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m= 5n(1 + un~13)
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Phase transition in Erd6s—Rényi random graphs

n vertices, m edges,

1
m= 5n(1 + un~13)

1 ‘ “gas” u — —oo ‘ : planar graph, trees and unicycles, max

component size O(log n).

2 ‘ “liquid” |u| = O(1) ‘: complex components appear, max

component size O(n?/?).

3 ‘ “crystal” p — +o00 ‘: non-planar, complex compontnes, max

component size linear O(n).
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Phase transition :: largest component, n = 1000

Largest component size
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Phase transition :: planarity, n = 1000
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Phase transition :: diameter, n = 1000

Graph diameter
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Phase transition :: connected components, n = 1000
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2SAT Transition

il [Bollobas, Borgs, Chayes, Kim, and Wilson ’99]
2SAT Transition

2 [Coppersmith, Gamarnik, Hajaghayi, Sorkin '03]
MAX 2-SAT Transition

3 [Cooper, Freize, Sorkin '07]
2SAT with degree sequence constraints
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1
m= 5n(1 +un ) = m=an(1+ pn/3)

1 Achlioptas percolation process (v = 0.5357)
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Shifting the phase transition

1
m= 5n(1 +un ) = m=an(1+ pn/3)

Phase transition

Shifting the phase transition
Graphs with degree constraints
Experimental results

1 Achlioptas percolation process (v = 0.5357)

2 Degree sequence models (less detailed information)

3 Degree set constraint :: current talk
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Example of graph with degree constraints

Figure: Random labeled graph from Gy 30,0 with the set of degree
constraints Q = {1,2,3,5,7}.
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Constant of phase transition

Q — the set of degree constraints

1 Random graphs
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D., Ravelomanana Shifting the phase transition 12/40



2-SAT, phase transitions and degree constraints Phase transition

Lower bound for 2-SAT Shifting the phase transition
Saddle-point method and analytic lemma Graphs with degree constraints
Related results Experimental results

Constant of phase transition

Q — the set of degree constraints
1 Random graphs

]
m= 5n(1 + un~3) Lm= an(14 pn~'/3)
2 Random 2-CNF

m=1-n(1+4 pun~"7?) L m= 20n(1+ pn~'/3)

D., Ravelomanana Shifting the phase transition 12/40



2-SAT, phase transitions and degree constraints Phase transition

Lower bound for 2-SAT Shifting the phase transition
Saddle-point method and analytic lemma Graphs with degree constraints
Related results Experimental results

Constant of phase transition

Q — the set of degree constraints
1 Random graphs

:
m= 5n(1 + un~3) Lm= an(14 pn~'/3)

2 Random 2-CNF
m=1-n(1+4 pun~"7?) L m= 20n(1+ pn~'/3)

3 How to compute a depending on £2?
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Exponential generating function

1 Set of degree constraints. Q = {1, 2,3,5,7}. Can be infinite.
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Related results

Exponential generating function

1 Set of degree constraints. Q = {1, 2,3,5,7}. Can be infinite.

2 Exponential generating function connected to 2

B A 22 p P
deQ
3 Definition of the point «(Q):
(>
S (f) _1,
72) 1
_W'(Z) (M
— = 2«
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Ipython session :: let’s compute the threshold point!
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2-CNF formula and digraph model

Precise statement of the theorem

Let F,m o be random 2-CNF with €2-degree constraints.
n — number of variables
m — number of clauses

m = an(1+ un~'?)

1 P(Fomg is sAT) > 1= O(|u|~%) as p — —o0,
2 P(Fpma is saT) > ©(1) as |u| = O(1),
3 P(Fymgq is saT) > exp(—0©(u)) as pp — +oc.
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2-CNF formula and digraph model

Digraph representation and sum-representation of a 2-saT formula

(1 Vx2)(xa V x3)(x2 VX1)(Xa V X3) (X4 V Xx2)(Xa V X4)

febeied

®
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Tools from random graphs

Connected components

s

E 08 \
n — number of vertices 5o \
m - number of edges R
2 Bicycles
& o2 Tlicyyc\es
Excess < 10 \
DO} 0 300 400 500 €00 700 800 900

X-axis: Number of edges.

Framework: m = an, linear dependence.

1 m=(1—¢)an <— only trees and unicycles
2 m=an <— complex components with positive probability

3 m=(1+¢)an <— probability of fixed excess is
exponentially small
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Structural theorem for random graphs
Theorem ( Regime: m = an(1+ un~'/3))
1 if = —oo, || = O(n'/1?), then
P(Gy,ma has only trees and unicycles) = 1 — O(|u|%) ;

2 if |u] = O(1), i.e. p is fixed, then
P(Gp,m,q has only trees and unicycles) — constant € (0, 1) ,
P(Gp,m.q has a complex part with total excess q) — constant € (0,1) ,

3 ifp— +oo, || = O(n'/12), then

P(Gp,m,q has only trees and unicycles) = (e /634 |
P(Gp,m,q has a complex part with excess q) = O (e /0392734y
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Trees with degree constraints

Rooted case

To

Ty

Q- kY (d:d+keq)

Example:
Q=1{0,1,3,6}
Q—-1=1{0,2,5}.
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Saddle-point method and analytic lemma L proba !
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Related results c

Trees with degree constraints

Rooted case

To

d di

w(z) =Y 4ea ZI Zl + =+ To(2) = zw(Ta(2)),

w'(2) Zden( T Zdeﬂ—l % Ta(2) = z"(T1(2)).
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Trees with degree constraints

Unrooted case

A variant of dissymmetry theorem:

\ /

= -+
Ti(z
To(z) = 1(2) + Ulz) & U(z)=To(z) -
t T
root deg. 0 root deg 1 unrooted
o =
D., Ravelomanana Shifting the phase transition

A
23/40



2-SAT, phase transitions and degree constra\-ms Generating functions of ingredients
Lower bound for 2-SAT . o
. . Desired probability
Saddle-point method and analytic lemma - .
Contour integrals
Related results ©

Unicycles with degree constraints

2
V(z) = ! logé — T(z) — LG
unicycles cycle
o = = = El= A
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2-core (the core) and 3-core (the kernel)

3-core of a graph
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Notion of excess

@ @ O
oliffe
o A0 WP e

1

d .
Excess ) # edges - # vertices
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2-SAT, phase transitions and degree constraints . . . .
Lower bound for 2-SAT Generating functions of ingredients

Saddle-point method and analytic lemma Desired probability

Related results Contour integrals

Kernel of a graph

Example: graphs with excess 1
1 1 1
4 4 6

All possible 3-core multigraphs and their compensation factors.
EGF for all connected bicyclic graphs (2 = Z>):

W(z) 1 T(z)° N 1 T(2)° N 1 T(2)?[3T(2)* — 2T3(2)]
z) = — - -
4(1-T(2) 4(00-T(2))* 6 (1-T(2))°
5 1 inclusion-exclusion
Wiz~ — ——— =e !
(2) 2 =T nearz =e
o = = =, Z= wae
D., Ravelomanana Shifting the phase transition
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Lower bound for 2-SAT . o
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Saddle-point method and analytic lemma - .
) Contour integrals
Related results h

Kernel of a graph

Example: graphs with excess 1
1 1 1
4 4 6

All possible 3-core multigraphs and their compensation factors.
EGF for all connected bicyclic graphs (arbitrary Q):

Wa(z) = 1 Tu(2) Ta(2)" 1T3(Z)2T2(Z)4 1 T3(2)%[3T2(2)* — 2T2(2)?]

401 -T(2)? 40 -T(2)) 6 (1 - Ta(2))°
T( )2(???) inclusion-exclusion
z L
Wa(z) ~ (277) - 2L
R =B
o = = El= A
D., Ravelomanana Shifting the phase transition
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Lower bound for 2-SAT Desired probability
. . s b /
Saddle-point method and analytic lemma i !

Contour integrals
Related results °

Role of cubic graphs

EGF for all (not necessary connected) complex multigraphs with

excess r,
T3(2)* (6r)!
Worlz) ~ e —22 g = O
2z~ e GG 0T 23 (3r)i(ar)!
) )

comes from cubic graphs can be shown combinatorially

D., Ravelomanana Shifting the phase transition
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Local summary

1 EGF for unrooted trees with degree constraints
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2-SAT, phase transitions and degree constraints . . . .
Lower bound for 2-SAT Generating functions of ingredients

Saddle-point method and analytic lemma Desired probability

Contour integrals
Related results °

Local summary

1 EGF for unrooted trees with degree constraints
2 EGF for unicycles with degree constraints

3 EGF for graphs of fixed excess (main asymptotics)
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Lower bound for 2-SAT o °

Saddle-point method and analytic lemma Desired probability

Contour integrals
Related results °

Desired probability

Subcritical phase

P (graph g € G(n, m, Q) consists only of trees and unicycles)

_ #graphs from G(n, m, Q) whose components are trees and unicycles

N # graphs from G(n, m, Q)
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2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT g:;ﬁ;y“:ﬁg;g;;gm of ingredients
Saddle-point method and analytic lemma g P Y
Contour integrals
Related results °

Number of graphs with degree constraints

1 Q = Z>,. Stirling approximation:

n! 2" m™
—~— ~ Vé4mrno -

eXp<—n+n+':22>

2 Arbitrary € ([de Panafieu, Ramos ’16])

n! V4o 2M " mm
(n—m)Y|Gpmal p  n"(n—m)m

exp ( — nlogw(z) 4+ 2mlogz + %%(?) + %%(/Z\))

X
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2-SAT, phase transitions and degree constraints
Lower bound for 2-SAT Desired probability
. . s b /
Saddle-point method and analytic lemma P !
Contour integrals
Related results

Example: contour integral for subcritical

”!1%U(Z)n_m V() dz
|gn,m,Q‘ 271—' (n — m)| T Zn+1

T unicycles
trees

near the critical point m = an:

20 = do(z) 272

)
1T =¢:(2) Y 32,7(;)

D., Ravelomanana Shifting the phase transition

Generating functions of ingredients

phase

=1-0(u™)
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2-SAT, phase transitions and degree constraints

Generating functions of ingredients
Lower bound for 2-SAT . g funct 8
. . Desired probability
Saddle-point method and analytic lemma .
Contour integrals
Related results

Contour integral: Erd6s—Rényi case

Picture from Flajolet’s book

o =
D., Ravelomanana Shifting the phase transition
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2-SAT, phase transitions and degree constraints

Generating functions of ingredients
Lower bound for 2-SAT . g funct 8
. . Desired probability
Saddle-point method and analytic lemma .
Contour integrals
Related results

Contour integral: graphs with degree constraints

Not a single mountain but dangerous expedition!

[m] = = =
Shifting the phase transition

El= DA
D., Ravelomanana
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2-SAT, phase transitions and degree constraints
Lower bound for 2-SAT

Saddle-point method and analytic lemma
Related results

Outline

4 Related results

D., Ravelomanana

Diameter, circumference and longest path

Planarity

[m]

Shifting the phase transition

F

A
35/40



2-SAT, phase transitions and degree constraints

Lower bound for 2-SAT Diameter, circumference and longest path
Saddle-point method and analytic lemma Planarity
Related results

Diameter, circumference and longest path of complex
component

All of order ©(n'/?)

o F = ar
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2-SAT, phase transitions and degree constraints
Lower bound for 2-SAT Diameter, circumference and longest path
Saddle-point method and analytic lemma Planarity
Related results

Planarity

Let p(11) be the probability that G, , o is planar.

1 p(p) =1-0(|u[7?),as p = —o0;
2 p(u) — constant € (0, 1), as |u| = O(1), and p(u) is
computable;

3 p(pu) = 0,as p — +oo.

D., Ravelomanana Shifting the phase transition
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Summary Open problems

Summary

1 Analytic description of phase transition in model with degree
constraints

D., Ravelomanana Shifting the phase transition 38/40



Summary Open problems

Summary

1 Analytic description of phase transition in model with degree
constraints

]
2 5 proof of 2-SAT phase transition
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Summary Open problems

Summary

1 Analytic description of phase transition in model with degree
constraints

]
2 5 proof of 2-SAT phase transition

3 Study of distribution of parameters.
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Open problems

i The case 1¢ Q.
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Summary Open problems

Open problems

i The case 1¢ Q.
2 Upper bound for 2-SAT.

3 Size of the largest component.
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Thank you for your attention.
Good flight back home.
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