijn index ∈ {0, 1, 2, . . .}
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Redex and beta-reduction
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Ω = (λx.xx)(λx.xx)
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Main question

Investigate statistical properties of random plain /
closed lambda-terms in de-Bruijn notation:
• number of lambdas, variables, abstractions,. . .
• length to the le�most outermost redex,
• unary height, longest lambda-run
• . . .

Statistical properties

Random generation
⇒ Property-based testing
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Size notion of lambda-terms

[Bodini, Gardy, Gi�enberger, Jacquot ’13]
Closed lambda-terms with variable size = 1.

[David, Grygiel, Kozik, Ra�alli, Theyssier, Zaionc ’13]
Closed lambda-terms with variable size = 0.

[Gi�enberger, Gołȩbiewski ’16]
Natural counting of lambda-terms.

|0| = a, |S| = b, |λ| = d, |@| = d
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What is “random”?
Thanks to previous talks

Natural size notion of lambda-term.
Stay tuned for the definition and comparison to other models.

Sample lambda-terms of size n uniformly
(leitmotif of this talk, but not the only possibility)

Sample lambda-terms of size n and parameter value k
uniformly.
Bivariate generating function + tuning of Boltzmann sampler.

Choose any subset of parameters, fix their values and sample at
uniform from the desired set.
[Bodini, Ponty ’10]: Newton iteration or asymptotic approximations

[Bodini, D. ’17]: Fast exact tuning in O
(

log2(size) · #vars7 · (#vars+#eqs)
)

.
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Closed lambda-terms?

λ

λ

λ

@

@

3 0

@

1 0

?

The value of each index shouldn’t
exceed maximal unary distance
to parent lambda.
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Plain and closed lambda-terms

m-open lambda-terms

Def. A lambda-term T is m-open if λmT is closed.

Observation. m = 0 corresponds to closed terms

Def. Lm — class of m-open lambda-terms.

Def. L∞ — class of plain lambda-terms.

Observation. L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ L∞
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Closed terms specification

L0 =
λ

L1

+
@

L0 L0

L1 =
λ

L2

+
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L1 L1

+ 1

Lh =
λ

Lh+1

+
@

Lh Lh

+ 1 + 2 + · · · + h
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Asymptotic number of plain lambda-terms

Theorem. As n→∞, the number of plain lambda-terms of size
n is asymptotically

b∞n−3/2

2
√
π

(
1
ρ

)n

, (1− ρ)3 = 4ρ2 .

ρ ≈ 0.29559
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Asymptotic number of m-open lambda-terms

Theorem. As n→∞, the number of plain lambda-terms of size
n is asymptotically

b∞n−3/2

2
√
π

(
1
ρ

)n

, (1− ρ)3 = 4ρ2 .

Theorem. The asymptotic probability that a random plain
lambda-term of size n is m-open tends to some positive constant pm
as n→∞. This distribution is computable.
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Asymptotic number of m-open lambda-terms

Theorem. The asymptotic probability that a random plain
lambda-term of size n is m-open tends to some positive constant pm
as n→∞. This distribution is computable.

Open question. What is the behaviour of the sequence (pk)∞k=0
which is a cumulative distribution function? We only know that
pm+1 ≥ pm and pm → 1 as m→∞.
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Asymptotic number of m-open lambda-terms

Theorem. The asymptotic probability that a random plain
lambda-term of size n is m-open tends to some positive constant pm
as n→∞. This distribution is computable.

Open question. What is the behaviour of the sequence (pk)∞k=0
which is a cumulative distribution function? We only know that
pm+1 ≥ pm and pm → 1 as m→∞. The reccurence can be
considered either forward or backwards:

am+1 = am/ρ− a2
m −

1− ρm

1− ρ
,

bm+1 = bm/ρ− 2ambm,

pm = bm/b∞
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Marking techniques
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Number of variables
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Number of redexes

Value of de-Bruijn index
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Extremal techniques
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Unary height of a random term
Longest lambda-run

Advanced marking
Number of free variables
Number of closed subterms
Expected search time for β-reduction
Number of variables bound to top lambda
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Statistics with gaussian distribution

Theorem. In random plain lambda-term of size n

En(# lambdas) = Cλ · n + O(n1/2) ,

En(# applications) = C@ · n + O(n1/2) ,

En(# variables) = CN · n + O(n1/2) ,

En(# redexes) = Credex · n + O(n1/2) ,

The distribution is asymptotically Gaussian, i.e.

#− E#
V#

d→ N (0, 1)
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Zoo of di�erent statistics
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Statistics with gaussian distribution

Theorem. In random closed lambda-term of size n

En(# lambdas) = Cλ · n + O(n1/2) ,

En(# applications) = C@ · n + O(n1/2) ,

En(# variables) = CN · n + O(n1/2) ,

En(# redexes) = Credex · n + O(n1/2) ,

The constants Cλ, C@, CN , Credex are the same as in the plain case.

#− E#
V#

d→ N (0, 1)
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Head abstractions

Theorem.
The number of head abstractions in random plain lambda-term
has a limiting distribution Geom(ρ), i.e.

P(# head abstractions ≤ m) = 1− ρm+1

The number of head abstractions in random closed
lambda-term has cumulative distribution function

P(# head abstractions ≤ m) = 1− ρm+1 pm+1

p0
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Zoo of di�erent statistics
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Distribution of de-Bruijn index

Theorem.
In large random plain lambda-terms, the value of de Bruijn
index has a limiting distribution which is Geom(ρ).

In large random closed lambda-terms, the value of de Bruijn
index has a computable limiting distribution.

Pm ∼
ρ2m

(1− 2ρa0) . . . (1− 2ρam−1)
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Advanced marking

Advanced marking
Number of free variables
Number of closed subterms
Expected search time for β-reduction
Number of variables bound to head
lambda

Bendkowski, Bodini, D. Statistics of lambda-terms 22 / 31



Problem and Motivation
Statistics of lambda-terms

Open problems

Zoo of di�erent statistics
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Number of free variables

Theorem. Inside large plain lambda-terms the number of free
variables has a computable discrete limiting distribution, in
particular, the average number of free variables is a constant

En ∼
2

(1− ρ)3
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Theorem. Inside large plain lambda-terms the number of free
variables has a computable discrete limiting distribution, in
particular, the average number of free variables is a constant

“Paradox” Almost all the variables are bounded but not all the
terms are closed!
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Number of free variables

Theorem. Inside large plain lambda-terms the number of free
variables has a computable discrete limiting distribution, in
particular, the average number of free variables is a constant

“Paradox” Almost all the variables are bounded but not all the
terms are closed!

Intuition. Distribution of db-index is geometric, but unary
height is O(

√
n). A small proportion of variables makes the term

open with positive probability.
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Zoo of di�erent statistics
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Number of closed subterms

Theorem. Inside large plain (also closed) lambda-terms the
number of closed subterms satisfies

En ∼ Θ(n), Vn ∼ Θ(1)

Open question. What is the distribution?
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Zoo of di�erent statistics
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Expected search time for β-reduction

Theorem. Inside large plain lambda-terms the number of steps
until first redex discovery has a computable discrete limiting
distribution, in particular, the expected time is a computable
constant.
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Average number of variables bound to top lambda

Theorem. Inside large plain lambda-terms choose an abstraction
uniformly at random among abstractions at unary height 1.

E (number of vars bound by top lambda) ∼ C

The same holds for lambda at fixed unary height m. The
constant is not necessary the same.

Open question 1.
Limiting discrete distribution?

The same holds for closed lambda-terms?

Open question 2.∗ Number of binding lambdas?
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Extremal statistics

Theorem. In random plain lambda-term of size n

En(longest lambda-run) ∼ log n
log(1/ρ)

+ O(log log n),

En(maximal de Bruijn index) ∼ log n
log(1/ρ)

+ O(log log n),

En(unary height) ∼ Θ(
√
n).

Conjecture. The same is true for closed lambda-terms.
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Open problems
Supposedly hard

Combinatorics of lambda-term a�er beta-reduction procedure

Closed BCI, BCK, λ-I terms.
Each lambda binds (·) variables

≤ 1 BCI
= 1 λ-I
≥ 1 BCK

Riccati PDE, multivariate saddle-point, etc.

[Lescanne ’17] SwissCheese: keeping a large vector of information to track

the number of variables on every level

Number of binding lambdas

Phase transitions with respect to abcd size notion
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That’s all!

Thank you for your a�ention!

Bendkowski, Bodini, D. Statistics of lambda-terms 31 / 31


