Shifting the thresold of phase transition in 2-SAT and random graphs

Sergey Dovgal ${ }^{1,2,3,4}$ Vlady Ravelomanana ${ }^{2}$

${ }^{1}$ Université Paris-13, ${ }^{2}$ Université Paris-Diderot ${ }^{3}$ Moscow Institute of Physics and Technology ${ }^{4}$ Institute for Information Transmission Problems, Moscow

Acknowledgements: Élie de Panafieu, Fedor Petrov, ipython+sympy+cpp May 19, 2017

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results

2-SAT, phase transitions and degree constraints
Lower bound for 2-SAT
Saddle-point method and analytic lemma
Related results

Phase transition

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results
D., Ravelomanana

Shifting the phase transition

Phase transition in Erdős-Rényi random graphs

n vertices, m edges,

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right)
$$

1 "gas" $\mu \rightarrow-\infty$: planar graph, trees and unicycles, max component size $O(\log n)$.

complex components appear, max

component size $O\left(n^{2 / 3}\right)$.

Phase transition in Erdős-Rényi random graphs

n vertices, m edges,

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right)
$$

1 "gas" $\mu \rightarrow-\infty$: planar graph, trees and unicycles, max component size $O(\log n)$.
2 "liquid" $|\mu|=O(1)$: complex components appear, max component size $O\left(n^{2 / 3}\right)$.
component size linear $O(n)$.

Phase transition in Erdős-Rényi random graphs

$$
n \text { vertices, } m \text { edges, }
$$

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right)
$$

1 "gas" $\mu \rightarrow-\infty$: planar graph, trees and unicycles, max component size $O(\log n)$.
2 "liquid" $|\mu|=O(1)$: complex components appear, max component size $O\left(n^{2 / 3}\right)$.

3 "crystal" $\mu \rightarrow+\infty$: non-planar, complex compontnes, max component size linear $O(n)$.

Phase transition
Shifting the phase transition
Graphs with degree constraints
Experimental results

Phase transition :: largest component, $n=1000$

Phase transition :: planarity, $n=1000$

Phase transition
Shifting the phase transition Graphs with degree constraints
Experimental results

Phase transition :: diameter, $n=1000$

Phase transition :: connected components, $n=1000$

2SAT Transition

1 [Bollobás, Borgs, Chayes, Kim, and Wilson '99] 2SAT Transition

2 [Coppersmith, Gamarnik, Hajaghayi, Sorkin '03] MAX 2-SAT Transition

3 [Cooper, Freize, Sorkin '07]
2SAT with degree sequence constraints

Shifting the phase transition

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right) \Rightarrow m=\alpha n\left(1+\mu n^{-1 / 3}\right)
$$

1 Achlioptas percolation process ($\alpha=0.535$?)
2 Degree sequence models (less detailed information)
3 Degree set constraint :: current talk

Shifting the phase transition

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right) \Rightarrow m=\alpha n\left(1+\mu n^{-1 / 3}\right)
$$

1 Achlioptas percolation process ($\alpha=0.535$?)
2 Degree sequence models (less detailed information)
3 Degree set constraint :: current talk

Shifting the phase transition

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right) \Rightarrow m=\alpha n\left(1+\mu n^{-1 / 3}\right)
$$

1 Achlioptas percolation process ($\alpha=0.535$?)
2 Degree sequence models (less detailed information)
3 Degree set constraint :: current talk

Example of graph with degree constraints

Figure: Random labeled graph from $\mathcal{G}_{26,30, \Omega}$ with the set of degree constraints $\Omega=\{1,2,3,5,7\}$.

Constant of phase transition

Ω - the set of degree constraints

1 Random graphs

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right) \stackrel{?}{\Rightarrow} m=\alpha n\left(1+\mu n^{-1 / 3}\right)
$$

2 Random 2-CNF

$$
m=1 \cdot n\left(1+\mu n^{-1 / 3}\right) \stackrel{?}{\Rightarrow} m=2 \alpha n\left(1+\mu n^{-1 / 3}\right)
$$

3 How to compute α depending on Ω ?

Constant of phase transition

Ω - the set of degree constraints
1 Random graphs

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right) \stackrel{?}{\Rightarrow} m=\alpha n\left(1+\mu n^{-1 / 3}\right)
$$

2 Random 2-CNF

$$
m=1 \cdot n\left(1+\mu n^{-1 / 3}\right) \stackrel{?}{\Rightarrow} m=2 \alpha n\left(1+\mu n^{-1 / 3}\right)
$$

3. How to compute α depending on Ω ?

Constant of phase transition

Ω - the set of degree constraints
1 Random graphs

$$
m=\frac{1}{2} n\left(1+\mu n^{-1 / 3}\right) \stackrel{?}{\Rightarrow} m=\alpha n\left(1+\mu n^{-1 / 3}\right)
$$

2 Random 2-CNF

$$
m=1 \cdot n\left(1+\mu n^{-1 / 3}\right) \stackrel{?}{\Rightarrow} m=2 \alpha n\left(1+\mu n^{-1 / 3}\right)
$$

3 How to compute α depending on Ω ?

Exponential generating function

1 Set of degree constraints. $\Omega=\{1,2,3,5,7\}$. Can be infinite.
2 Exponential generating function connected to Ω

3 Definition of the point $\alpha(\Omega)$:

Exponential generating function

1 Set of degree constraints. $\Omega=\{1,2,3,5,7\}$. Can be infinite.
2 Exponential generating function connected to Ω

$$
\omega(z)=\sum_{d \in \Omega} \frac{z^{d}}{d!}=\frac{z^{1}}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\frac{z^{7}}{7!} .
$$

3 Definition of the point $\alpha(\Omega)$:

Exponential generating function

1 Set of degree constraints. $\Omega=\{1,2,3,5,7\}$. Can be infinite.
2 Exponential generating function connected to Ω

$$
\omega(z)=\sum_{d \in \Omega} \frac{z^{d}}{d!}=\frac{z^{1}}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\frac{z^{7}}{7!}
$$

3 Definition of the point $\alpha(\Omega)$:

$$
\left\{\begin{array}{l}
\widehat{z} \frac{\omega^{\prime \prime}(\widehat{z})}{\omega^{\prime}(\widehat{z})}=1 \tag{1}\\
\widehat{z} \frac{\omega^{\prime}(\widehat{z})}{\omega(\widehat{z})}=2 \alpha
\end{array}\right.
$$

Experimental results

(1/3)

D., Ravelomanana

Shifting the phase transition

Experimental results

(2/3)

D., Ravelomanana

Shifting the phase transition

Experimental results

(3/3)

D., Ravelomanana

Shifting the phase transition

Ipython session :: let's compute the threshold point!

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results
D., Ravelomanana

Shifting the phase transition

Precise statement of the theorem

Theorem Let $F_{n, m, \Omega}$ be random 2-CNF with Ω-degree constraints. n - number of variables
m - number of clauses

$$
m=\alpha n\left(1+\mu n^{-1 / 3}\right)
$$

$1 \mathbb{P}\left(F_{n, m, \Omega}\right.$ is sAT $) \geq 1-O\left(|\mu|^{-3}\right)$ as $\mu \rightarrow-\infty$,
2. $\mathbb{P}\left(F_{n, m, \Omega}\right.$ is SAT $) \geq \Theta(1)$ as $|\mu|=O(1)$,
$3 \mathbb{P}\left(F_{n, m, \Omega}\right.$ is sAT $) \geq \exp \left(-\Theta\left(\mu^{3}\right)\right)$ as $\mu \rightarrow+\infty$.

2-CNF formula and digraph model

Digraph representation and sum-representation of a 2-SAT formula

$$
\left(\bar{x}_{1} \vee \bar{x}_{2}\right)\left(x_{2} \vee x_{3}\right)\left(x_{2} \vee \bar{x}_{1}\right)\left(\bar{x}_{4} \vee \bar{x}_{3}\right)\left(\bar{x}_{4} \vee x_{2}\right)\left(\bar{x}_{4} \vee \bar{x}_{4}\right)
$$

D., Ravelomanana

Shifting the phase transition

Tools from random graphs

n - number of vertices
m - number of edges

Framework: $m=\alpha n$, linear dependence.
$1 m=(1-\varepsilon) \alpha n \longleftarrow$ only trees and unicycles
$2 m=\alpha n \longleftarrow$ complex components with positive probability
$3 m=(1+\varepsilon) \alpha n$ probability of fixed excess is exponentially small

Structural theorem for random graphs

Theorem (Regime: $m=\alpha n\left(1+\mu n^{-1 / 3}\right)$)

$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $)=1-\Theta\left(|\mu|^{-3}\right)$
2 if $|\mu|=O(1)$, i.e. μ is fixed, then
$\mathbb{D}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $) \rightarrow$ constant $\in(0,1)$
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has a complex part with total excess $\left.q\right) \rightarrow$ constant $\in(0,1)$

3 if $\mu \rightarrow+\infty,|\mu|=O\left(n^{1 / 12}\right)$, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $)=\Theta\left(e^{-\mu^{3} / 6} \mu^{-3 / 4}\right)$
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has a complex part with excess $\left.q\right)=\Theta\left(e^{-\mu^{3} / 6} \mu^{3 q / 2-3 / 4}\right)$
D., Ravelomanana

Shifting the phase transition

Structural theorem for random graphs

Theorem (Regime: $m=\alpha n\left(1+\mu n^{-1 / 3}\right)$)
1 if $\mu \rightarrow-\infty,|\mu|=O\left(n^{1 / 12}\right)$, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $)=1-\Theta\left(|\mu|^{-3}\right) ;$
2 if $|\mu|=O(1)$, i.e. μ is fixed, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $) \rightarrow$ constant $\in(0,1)$
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has a complex part with total excess $\left.q\right) \rightarrow$ constant $\in(0,1)$
if $\mu \rightarrow+\infty,|\mu|=O\left(n^{1 / 12}\right)$, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $)=\Theta\left(e^{-\mu^{3} / 6} \mu^{-3 / 4}\right)$
$\mathbb{P}\left(G_{n, m \cap} \cap\right.$ has a complex part with excess $\left.q\right)=\Theta\left(e^{-\mu^{3} / 6} \mu^{3 q / 2-3 / 4}\right)$
D., Ravelomanana

Shifting the phase transition

Structural theorem for random graphs

Theorem (Regime: $m=\alpha n\left(1+\mu n^{-1 / 3}\right)$)
1 if $\mu \rightarrow-\infty,|\mu|=O\left(n^{1 / 12}\right)$, then

$$
\mathbb{P}\left(G_{n, m, \Omega} \text { has only trees and unicycles }\right)=1-\Theta\left(|\mu|^{-3}\right) ;
$$

2 if $|\mu|=O(1)$, i.e. μ is fixed, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $) \rightarrow$ constant $\in(0,1)$,
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has a complex part with total excess $\left.q\right) \rightarrow$ constant $\in(0,1)$,
if $\mu \rightarrow+\infty,|\mu|=O\left(n^{1 / 12}\right)$, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $)=\Theta\left(e^{-\mu^{3} / 6} \mu^{-3 / 4}\right)$
$\mathbb{P}\left(G_{n, m \Omega} \Omega\right.$ has a complex part with excess $\left.q\right)=\Theta\left(e^{-\mu^{3} / 6} \mu^{3 q / 2-3 / 4}\right)$

Structural theorem for random graphs

Theorem (Regime: $m=\alpha n\left(1+\mu n^{-1 / 3}\right)$)
1 if $\mu \rightarrow-\infty,|\mu|=O\left(n^{1 / 12}\right)$, then

$$
\mathbb{P}\left(G_{n, m, \Omega} \text { has only trees and unicycles }\right)=1-\Theta\left(|\mu|^{-3}\right) ;
$$

2 if $|\mu|=O(1)$, i.e. μ is fixed, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $) \rightarrow$ constant $\in(0,1)$,
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has a complex part with total excess $\left.q\right) \rightarrow$ constant $\in(0,1)$,
3 if $\mu \rightarrow+\infty,|\mu|=O\left(n^{1 / 12}\right)$, then
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has only trees and unicycles $)=\Theta\left(e^{-\mu^{3} / 6} \mu^{-3 / 4}\right)$,
$\mathbb{P}\left(G_{n, m, \Omega}\right.$ has a complex part with excess $\left.q\right)=\Theta\left(e^{-\mu^{3} / 6} \mu^{3 q / 2-3 / 4}\right)$.

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results

Trees with degree constraints

Rooted case

$$
\Omega-k \stackrel{\text { def }}{=}\{d: d+k \in \Omega\}
$$

Example:

$$
\begin{gathered}
\Omega=\{0,1,3,6\} \\
\Omega-1=\{0,2,5\} .
\end{gathered}
$$

Trees with degree constraints

Rooted case

$$
\begin{aligned}
& T_{0}\left\{\begin{array}{l}
\left\{\begin{array}{l}
T_{1}\{ \\
\omega(z) \\
\omega^{\prime}(z)
\end{array}=\sum_{d \in \Omega} \frac{z^{d}}{d!}=\frac{z^{d_{1}}}{d_{1}!}+\frac{z^{d_{2}}}{d_{2}!}+\ldots,\right.
\end{array}\right. \\
& \left\{\begin{array}{l}
z_{d \in \Omega} \\
(d-1)!
\end{array}=\sum_{d \in \Omega-1} \frac{z^{d}}{d!},\right.
\end{aligned} \begin{aligned}
& T_{0}(z)=z \omega\left(T_{1}(z)\right) \\
& T_{1}(z)=z \omega^{\prime}\left(T_{1}(z)\right) \\
& T_{2}(z)=z \omega^{\prime \prime}\left(T_{1}(z)\right)
\end{aligned}
$$

Trees with degree constraints

Unrooted case

A variant of dissymmetry theorem:

Generating functions of ingredients Desired probability
Contour integrals

Unicycles with degree constraints

D., Ravelomanana

Shifting the phase transition

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

2-SAT, phase transitions and degree constraints Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Generating functions of ingredients
Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability
Contour integrals

2-core (the core) and 3-core (the kernel)

3-core of a graph

Generating functions of ingredients Desired probability
Contour integrals

Notion of excess

Excess $\stackrel{\text { def }}{=}$ \# edges - \# vertices

Kernel of a graph

Example: graphs with excess 1

All possible 3-core multigraphs and their compensation factors. EGF for all connected bicyclic graphs $\left(\Omega=\mathbb{Z}_{\geq 0}\right)$:

$$
\begin{gathered}
W(z)=\frac{1}{4} \frac{T(z)^{5}}{(1-T(z))^{2}}+\frac{1}{4} \frac{T(z)^{6}}{(1-T(z))^{3}}+\frac{1}{6} \underbrace{\frac{T(z)^{2}\left[3 T(z)^{2}-2 T^{3}(z)\right]}{(1-T(z))^{3}}}_{\text {inclusion-exclusion }} \\
W(z) \sim \frac{5}{24} \cdot \frac{1}{(1-T(z))^{3}} \text { near } z=e^{-1}
\end{gathered}
$$

Kernel of a graph

Example: graphs with excess 1

All possible 3-core multigraphs and their compensation factors. EGF for all connected bicyclic graphs (arbitrary Ω):

$$
\begin{gathered}
W_{\Omega}(z)=\frac{1}{4} \frac{T_{4}(z) T_{2}(z)^{4}}{\left(1-T_{2}(z)\right)^{2}}+\frac{1}{4} \frac{T_{3}(z)^{2} T_{2}(z)^{4}}{\left(1-T_{2}(z)\right)^{3}}+\frac{1}{6} \underbrace{\sim(? ? ?) \cdot{\frac{T_{3}(z)^{2}(? ? ?)}{\left(1-T_{2}(z)\right)^{3}}}^{\text {inclusion-exclusion }}}_{\underbrace{}_{\Omega}(z)} .
\end{gathered}
$$

Role of cubic graphs

EGF for all (not necessary connected) complex multigraphs with excess r,

$$
\begin{aligned}
W_{\Omega, r}(z) \sim e_{r 0} \frac{T_{3}(z)^{2 r}}{\left(1-T_{2}(z)\right)^{3 r}} \quad, \quad e_{r 0}= & \frac{(6 r)!}{2^{5 r} 3^{2 r}(3 r)!(2 r)!} \\
\text { comes from cubic graphs } & \text { can be shown combinatorially }
\end{aligned}
$$

Local summary

1 EGF for unrooted trees with degree constraints

2 EGF for unicycles with degree constraints
3 EGF for graphs of fixed excess (main asymptotics)
D., Ravelomanana

Shifting the phase transition

Local summary

1 EGF for unrooted trees with degree constraints
2 EGF for unicycles with degree constraints
3. EGF for graphs of fixed excess (main asymptotics)

Local summary

1 EGF for unrooted trees with degree constraints
2 EGF for unicycles with degree constraints
3 EGF for graphs of fixed excess (main asymptotics)

Desired probability

Subcritical phase

$\mathbb{P}($ graph $g \in \mathcal{G}(n, m, \Omega)$ consists only of trees and unicycles)
$=\underline{\text { \# graphs from } \mathcal{G}(n, m, \Omega) \text { whose components are trees and unicycles }}$ \# graphs from $\mathcal{G}(n, m, \Omega)$

Number of graphs with degree constraints

$1 \Omega=\mathbb{Z}_{\geq 0}$. Stirling approximation:

$$
\frac{n!}{(n-m)!\left(\begin{array}{c}
n \\
2 \\
m
\end{array}\right)} \sim \sqrt{4 \pi n \alpha} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times
$$

2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$
\exp (-n+\underbrace{\frac{m}{n}+\frac{m^{2}}{n^{2}}}_{3 / 4})
$$

$$
\begin{aligned}
& \frac{n!}{(n-m)!\left|\mathcal{G}_{n, m, \Omega}\right|} \sim \frac{\sqrt{4 \pi n \alpha}}{p} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times \\
& \exp (-n \log \omega(\widehat{z})+2 m \log \widehat{z}+\underbrace{\frac{1}{2} \phi_{0}(\widehat{z})+\frac{1}{4} \phi_{0}^{2}(\widehat{z})}_{3 / 4})
\end{aligned}
$$

Number of graphs with degree constraints

$1 \Omega=\mathbb{Z}_{\geq 0}$. Stirling approximation:

$$
\frac{n!}{(n-m)!\left(\begin{array}{c}
\left(\begin{array}{c}
n \\
2 \\
m
\end{array}\right)
\end{array}\right.} \sim \sqrt{4 \pi n \alpha} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times
$$

2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$
\exp (-n+\underbrace{\frac{m}{n}+\frac{m^{2}}{n^{2}}}_{3 / 4})
$$

$$
\begin{aligned}
& \frac{n!}{(n-m)!\left|\mathcal{G}_{n, m, \Omega}\right|} \sim \frac{\sqrt{4 \pi n \alpha}}{p} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times \\
& \quad \exp (-n \log \omega(\widehat{z})+2 m \log \widehat{z}+\underbrace{\frac{1}{2} \phi_{0}(\widehat{z})+\frac{1}{4} \phi_{0}^{2}(\widehat{z})}_{3 / 4})
\end{aligned}
$$

Number of graphs with degree constraints

$1 \Omega=\mathbb{Z}_{\geq 0}$. Stirling approximation:

$$
\frac{n!}{(n-m)!\left(\begin{array}{c}
n \\
2 \\
m
\end{array}\right)} \sim \sqrt{4 \pi n \alpha} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times
$$

2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$
\exp (-n+\underbrace{\frac{m}{n}+\frac{m^{2}}{n^{2}}}_{3 / 4})
$$

$$
\begin{aligned}
& \frac{n!}{(n-m)!\left|\mathcal{G}_{n, m, \Omega}\right|} \sim \frac{\sqrt{4 \pi n \alpha}}{p} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times \\
& \quad \exp (-n \log \omega(\widehat{z})+2 m \log \widehat{z}+\underbrace{\frac{1}{2} \phi_{0}(\widehat{z})+\frac{1}{4} \phi_{0}^{2}(\widehat{z})}_{3 / 4})
\end{aligned}
$$

Number of graphs with degree constraints

$1 \Omega=\mathbb{Z}_{\geq 0}$. Stirling approximation:

$$
\frac{n!}{(n-m)!\left(\begin{array}{c}
n \\
2 \\
m
\end{array}\right)} \sim \sqrt{4 \pi n \alpha} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times
$$

2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$
\exp (-n+\underbrace{\frac{m}{n}+\frac{m^{2}}{n^{2}}}_{3 / 4})
$$

$$
\begin{aligned}
& \frac{n!}{(n-m)!\left|\mathcal{G}_{n, m, \Omega}\right|} \sim \frac{\sqrt{4 \pi n \alpha}}{p} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times \\
& \exp (-n \log \omega(\widehat{z})+2 m \log \widehat{z}+\underbrace{\frac{1}{2} \phi_{0}(\widehat{z})+\frac{1}{4} \phi_{0}^{2}(\widehat{z})}_{3 / 4})
\end{aligned}
$$

Number of graphs with degree constraints

$1 \Omega=\mathbb{Z}_{\geq 0}$. Stirling approximation:

$$
\frac{n!}{(n-m)!\left(\begin{array}{c}
n \\
2 \\
m
\end{array}\right)} \sim \sqrt{4 \pi n \alpha} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times
$$

2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$
\exp (-n+\underbrace{\frac{m}{n}+\frac{m^{2}}{n^{2}}}_{3 / 4})
$$

$$
\begin{aligned}
& \frac{n!}{(n-m)!\left|\mathcal{G}_{n, m, \Omega}\right|} \sim \frac{\sqrt{4 \pi n \alpha}}{p} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times \\
& \quad \exp (-n \log \omega(\widehat{z})+2 m \log \widehat{z}+\underbrace{\frac{1}{2} \phi_{0}(\widehat{z})+\frac{1}{4} \phi_{0}^{2}(\widehat{z})}_{3 / 4})
\end{aligned}
$$

Number of graphs with degree constraints

$1 \Omega=\mathbb{Z}_{\geq 0}$. Stirling approximation:

$$
\frac{n!}{(n-m)!\left(\begin{array}{c}
n \\
2 \\
m
\end{array}\right)} \sim \sqrt{4 \pi n \alpha} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times
$$

2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$
\exp (-n+\underbrace{\frac{m}{n}+\frac{m^{2}}{n^{2}}}_{3 / 4})
$$

$$
\begin{aligned}
& \frac{n!}{(n-m)!\left|\mathcal{G}_{n, m, \Omega}\right|} \sim \frac{\sqrt{4 \pi n \alpha}}{p} \cdot \frac{2^{m} n^{n} m^{m}}{n^{2 m}(n-m)^{n-m}} \times \\
& \quad \exp (-n \log \omega(\widehat{z})+2 m \log \widehat{z}+\underbrace{\frac{1}{2} \phi_{0}(\widehat{z})+\frac{1}{4} \phi_{0}^{2}(\widehat{z})}_{3 / 4})
\end{aligned}
$$

Example: contour integral for subcritical phase

$$
\frac{n!}{\left|\mathcal{G}_{n, m, \Omega}\right|} \frac{1}{2 \pi i} \oint \frac{U(z)^{n-m}}{(n-m)!} e_{\substack{\uparrow \\ \uparrow \\ \text { trees }}}^{V(z)} \frac{d z}{z^{n+1}}=1-O\left(\mu^{-3}\right)
$$

near the critical point $m=\alpha n$:

$$
\left\{\begin{array}{l}
2 \alpha=\phi_{0}(\widehat{z}) \stackrel{\text { def }}{=} \widehat{z} \frac{\omega^{\prime}(\widehat{z})}{\omega(\widehat{z})} \\
1=\phi_{1}(\widehat{z}) \stackrel{\operatorname{def}}{=} \widehat{z} \frac{\omega^{\prime \prime}(\hat{z})}{\omega^{\prime}(\widehat{z})}
\end{array}\right.
$$

Contour integral: Erdős-Rényi case

Picture from Flajolet's book

Contour integral: graphs with degree constraints

Not a single mountain but dangerous expedition!

Lower bound for 2-SAT
Saddle-point method and analytic lemma

Diameter, circumference and longest path
Planarity

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results

Diameter, circumference and longest path of complex component

All of order $\Theta\left(n^{1 / 3}\right)$

Planarity

Let $p(\mu)$ be the probability that $G_{n, m, \Omega}$ is planar.
$1 p(\mu)=1-\Theta\left(|\mu|^{-3}\right)$, as $\mu \rightarrow-\infty$;
$2 p(\mu) \rightarrow$ constant $\in(0,1)$, as $|\mu|=O(1)$, and $p(\mu)$ is computable;
$3 p(\mu) \rightarrow 0$, as $\mu \rightarrow+\infty$.

Summary

1 Analytic description of phase transition in model with degree constraints

$2 \frac{-}{2}$ proof of 2-SAT phase transition

3 Study of distribution of parameters.

Summary

1 Analytic description of phase transition in model with degree constraints
$2 \frac{1}{2}$ proof of 2-SAT phase transition
Study of distribution of parameters.

Summary

1 Analytic description of phase transition in model with degree constraints
$2 \frac{1}{2}$ proof of 2-SAT phase transition
3 Study of distribution of parameters.

Open problems

1 The case $1 \notin \Omega$.

2 Upper bound for 2-SAT.
3 Size of the largest component.
D., Ravelomanana

Open problems

1 The case $1 \notin \Omega$.
2 Upper bound for 2-SAT.
3 Size of the largest component.
D., Ravelomanana

Open problems

1 The case $1 \notin \Omega$.
2 Upper bound for 2-SAT.
3 Size of the largest component.

That's all!

Thank you for your attention.
Good flight back home.

