Shifting the thresold of phase transition in 2-SAT and random graphs

Sergey Dovgal^{1,2,3,4} Vlady Ravelomanana²

¹Université Paris-13, ²Université Paris-Diderot ³Moscow Institute of Physics and Technology ⁴Institute for Information Transmission Problems, Moscow

Acknowledgements: Élie de Panafieu, Fedor Petrov, **ipython+sympy+cpp** May 19, 2017

D., Ravelomanana

Shifting the phase transition

Outline

- 1 2-SAT, phase transitions and degree constraints
- 2 Lower bound for 2-SAT
- 3 Saddle-point method and analytic lemma
- 4 Related results

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Outline

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

1 2-SAT, phase transitions and degree constraints

- 2 Lower bound for 2-SAT
- 3 Saddle-point method and analytic lemma
- 4 Related results

D., Ravelomanana Shifting the phase transition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3/40

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Phase transition

Shifting the phase transition Graphs with degree constraints Experimental results

Phase transition in Erdős-Rényi random graphs

n vertices, m edges,

$$m = \frac{1}{2}n(1 + \mu n^{-1/3})$$

1 ("gas" $\mu \to -\infty$): planar graph, trees and unicycles, max component size $O(\log n)$.

- 2 "liquid" $|\mu| = O(1)$: complex components appear, max component size $O(n^{2/3})$.
- 3 ("crystal" $\mu \to +\infty$): non-planar, complex components, max component size linear O(n).

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Phase transition

Shifting the phase transition Graphs with degree constraints Experimental results

Phase transition in Erdős-Rényi random graphs

n vertices, m edges,

$$m = \frac{1}{2}n(1 + \mu n^{-1/3})$$

1 ("gas" $\mu \to -\infty$): planar graph, trees and unicycles, max component size $O(\log n)$.

2 "liquid" $|\mu| = O(1)$: complex components appear, max component size $O(n^{2/3})$.

3 ("crystal" $\mu \to +\infty$: non-planar, complex components, max component size linear O(n).

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Phase transition

Shifting the phase transition Graphs with degree constraints Experimental results

Phase transition in Erdős-Rényi random graphs

n vertices, m edges,

$$m = \frac{1}{2}n(1 + \mu n^{-1/3})$$

1 ("gas" $\mu \to -\infty$): planar graph, trees and unicycles, max component size $O(\log n)$.

2 "liquid" $|\mu| = O(1)$: complex components appear, max component size $O(n^{2/3})$.

3 "crystal" $\mu \to +\infty$: non-planar, complex components, max component size linear O(n).

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Phase transition

Shifting the phase transition Graphs with degree constraints Experimental results

Phase transition :: largest component, n = 1000

イロト イロト イヨト イヨト

Phase transition

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Shifting the phase transition Graphs with degree constraints Experimental results

Phase transition :: planarity, n = 1000

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Phase transition

Shifting the phase transition Graphs with degree constraints Experimental results

Phase transition :: diameter, n = 1000

(日)

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Phase transition

Shifting the phase transition Graphs with degree constraints Experimental results

Phase transition :: connected components, n = 1000

D., Ravelomanana Shifting the phase transition

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

2SAT Transition

Phase transition

Shifting the phase transition Graphs with degree constraints Experimental results

- 1 [Bollobás, Borgs, Chayes, Kim, and Wilson '99] 2SAT Transition
- [Coppersmith, Gamarnik, Hajaghayi, Sorkin '03] MAX 2-SAT Transition
- 3 [Cooper, Freize, Sorkin '07]2SAT with degree sequence constraints

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Shifting the phase transition

$$m = \frac{1}{2}n(1 + \mu n^{-1/3}) \Rightarrow m = \alpha n(1 + \mu n^{-1/3})$$

1 Achlioptas percolation process ($\alpha = 0.535$?)

- 2 Degree sequence models (less detailed information)
- 3 Degree set constraint :: current talk

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

10/40

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Shifting the phase transition

$$m = \frac{1}{2}n(1 + \mu n^{-1/3}) \Rightarrow m = \alpha n(1 + \mu n^{-1/3})$$

- 1 Achlioptas percolation process ($\alpha = 0.535$?)
- 2 Degree sequence models (less detailed information)
- 3 Degree set constraint :: current talk

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

10/40

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Shifting the phase transition

$$m = \frac{1}{2}n(1 + \mu n^{-1/3}) \Rightarrow m = \alpha n(1 + \mu n^{-1/3})$$

- 1 Achlioptas percolation process ($\alpha = 0.535$?)
- 2 Degree sequence models (less detailed information)
- 3 Degree set constraint :: current talk

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Example of graph with degree constraints

Figure: Random labeled graph from $\mathcal{G}_{26,30,\Omega}$ with the set of degree constraints $\Omega = \{1, 2, 3, 5, 7\}$.

D., Ravelomanana Shifting the phase transition

* ロ > * 日 > *

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Constant of phase transition

- Ω the set of degree constraints
 - 1 Random graphs

$$m = \frac{1}{2}n(1 + \mu n^{-1/3}) \stackrel{?}{\Rightarrow} m = \alpha n(1 + \mu n^{-1/3})$$

2 Random 2-CNF

$$m = 1 \cdot n(1 + \mu n^{-1/3}) \stackrel{?}{\Rightarrow} m = 2\alpha n(1 + \mu n^{-1/3})$$

³ How to compute α depending on Ω ?

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Constant of phase transition

- Ω the set of degree constraints
 - 1 Random graphs

$$m = \frac{1}{2}n(1 + \mu n^{-1/3}) \stackrel{?}{\Rightarrow} m = \alpha n(1 + \mu n^{-1/3})$$

2 Random 2-CNF

$$m = 1 \cdot n(1 + \mu n^{-1/3}) \stackrel{?}{\Rightarrow} m = 2\alpha n(1 + \mu n^{-1/3})$$

³ How to compute α depending on Ω ?

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Constant of phase transition

- Ω the set of degree constraints
 - 1 Random graphs

$$m = \frac{1}{2}n(1 + \mu n^{-1/3}) \stackrel{?}{\Rightarrow} m = \alpha n(1 + \mu n^{-1/3})$$

2 Random 2-CNF

$$m = 1 \cdot n(1 + \mu n^{-1/3}) \stackrel{?}{\Rightarrow} m = 2\alpha n(1 + \mu n^{-1/3})$$

³ How to compute α depending on Ω ?

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Exponential generating function

1 Set of degree constraints. $\Omega = \{1, 2, 3, 5, 7\}$. Can be infinite.

2 Exponential generating function connected to Ω

$$\omega(z) = \sum_{d \in \Omega} \frac{z^d}{d!} = \frac{z^1}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!}$$

³ Definition of the point $\alpha(\Omega)$:

$$\begin{cases} \widehat{z} \frac{\omega''(\widehat{z})}{\omega'(\widehat{z})} = 1, \\ \widehat{z} \frac{\omega'(\widehat{z})}{\omega(\widehat{z})} = 2\alpha \end{cases}$$
(1)

D., Ravelomanana

Shifting the phase transition

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Exponential generating function

- 1 Set of degree constraints. $\Omega = \{1, 2, 3, 5, 7\}$. Can be infinite.
- 2 Exponential generating function connected to Ω

$$\omega(z) = \sum_{d \in \Omega} \frac{z^d}{d!} = \frac{z^1}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!}$$

³ Definition of the point $\alpha(\Omega)$:

$$\begin{cases} \widehat{z} \frac{\omega''(\widehat{z})}{\omega'(\widehat{z})} = 1, \\ \widehat{z} \frac{\omega'(\widehat{z})}{\omega(\widehat{z})} = 2\alpha \end{cases}$$
(1)

D., Ravelomanana

Shifting the phase transition

Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Exponential generating function

- 1 Set of degree constraints. $\Omega = \{1, 2, 3, 5, 7\}$. Can be infinite.
- 2 Exponential generating function connected to Ω

$$\omega(z) = \sum_{d \in \Omega} \frac{z^d}{d!} = \frac{z^1}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!}$$

³ Definition of the point $\alpha(\Omega)$:

$$\begin{cases} \widehat{z} \frac{\omega''(\widehat{z})}{\omega'(\widehat{z})} = 1, \\ \widehat{z} \frac{\omega'(\widehat{z})}{\omega(\widehat{z})} = 2\alpha \end{cases}$$
(1)

D., Ravelomanana

Shifting the phase transition

+ ロ > < 目 > < 目 > < 目 > < 目 < の < 0</p>

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Experimental results

(1/3)

D., Ravelomanana Shifting the phase transition

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Experimental results

(2/3)

D., Ravelomanana Shifting the phase transition

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Experimental results

(3/3)

Lower bound for 2-SAT Saddle-point method and analytic lemma Related results Phase transition Shifting the phase transition Graphs with degree constraints Experimental results

Ipython session :: let's compute the threshold point!

D., Ravelomanana Shifting the phase transition 15/40

2-CNF formula and digraph model

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results

D., Ravelomanana Shifting the phase transition

2-CNF formula and digraph model

Precise statement of the theorem

Theorem Let $F_{n,m,\Omega}$ be random 2-CNF with Ω -degree constraints. *n* – number of variables *m* – number of clauses

$$m = \alpha n (1 + \mu n^{-1/3})$$

1 $\mathbb{P}(F_{n,m,\Omega} \text{ is sAT}) \geq 1 - O(|\mu|^{-3}) \text{ as } \mu \to -\infty,$ 2 $\mathbb{P}(F_{n,m,\Omega} \text{ is sAT}) \geq \Theta(1) \text{ as } |\mu| = O(1),$ 3 $\mathbb{P}(F_{n,m,\Omega} \text{ is sAT}) \geq \exp(-\Theta(\mu^3)) \text{ as } \mu \to +\infty.$

2-CNF formula and digraph model

2-CNF formula and digraph model

Digraph representation and sum-representation of a 2-sAT formula

$$(\overline{x}_1 \lor \overline{x}_2)(x_2 \lor x_3)(x_2 \lor \overline{x}_1)(\overline{x}_4 \lor \overline{x}_3)(\overline{x}_4 \lor x_2)(\overline{x}_4 \lor \overline{x}_4)$$

비로 서로에서로에서 집에서 이다.

2-CNF formula and digraph model

Tools from random graphs

n – number of vertices m – number of edges

Framework: $m = \alpha n$, linear dependence.

m = (1 - ε)αn ← only trees and unicycles
 m = αn ← complex components with positive probability
 m = (1 + ε)αn ← probability of fixed excess is exponentially small

2-CNF formula and digraph model

Structural theorem for random graphs Theorem (Regime: $m = \alpha n(1 + \mu n^{-1/3})$)

- if $\mu \to -\infty$, $|\mu| = O(n^{1/12})$, then
- 2 *if* $|\mu| = O(1)$, *i.e.* μ *is fixed, then* $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) \rightarrow \text{constant} \in (0, 1)$, $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with total excess } q) \rightarrow \text{constant} \in (0, 1)$,
- 3 if $\mu \to +\infty$, $|\mu| = O(n^{1/12})$, then

 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) = \Theta(e^{-\mu^3/6}\mu^{-3/4}) ,$ $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with excess } q) = \Theta(e^{-\mu^3/6}\mu^{3q/2-3/4}) .$

D., Ravelomanana

Shifting the phase transition

2-CNF formula and digraph model

Structural theorem for random graphs

Theorem (Regime: $m = \alpha n(1 + \mu n^{-1/3}))$

1 if
$$\mu \to -\infty$$
, $|\mu| = O(n^{1/12})$, then
 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) = 1 - \Theta(|\mu|^{-3})$;

2 $if |\mu| = O(1)$, i.e. μ is fixed, then $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) \rightarrow \text{constant} \in (0, 1)$, $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with total excess } q) \rightarrow \text{constant} \in (0, 1)$,

3 if
$$\mu
ightarrow +\infty$$
, $|\mu| = O(n^{1/12})$, then

 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) = \Theta(e^{-\mu^3/6}\mu^{-3/4}) ,$ $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with excess } q) = \Theta(e^{-\mu^3/6}\mu^{3q/2-3/4}) .$

D., Ravelomanana

Shifting the phase transition

2-CNF formula and digraph model

Structural theorem for random graphs

Theorem (Regime: $m = \alpha n(1 + \mu n^{-1/3}))$

1 if
$$\mu \to -\infty$$
, $|\mu| = O(n^{1/12})$, then
 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) = 1 - \Theta(|\mu|^{-3})$;

2 if
$$|\mu| = O(1)$$
, i.e. μ is fixed, then
 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) \rightarrow \text{constant} \in (0, 1)$,
 $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with total excess } q) \rightarrow \text{constant} \in (0, 1)$,

3 *if*
$$\mu \to +\infty$$
, $|\mu| = O(n^{1/12})$, then

 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) = \Theta(e^{-\mu^3/6}\mu^{-3/4})$, $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with excess } q) = \Theta(e^{-\mu^3/6}\mu^{3q/2-3/4})$.

D., Ravelomanana SI

Shifting the phase transition

2-CNF formula and digraph model

Structural theorem for random graphs

Theorem (Regime: $m = \alpha n(1 + \mu n^{-1/3}))$

 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) \to \text{constant} \in (0, 1) ,$ $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with total excess } q) \to \text{constant} \in (0, 1) ,$

3 if
$$\mu \to +\infty$$
, $|\mu| = O(n^{1/12})$, then

 $\mathbb{P}(G_{n,m,\Omega} \text{ has only trees and unicycles}) = \Theta(e^{-\mu^3/6}\mu^{-3/4}) ,$ $\mathbb{P}(G_{n,m,\Omega} \text{ has a complex part with excess } q) = \Theta(e^{-\mu^3/6}\mu^{3q/2-3/4}) .$

Generating functions of ingredients Desired probability Contour integrals

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results

D., Ravelomanana Shifting the phase transition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

21/40

Generating functions of ingredients Desired probability Contour integrals

Trees with degree constraints

Rooted case

D., Ravelomanana

Shifting the phase transition

비로 서로에서로에서 집에서 이다.

Generating functions of ingredients Desired probability Contour integrals

Trees with degree constraints

Rooted case

Shifting the phase transition

비로 서로에서로에서 집에서 이다.
Generating functions of ingredients Desired probability Contour integrals

Trees with degree constraints

Unrooted case

A variant of dissymmetry theorem:

D., Ravelomanana

Shifting the phase transition

비로 서로에서로에서 집에서 이다.

Generating functions of ingredients Desired probability Contour integrals

Unicycles with degree constraints

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Shifting the phase transition

イロト イポト イヨト イヨト

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Shifting the phase transition

イロト イロト イヨト イヨト

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

Generating functions of ingredients Desired probability Contour integrals

2-core (the core) and 3-core (the kernel)

正明 人名卡人的卡人的卡人的卡

Generating functions of ingredients Desired probability Contour integrals

Notion of excess

 $\mathsf{Excess} \stackrel{\mathit{def}}{=} \texttt{\#} \mathsf{edges} \texttt{-} \texttt{\#} \mathsf{vertices}$

D., Ravelomanana Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Kernel of a graph

Example: graphs with excess 1

All possible 3-core multigraphs and their compensation factors. EGF for all connected bicyclic graphs ($\Omega = \mathbb{Z}_{\geq 0}$):

$$W(z) = \frac{1}{4} \frac{T(z)^5}{(1 - T(z))^2} + \frac{1}{4} \frac{T(z)^6}{(1 - T(z))^3} + \frac{1}{6} \underbrace{\frac{T(z)^2 [3T(z)^2 - 2T^3(z)]}{(1 - T(z))^3}}_{\text{inclusion-exclusion}}$$
$$W(z) \sim \frac{5}{24} \cdot \frac{1}{(1 - T(z))^3} \text{ near } z = e^{-1}$$

D., Ravelomanana Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Kernel of a graph

Example: graphs with excess 1

All possible 3-core multigraphs and their compensation factors. EGF for all connected bicyclic graphs (arbitrary Ω):

$$W_{\Omega}(z) = \frac{1}{4} \frac{T_4(z)T_2(z)^4}{(1 - T_2(z))^2} + \frac{1}{4} \frac{T_3(z)^2 T_2(z)^4}{(1 - T_2(z))^3} + \frac{1}{6} \frac{T_3(z)^2 [3T_2(z)^2 - 2T_2(z)^3]}{(1 - T_2(z))^3}$$

$$W_{\Omega}(z) \sim (???) \cdot \frac{T_3(z)^2 (???)}{(1 - T_2(z))^3}$$

inclusion-exclusion

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

٠

28/40

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Role of cubic graphs

EGF for all (not necessary connected) complex multigraphs with excess r,

$$W_{\Omega,r}(z) \sim e_{r0} \quad rac{T_3(z)^{2r}}{(1-T_2(z))^{3r}} \quad , \quad e_{r0} = \quad rac{(6r)!}{2^{5r}3^{2r}(3r)!(2r)!} \ \uparrow \ comes \ ext{from cubic graphs} \quad ext{ can be shown combinatorially}$$

D., Ravelomanana Shifting the phase transition

Local summary

Generating functions of ingredients Desired probability Contour integrals

1 EGF for unrooted trees with degree constraints

- 2 EGF for unicycles with degree constraints
- 3 EGF for graphs of fixed excess (main asymptotics)

Generating functions of ingredients Desired probability Contour integrals

Local summary

- EGF for unrooted trees with degree constraints
 EGF for unicycles with degree constraints
- 3 EGF for graphs of fixed excess (main asymptotics)

Generating functions of ingredients Desired probability Contour integrals

Local summary

- 1 EGF for unrooted trees with degree constraints
- 2 EGF for unicycles with degree constraints
- 3 EGF for graphs of fixed *excess* (main asymptotics)

Generating functions of ingredients Desired probability Contour integrals

Desired probability

Subcritical phase

 $\mathbb{P}(\operatorname{graph} g \in \mathcal{G}(n, m, \Omega) \text{ consists only of trees and unicycles})$

 $= \frac{\# \text{ graphs from } \mathcal{G}(n, m, \Omega) \text{ whose components are trees and unicycles}}{\# \text{ graphs from } \mathcal{G}(n, m, \Omega)}$

Generating functions of ingredients Desired probability Contour integrals

Number of graphs with degree constraints

1 $\Omega = \mathbb{Z}_{\geq 0}$. Stirling approximation:

$$\frac{n!}{(n-m)!\binom{\binom{n}{2}}{m}} \sim \sqrt{4\pi n\alpha} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n + \frac{m}{n} + \frac{m^2}{n^2}\right)$$
2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$\frac{n!}{(n-m)!|\mathcal{G}_{n,m,\Omega}|} \sim \frac{\sqrt{4\pi n\alpha}}{p} \cdot \frac{2^m n^n m^m}{n^{2m}(n-m)^{n-m}} \times \exp\left(-n\log\omega(\widehat{z}) + 2m\log\widehat{z} + \underbrace{\frac{1}{2}\phi_0(\widehat{z}) + \frac{1}{4}\phi_0^2(\widehat{z})}_{3/4}\right)$$

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Number of graphs with degree constraints

1 $\Omega = \mathbb{Z}_{\geq 0}$. Stirling approximation:

$$\frac{n!}{(n-m)!\binom{\binom{n}{2}}{m}} \sim \sqrt{4\pi n\alpha} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n + \frac{m}{\frac{n}{2}} + \frac{m^2}{n^2}\right)$$
2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$\frac{n!}{(n-m)!|\mathcal{G}_{n,m,\Omega}|} \sim \frac{\sqrt{4\pi n\alpha}}{p} \cdot \frac{2^m n^n m^m}{n^{2m}(n-m)^{n-m}} \times \exp\left(-n\log\omega(\widehat{z}) + 2m\log\widehat{z} + \underbrace{\frac{1}{2}\phi_0(\widehat{z}) + \frac{1}{4}\phi_0^2(\widehat{z})}_{3/4}\right)$$

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Number of graphs with degree constraints

1 $\Omega = \mathbb{Z}_{\geq 0}$. Stirling approximation:

$$\frac{n!}{(n-m)!\binom{n}{2}} \sim \sqrt{4\pi n\alpha} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times$$
exp $\left(-n + \frac{m}{n} + \frac{m^2}{n^2} \right)$
2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$\frac{n!}{(n-m)!|\mathcal{G}_{n,m,\Omega}|} \sim \frac{\sqrt{4\pi n\alpha}}{p} \cdot \frac{2^m n^n m^m}{n^{2m}(n-m)^{n-m}} \times \exp\left(-n\log\omega(\widehat{z}) + 2m\log\widehat{z} + \underbrace{\frac{1}{2}\phi_0(\widehat{z}) + \frac{1}{4}\phi_0^2(\widehat{z})}_{3/4}\right)$$

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Number of graphs with degree constraints

1 $\Omega = \mathbb{Z}_{\geq 0}$. Stirling approximation:

$$\frac{n!}{(n-m)!\binom{\binom{n}{2}}{m}} \sim \sqrt{4\pi n\alpha} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n + \frac{m}{\frac{n}{2}} + \frac{m^2}{n^2}\right)$$
2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$\frac{n!}{(n-m)!|\mathcal{G}_{n,m,\Omega}|} \sim \frac{\sqrt{4\pi n\alpha}}{p} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n\log\omega(\widehat{z}) + 2m\log\widehat{z} + \underbrace{\frac{1}{2}\phi_0(\widehat{z}) + \frac{1}{4}\phi_0^2(\widehat{z})}_{3/4}\right)$$

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Number of graphs with degree constraints

1 $\Omega = \mathbb{Z}_{\geq 0}$. Stirling approximation:

$$\frac{n!}{(n-m)!\binom{\binom{n}{2}}{m}} \sim \sqrt{4\pi n\alpha} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n + \frac{m}{\frac{n}{2}} + \frac{m^2}{n^2}\right)$$
2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$\frac{n!}{(n-m)!|\mathcal{G}_{n,m,\Omega}|} \sim \frac{\sqrt{4\pi n\alpha}}{p} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n\log\omega(\widehat{z}) + 2m\log\widehat{z} + \underbrace{\frac{1}{2}\phi_0(\widehat{z}) + \frac{1}{4}\phi_0^2(\widehat{z})}_{3/4}\right)$$

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Number of graphs with degree constraints

1 $\Omega = \mathbb{Z}_{\geq 0}$. Stirling approximation:

$$\frac{n!}{(n-m)!\binom{\binom{n}{2}}{m}} \sim \sqrt{4\pi n\alpha} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n + \frac{m}{\frac{n}{2}} + \frac{m^2}{n^2}\right)$$
2 Arbitrary Ω ([de Panafieu, Ramos '16])

$$\frac{n!}{(n-m)!|\mathcal{G}_{n,m,\Omega}|} \sim \frac{\sqrt{4\pi n\alpha}}{p} \cdot \frac{2^m n^n m^m}{n^{2m} (n-m)^{n-m}} \times \exp\left(-n\log\omega(\widehat{z}) + 2m\log\widehat{z} + \underbrace{\frac{1}{2}\phi_0(\widehat{z}) + \frac{1}{4}\phi_0^2(\widehat{z})}_{3/4}\right)$$

D., Ravelomanana

Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Example: contour integral for subcritical phase

$$\frac{n!}{|\mathcal{G}_{n,m,\Omega}|} \frac{1}{2\pi i} \oint \frac{U(z)^{n-m}}{(n-m)!} \mathop{e^{V(z)}}_{\substack{\uparrow \\ \text{trees}}} \frac{dz}{z^{n+1}} = 1 - O(\mu^{-3})$$

near the critical point $m = \alpha n$:

$$\begin{cases} 2\alpha &= \phi_0(\widehat{z}) \stackrel{def}{=} \widehat{z} \frac{\omega'(\widehat{z})}{\omega(\widehat{z})} \ ,\\ 1 &= \phi_1(\widehat{z}) \stackrel{def}{=} \widehat{z} \frac{\omega''(\widehat{z})}{\omega'(\widehat{z})} \ . \end{cases}$$

D., Ravelomanana Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Contour integral: Erdős-Rényi case

Picture from Flajolet's book

비교 서로 제공 제품 제품 제품

200

33/40

D., Ravelomanana Shifting the phase transition

Generating functions of ingredients Desired probability Contour integrals

Contour integral: graphs with degree constraints

Not a single mountain but dangerous expedition!

D., Ravelomanana Shifting the phase transition

Diameter, circumference and longest path Planarity

Outline

1 2-SAT, phase transitions and degree constraints

2 Lower bound for 2-SAT

3 Saddle-point method and analytic lemma

4 Related results

D., Ravelomanana Shifting the phase transition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

35 / 40
2-SAT, phase transitions and degree constraints Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Diameter, circumference and longest path Planarity

Diameter, circumference and longest path of complex component

All of order $\Theta(n^{1/3})$

D., Ravelomanana

Shifting the phase transition

* ロ > * 日 > *

2-SAT, phase transitions and degree constraints Lower bound for 2-SAT Saddle-point method and analytic lemma Related results

Diameter, circumference and longest path Planarity

Planarity

Let $p(\mu)$ be the probability that $G_{n,m,\Omega}$ is planar.

1
$$p(\mu) = 1 - \Theta(|\mu|^{-3})$$
, as $\mu \to -\infty$;

2 $p(\mu) \rightarrow \text{constant} \in (0, 1)$, as $|\mu| = O(1)$, and $p(\mu)$ is computable;

3
$$p(\mu) \rightarrow 0$$
, as $\mu \rightarrow +\infty$.

+ ロ > < 目 > < 目 > < 目 > < 目 < の < 0</p>

1 Analytic description of phase transition in model with degree constraints

- 2 $\frac{1}{2}$ proof of 2-SAT phase transition
- 3 Study of distribution of parameters.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Analytic description of phase transition in model with degree constraints
- 2 $\frac{1}{2}$ proof of 2-SAT phase transition
- 3 Study of distribution of parameters.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Analytic description of phase transition in model with degree constraints
- 2 $\frac{1}{2}$ proof of 2-SAT phase transition
- 3 Study of distribution of parameters.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Open problems

Open problems

1 The case $1 \notin \Omega$.

- 2 Upper bound for 2-SAT.
- ³ Size of the largest component.

Open problems

Open problems

- 1 The case $1 \notin \Omega$.
- 2 Upper bound for 2-SAT.
- ³ Size of the largest component.

Open problems

Open problems

- 1 The case $1 \notin \Omega$.
- 2 Upper bound for 2-SAT.
- 3 Size of the largest component.

Open problems

That's all!

Thank you for your attention. Good flight back home.

D., Ravelomanana

Shifting the phase transition

< □ > < □ > < Ξ >