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Phase transition in Erdős–Rényi random graphs

n vertices, m edges,

m =
1

2

n(1 + µn−1/3)

1 “gas” µ→ −∞ : planar graph, trees and unicycles, max

component size O(log n).

2 “liquid” |µ| = O(1) : complex components appear, max

component size O(n2/3).

3 “crystal” µ→ +∞ : non-planar, complex compontnes, max

component size linear O(n).
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2SAT Transition

1 [Bollobás, Borgs, Chayes, Kim, and Wilson ’99]

2SAT Transition

2 [Coppersmith, Gamarnik, Hajaghayi, Sorkin ’03]

MAX 2-SAT Transition

3 [Cooper, Freize, Sorkin ’07]

2SAT with degree sequence constraints
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Figure: Random labeled graph from G26,30,Ω with the set of degree

constraints Ω = {1, 2, 3, 5, 7}.
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Ω — the set of degree constraints

1 Random graphs

m =
1

2

n(1 + µn−1/3)
?⇒ m = αn(1 + µn−1/3)

2 Random 2-CNF

m = 1 · n(1 + µn−1/3)
?⇒ m = 2αn(1 + µn−1/3)

3 How to compute α depending on Ω?
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Exponential generating function

1 Set of degree constraints. Ω = {1, 2, 3, 5, 7}. Can be infinite.

2 Exponential generating function connected to Ω

ω(z) =
∑
d∈Ω

zd

d!
=

z1

1!
+

z2

2!
+

z3

3!
+

z5

5!
+

z7

7!
.

3 Definition of the point α(Ω):
ẑ
ω′′(ẑ)

ω′(ẑ)
= 1,

ẑ
ω′(ẑ)

ω(ẑ)
= 2α

(1)
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= 1,

ẑ
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2-CNF formula and digraph model

Precise statement of the theorem

Theorem Let Fn,m,Ω be random 2-CNF with Ω-degree constraints.

n – number of variables

m – number of clauses

m = αn(1 + µn−1/3)

1 P(Fn,m,Ω is sat) ≥ 1− O(|µ|−3) as µ→ −∞,

2 P(Fn,m,Ω is sat) ≥ Θ(1) as |µ| = O(1),

3 P(Fn,m,Ω is sat) ≥ exp(−Θ(µ3)) as µ→ +∞.
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2-CNF formula and digraph model

Digraph representation and sum-representation of a 2-sat formula

(x1 ∨ x2)(x2 ∨ x3)(x2 ∨ x1)(x4 ∨ x3)(x4 ∨ x2)(x4 ∨ x4)

1

2

3 1

4

3

2

4 +

1

2

3 1

4

3

2

4

=

1

2

3

4

1

2

3

4
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Tools from random graphs

n – number of vertices

m – number of edges

Framework: m = αn, linear dependence.

1 m = (1− ε)αn ←− only trees and unicycles

2 m = αn ←− complex components with positive probability

3 m = (1 + ε)αn ←− probability of fixed excess is

exponentially small
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Theorem ( Regime: m = αn(1 + µn−1/3) )

1 if µ→ −∞, |µ| = O(n1/12), then

P(Gn,m,Ω has only trees and unicycles) = 1−Θ(|µ|−3) ;

2 if |µ| = O(1), i.e. µ is fixed, then

P(Gn,m,Ω has only trees and unicycles)→ constant ∈ (0, 1) ,

P(Gn,m,Ω has a complex part with total excess q)→ constant ∈ (0, 1) ,

3 if µ→ +∞, |µ| = O(n1/12), then

P(Gn,m,Ω has only trees and unicycles) = Θ(e−µ
3/6µ−3/4) ,

P(Gn,m,Ω has a complex part with excess q) = Θ(e−µ
3/6µ3q/2−3/4) .
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Rooted case

T0

T1

{
Ω

Ω−1Ω−1 Ω−1

Ω− k
def
= {d : d + k ∈ Ω}

Example:

Ω = {0, 1, 3, 6}
Ω− 1 = {0, 2, 5}.
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T0
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{
Ω

Ω−1Ω−1 Ω−1
ω(z) =

∑
d∈Ω

zd

d!
=

zd1

d1!
+

zd2

d2!
+ . . . ,

ω′(z) =
∑

d∈Ω

zd−1

(d − 1)!
=
∑

d∈Ω−1

zd

d!

,


T0(z) = zω(T1(z)),

T1(z) = zω′(T1(z)),

T2(z) = zω′′(T1(z)).
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Unrooted case

A variant of dissymmetry theorem:

(Ω)
=

•
•

+◦1
•

•

◦1 +

•1

T0(z)
↑

root deg. 0

=
T1(z)2

2

↑
root deg. 1

+ U(z)
↑

unrooted

⇔ U(z) = T0(z)− T1(z)2

2
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Unicycles with degree constraints

≥ 3

V (z)
↑

unicycles

=
1

2

 log

↑
cycle

1

1− T2(z)
− T2(z)− T2(z)2

2


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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Notion of excess

2 1

3

4

−1

4 1

3

2

0

1

3

4

6

5

2

1

1
2

4

3

2

Excess

def
= # edges - # vertices
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Kernel of a graph

Example: graphs with excess 1

1

1

4

1 2

1

4

1 2

1

6

All possible 3-core multigraphs and their compensation factors.

EGF for all connected bicyclic graphs (Ω = Z≥0):

W (z) =
1

4

T (z)5

(1− T (z))2
+

1

4

T (z)6

(1− T (z))3
+

1

6

T (z)2[3T (z)2 − 2T 3(z)]

(1− T (z))3︸ ︷︷ ︸
inclusion-exclusion

W (z) ∼ 5

24

· 1

(1− T (z))3
near z = e−1
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Kernel of a graph

Example: graphs with excess 1

1

1

4

1 2

1

4

1 2

1

6

All possible 3-core multigraphs and their compensation factors.

EGF for all connected bicyclic graphs (arbitrary Ω):

WΩ(z) =
1

4

T4(z)T2(z)4

(1− T2(z))2
+

1

4

T3(z)2T2(z)4

(1− T2(z))3
+

1

6

T3(z)2[3T2(z)2 − 2T2(z)3]

(1− T2(z))3︸ ︷︷ ︸
inclusion-exclusion

WΩ(z) ∼ (???) · T3(z)2(???)

(1− T2(z))3
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Role of cubic graphs

EGF for all (not necessary connected) complex multigraphs with

excess r ,

WΩ,r(z) ∼ er0
T3(z)2r

(1− T2(z))3r

↑
comes from cubic graphs

, er0 =
(6r)!

2
5r

3
2r(3r)!(2r)!
↑

can be shown combinatorially

.
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Local summary

1 EGF for unrooted trees with degree constraints

2 EGF for unicycles with degree constraints

3 EGF for graphs of fixed excess (main asymptotics)
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Desired probability

Subcritical phase

P (graph g ∈ G(n,m,Ω) consists only of trees and unicycles)

=
# graphs from G(n,m,Ω) whose components are trees and unicycles

# graphs from G(n,m,Ω)
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Number of graphs with degree constraints

1 Ω = Z≥0. Stirling approximation:

n!

(n−m)!
((n

2
)

m

) ∼ √4πnα · 2
mnnmm

n2m(n−m)n−m
×

exp

(
− n +

m
n

+
m2

n2︸ ︷︷ ︸
3/4

)
2 Arbitrary Ω ([de Panafieu, Ramos ’16])

n!

(n−m)!|Gn,m,Ω|
∼
√

4πnα
p

· 2
mnnmm

n2m(n−m)n−m
×

exp

(
− n logω(ẑ) + 2m log ẑ +

1

2

φ0(ẑ) +
1

4

φ2

0
(ẑ)︸ ︷︷ ︸

3/4

)

D., Ravelomanana Shi�ing the phase transition 31 / 40



2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Number of graphs with degree constraints

1 Ω = Z≥0. Stirling approximation:

n!

(n−m)!
((n

2
)

m

) ∼ √4πnα · 2
mnnmm

n2m(n−m)n−m
×

exp

(
− n +

m
n

+
m2

n2︸ ︷︷ ︸
3/4

)
2 Arbitrary Ω ([de Panafieu, Ramos ’16])

n!

(n−m)!|Gn,m,Ω|
∼
√

4πnα
p

· 2
mnnmm

n2m(n−m)n−m
×

exp

(
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(ẑ)︸ ︷︷ ︸

3/4

)

D., Ravelomanana Shi�ing the phase transition 31 / 40



2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Number of graphs with degree constraints

1 Ω = Z≥0. Stirling approximation:

n!

(n−m)!
((n

2
)

m

) ∼ √4πnα · 2
mnnmm

n2m(n−m)n−m
×

exp

(
− n +

m
n

+
m2

n2︸ ︷︷ ︸
3/4

)
2 Arbitrary Ω ([de Panafieu, Ramos ’16])

n!

(n−m)!|Gn,m,Ω|
∼
√

4πnα
p

· 2
mnnmm

n2m(n−m)n−m
×

exp

(
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Example: contour integral for subcritical phase

n!

|Gn,m,Ω|
1

2πi

∮
U(z)n−m

(n−m)!
↑

trees

eV(z)

↑
unicycles

dz
zn+1

= 1− O(µ−3)

near the critical point m = αn:
2α = φ0(ẑ)

def
= ẑ

ω′(ẑ)

ω(ẑ)
,

1 = φ1(ẑ)
def
= ẑ

ω′′(ẑ)

ω′(ẑ)
.
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Contour integral: Erdős–Rényi case

Picture from Flajolet’s book
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Generating functions of ingredients

Desired probability

Contour integrals

Contour integral: graphs with degree constraints

Not a single mountain but dangerous expedition!
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Diameter, circumference and longest path

Planarity

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Diameter, circumference and longest path

Planarity

Diameter, circumference and longest path of complex

component

All of order Θ(n1/3)
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT

Saddle-point method and analytic lemma

Related results

Diameter, circumference and longest path

Planarity

Planarity

Let p(µ) be the probability that Gn,m,Ω is planar.

1 p(µ) = 1−Θ(|µ|−3), as µ→ −∞;

2 p(µ)→ constant ∈ (0, 1), as |µ| = O(1), and p(µ) is

computable;

3 p(µ)→ 0, as µ→ +∞.
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Summary Open problems

Summary

1 Analytic description of phase transition in model with degree

constraints

2

1

2

proof of 2-SAT phase transition

3 Study of distribution of parameters.
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Summary Open problems

Open problems

1 The case 1 /∈ Ω.

2 Upper bound for 2-SAT.

3 Size of the largest component.
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Summary Open problems

That’s all!

Thank you for your a�ention.

Good flight back home.
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