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Motivation

simply-typed closed lambda terms enjoy a number of nice properties, but
the study of their combinatorial properties is notoriously hard
the two most striking things when inferring types:

non-monotonicity: crossing a lambda increases the size of the type, while
crossings an application node trims it down
agreement via unification (with occurs check) between the types of each
variable under a lambda

as a “methodical” work-around: can we unwrap some of new
“observables” that highlight interesting statistical properties?

⇒ going deeper in the structure of the term than what their CF-syntax
reveals

⇒ we need abstraction mechanisms that “forget” properties of the difficult
class (simply-typed closed lambda terms) to reveal equivalence classes
that might be easier to grasp→ k-colored Motzkin skeletons

bijections with simpler things: from binary trees to 2-colored Motzkin trees
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Making lambda terms (somewhat) more colorful

2-colored Motzkin trees: the free algebra generated by the constructors
v/0, l/1, r/1 and a/2
we split lambda constructors into 2 classes:

binding lambdas, l/1 that are reached by at least one de Bruijn index
free lambdas, r/1, that cannot be reached by any de Bruijn index

a side note: free lambda terms will have no say on terms being closed,
but they will impact on which closed terms are simply typed

lambda terms in de Bruijn form: as the free algebra generated by the
constructors l/1, r/1 and a/2 with leaves labeled with natural numbers
(and seen as wrapped with the constructor v/1 when convenient)

2-colored Motzkin skeleton of a lambda term: the tree obtained by
erasing the de Bruijn indices labeling their leaves
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A bijection between 2-colored
Motzkin trees and non-empty

binary trees
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A bijection between 2-colored Motzkin trees and non-empty
binary trees

binary trees: the free algebra generated by e/0 and c/2

bijections between the Catalan family of combinatorial objects and
2-colored Motzkin trees : they exist but they involve artificial constructs
(e.g., depth first search on rose-trees, indirect definition of the mapping)

a reason to find a new one ! In Prolog we need one relation for f and f−1:

cat_mot(c(e,e),v).
cat_mot(c(X,e),l(A)):-X=c(_,_),cat_mot(X,A).
cat_mot(c(e,Y),r(B)):-Y=c(_,_),cat_mot(Y,B).
cat_mot(c(X,Y),a(A,B)):-X=c(_,_),Y=c(_,_),
cat_mot(X,A),
cat_mot(Y,B).

one can include the empty tree e by an arithmetization mechanism that
defines successor and predecessor (e.g., our PPDP’15 paper)
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The 2-Motzkin to non-empty binary trees bijection at work

two “twinned” trees of size 4
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Motzkin skeletons for closed,
affine and linear terms
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Generating 2-Motzkin trees

size of constructors is their arity a=2, l=1, r=1, v=0

in fact, this size definition matches the size of their heap representation

generate all the splits of the size N into 2*A+L+R where A=size of a/2 etc.

define predicates to consume size units as needed:

lDec(c(SL,R,A),c(L,R,A)):-succ(L,SL).
rDec(c(L,SR,A),c(L,R,A)):-succ(R,SR).
aDec(c(L,R,SA),c(L,R,A)):-succ(A,SA).

Proposition
If a Motzkin tree is a skeleton of a closed lambda term then it exists at least
one lambda binder on each path from the leaf to the root.

Paul Tarau (University of North Texas) Lambda-term skeletons and simply-typed terms CLA’2017 9 / 54



Closable and unclosable Motzkin trees

there are slightly more unclosable Motzkin trees than closable ones as
size grows:
closable:
0,1,1,2,5,11,26,65,163,417,1086,2858,7599,20391,55127,150028,410719, ...

unclosable:
1,0,1,2,4,10,25,62,160,418,1102,2940,7912,21444,58507,160544,442748, ...

Possibly easy open problem: what happens to them asymptotically?
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Generating closed affine terms

afLam(N,T):-sum_to(N,Hi,Lo),has_enough_lambdas(Hi),afLinLam(T,[],Hi,Lo).

has_enough_lambdas(c(L,_,A)):-succ(A,L).

afLinLam(v(X),[X])-->[].
afLinLam(l(X,A),Vs)-->lDec,afLinLam(A,[X|Vs]).
afLinLam(r(A),Vs)-->rDec,afLinLam(A,Vs).
afLinLam(a(A,B),Vs)-->aDec,{subset_and_complement_of(Vs,As,Bs)},
afLinLam(A,As), % a lambda cannot go
afLinLam(B,Bs). % to both branches !!!

subset_and_complement_of([],[],[]).
subset_and_complement_of([X|Xs],NewYs,NewZs):-
subset_and_complement_of(Xs,Ys,Zs),
place_element(X,Ys,Zs,NewYs,NewZs).

place_element(X,Ys,Zs,[X|Ys],Zs).
place_element(X,Ys,Zs,Ys,[X|Zs]).
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Linear terms, skeletons of affine and linear terms

linLam(N,T):-N mod 3=:=1,
sum_to(N,Hi,Lo),has_no_unused(Hi),
afLinLam(T,[],Hi,Lo).

has_no_unused(c(L,0,A)):-succ(A,L).

Proposition
If a Motzkin tree with n binary nodes is a skeleton of a linear lambda term, then
it has exactly n+1 unary nodes, with one on each path from the root to its
n+1 leaves.

affine: 0,1,2,3,9,30,81,242,838,2799,9365,33616,122937,449698

linear: 0,1,0,0,5,0,0,60,0,0,1105,0,0,27120,0,0,828250
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K-colored lambda terms and type
inference
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K-colored closed lambda terms

kColoredClosed(N,X):-kColoredClosed(X,[],N,0).

kColoredClosed(v(I),Vs)-->{nth0(I,Vs,V),inc_var(V)}.
kColoredClosed(l(K,A),Vs)-->l, % <= the K-colored lambda binder
kColoredClosed(A,[V|Vs]),
{close_var(V,K)}.

kColoredClosed(a(A,B),Vs)-->a,
kColoredClosed(A,Vs),
kColoredClosed(B,Vs).

l(SX,X):-succ(X,SX). % <= the size-consuming l/2 and a/2 predicates
a-->l,l.

inc_var(X):-var(X),!,X=s(_). % count new variable under the binder
inc_var(s(X)):-inc_var(X).

close_var(X,K):-var(X),!,K=0. % close and convert to ordinary numbers
close_var(s(X),SK):-close_var(X,K),succ(K,SK).
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Examples of k-colored closed lambda terms

3-colored lambda terms of size 3, exhibiting colors 0,1,2.

?- kColoredClosed(3,X).
X = l(0, l(0, l(1, v(0)))) ;
X = l(0, l(1, l(0, v(1)))) ;
X = l(1, l(0, l(0, v(2)))) ;
X = l(2, a(v(0), v(0))) .

in a tree with n application nodes, the counts of k-colored lambdas must
sum up to n+1

⇒ we can generate a binary tree and then decorate it with lambdas
satisfying this constraint

the constraint holds for subtrees, recursively

“open experiment”: can this mechanism reduce the amount of
backtracking and accelerate term generation?
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Two 3-colored lambda trees and their types
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Type inference for k-colored terms

simplyTypedColored(N,X,T):-simplyTypedColored(X,T,[],N,0).

simplyTypedColored(v(X),T,Vss)-->{
member(Vs:T0,Vss),
unify_with_occurs_check(T,T0),
addToBinder(Vs,X)

}.
simplyTypedColored(l(Vs,A),S->T,Vss)-->l,
simplyTypedColored(A,T,[Vs:S|Vss]),
{closeBinder(Vs)}.

simplyTypedColored(a(A,B),T,Vss)-->a,
simplyTypedColored(A,(S->T),Vss),
simplyTypedColored(B,S,Vss).

addToBinder(Ps,P):-var(Ps),!,Ps=[P|_].
addToBinder([_|Ps],P):-addToBinder(Ps,P).

closeBinder(Xs):-append(Xs,[],_),!.
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Counts for closed 2-colored simply-typed terms (i.e., affine)
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Figure: Simply typed closed terms and affine closed terms by increasing sizes
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Type-holding and type-repelling
skeletons
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Skeletons of closed simply-typed terms

toSkels(v(_),v,v).
toSkels(l(Vs,A),l(K,CS),l(S)):-length(Vs,K),toSkels(A,CS,S).
toSkels(a(A,B),a(CA,CB),a(SA,SB)):-toSkels(A,CA,SA),toSkels(B,CB,SB).

generators for skeletons and k-colored skeletons by combining the generator
simplyTypedColored with toSkeleton

genTypedSkels(N,CS,S):-genTypedSkels(N,_,_,CS,S).

genTypedSkels(N,X,T,CS,S):-simplyTypedColored(N,X,T),toSkels(X,CS,S).

typableColSkels(N,CS):-genTypedSkels(N,CS,_).

typableSkels(N,S):-genTypedSkels(N,_,S).
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Are colors growing proportional to the log of their type-sizes?
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Figure: Growth of colors and type sizes
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a most colorful term: reaches the maximum number of colors
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Figure: Colors of a most colorful term vs. its maximum type size
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Does a most colorful term reach max type size?
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Figure: Largest type size of a most colorful term vs. largest type size
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Type-holding and type-repelling Motzkin trees

a type-holding Motzkin tree is one for which it exists a simply-typed
closed term having it as its skeleton

a type-repelling Motzkin tree is one for which no simply-typed closed term
exists having it as its skeleton
to efficiently generate these skeletons we will split the generation of
lambda terms in two stages

the first stage will generate the unification equations that need to be solved
for type inference as well as the ready to be filled out lambda trees
it is convenient to actually generate “on the fly” the code to be executed in
the second stage
the second stage will just use Prolog’s metacall to activate this code
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Generating the executable equation set

we generate a ready to run conjunction of unification constraints

genEqs(N,X,T,Eqs):-genEqs(X,T,[],Eqs,true,N,0).

genEqs(v(I),V,[V0|Vs],Es1,Es2)-->{add_eq(Vs,V0,V,I,Es1,Es2)}.
genEqs(l(A),(S->T),Vs,Es1,Es2)-->l,genEqs(A,T,[S|Vs],Es1,Es2).
genEqs(a(A,B),T,Vs,Es1,Es3)-->a,
genEqs(A,(S->T),Vs,Es1,Es2),
genEqs(B,S,Vs,Es2,Es3).

% solve this equation as it can either succeed once, or fail
add_eq([],V0,V,0,Es,Es):-unify_with_occurs_check(V0,V). % <==
add_eq([V1|Vs],V0,V,I,(el([V0,V1|Vs],V,0,I),Es),Es).

el(I,Vs,V):-el(Vs,V,0,I).

el([V0|_],V,N,N):-unify_with_occurs_check(V0,V).
el([_|Vs],V,N1,N3):-succ(N1,N2),el(Vs,V,N2,N3).
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Efficient generation of type-holding and type-repelling
skeletons

we solve the equations for 2-colored terms to avoid backtracking

Motzkin trees: 1,1,2,4,9,21,51,127,323,835,2188

Type equation trees: 0,1,1,1,5, 9,17, 55,122,289, 828

⇒ we can generate efficiently type-holding and type-repelling skeletons
type repelling: Eqs have no solution (their negation succeeds)
type holding: Eqs have at least one solution (no need to compute all)

untypableSkel(N,Skel):-genEqs(N,X,_,Eqs),not(Eqs),toMotSkel(X,Skel).

typableSkel(N,Skel):-genEqs(N,X,_,Eqs),once(Eqs),toMotSkel(X,Skel).

Paul Tarau (University of North Texas) Lambda-term skeletons and simply-typed terms CLA’2017 26 / 54



Are there uniquely typable skeletons?

we compute efficiently such skeletons by generating the decoration code
Eqs that we constrain to have exactly one solution when activated

uniquelyTypableSkel(N,Skel):-
genEqs(N,X,_,Eqs),succeeds_once(Eqs),Eqs,
toMotSkel(X,Skel).

succeeds_once(G):-findnsols(2,_,G,Sols),!,Sols=[_].

not very many: 0,1,0,0,2,0,1,7,1,13,34,20,100,226,234

open problem: prove that they exist for all sizes
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Growth of uniquely typable skeletons
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Figure: 3 Growth of the number of uniquely typable skeletons
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3 type-holding and 3 type-repelling Motzkin trees
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Growth of the number of skeletons is similar on a log-scale
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Figure: type-holding vs. type-repelling skeletons up to size 20
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Counts of type repelling and type holding Motzkin skeletons

term size type holding skeletons type repelling skeletons
0 0 0
1 1 0
2 1 0
3 1 0
4 5 0
5 9 0
6 17 4
7 55 0
8 122 12
9 289 51
10 828 56
11 2037 275
12 5239 867
13 14578 1736
14 37942 5988
15 101307 17697
16 281041 43583
17 755726 134546
18 2062288 390872
19 5745200 1045248
20 15768207 3102275

Figure: Number of type-holding and type repelling skeletons
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Growth rates of type-holding and type-repelling skeletons
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Figure: The similar growth rates of type-holding and type-repelling skeletons
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Motzkin trees vs. their subset of type-holding skeletons

0 5 10 15

100

101

102

103

104

105

106

size

M
ot

zk
in

tre
es

an
d

ty
pe

-h
ol

di
ng

sk
el

et
on

s
(lo

g.
sc

al
e)

Motzkin trees

type-holding skeletons

Figure: Counts for Motzkin trees and type-holding skeletons for increasing term sizes
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Counts of simply typed closed terms vs. their skeletons
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An application to random lambda
term generators
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An application to random lambda term generators

Rémy’s algorithm: exact size uniformly random binary trees

binary trees - bijection to 2-colored Motzkin trees

decorating 2-colored Motzkin trees to lambda terms
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Revisiting Rémy’s algorithm, declaratively

émy’s original algorithm [7] grows binary trees by grafting new leaves with
equal probability for each node in a given tree

an elegant procedural implementation is given in [?] as algorithm R, by
using destructive assignments in an array representing the tree

we will work with edges instead of nodes and graft new edges at each
step

a two stage algorithm: first sets of edges, then trees represented as
Prolog terms

some “magic with logic variables”

while the algorithm handles terms with thousands of nodes its average
performance is slightly above linear as it takes time proportional to the
size of the set of edges to pick the one to be expanded
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Same code for all-terms and random term generation

initial set of two edges

remy_init([e(left,A,_),e(right,A,_)]).

same code for all-term or random-term generation

except for defining a random choice of the edges or a backtracking one,
by replacing choice_of/2 with its commented out alternative

left_or_right(I,J):-choice_of(2,Dice),left_or_right(Dice,I,J).

choice_of(N,K):-K is random(N).
% choice_of(N,K):-N>0,N1 is N-1,between(0,N1,K).

left_or_right(0,left,right).
left_or_right(1,right,left).
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The grafting step

we can grow a new edge by “splitting an existing edge in two”

grow(e(LR,A,B), e(LR,A,C),e(I,C,_),e(J,C,B)):-left_or_right(I,J).

we add three new edges corresponding to arguments 2, 3 and 4

we remove one, represented as the first argument

contrary to Rémy’s original algorithm, our tree grows “downward” as new
edges are inserted at the target of existing ones
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Finding the spot where we graft

chose the grafting point’s position

remy_step(Es,NewEs,L,NewL):-NewL is L+2,
choice_of(L,Dice),
remy_step1(Dice,Es,NewEs).

perform the graft

remy_step1(0,[U|Xs],[X,Y,Z|Xs]):-grow(U, X,Y,Z).
remy_step1(D,[A|Xs],[A|Ys]):-D>0,
D1 is D-1,
remy_step1(D1,Xs,Ys).
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The iteration to desired size

The predicate remy_loop iterates over remy_step until the desired
2K size is reached, in K steps

we grow by 2 edges at each step, 2K edges total

remy_loop(0,[],N,N).
remy_loop(1,Es,N1,N2):-N2 is N1+2,remy_init(Es).
remy_loop(K,NewEs,N1,N3):-K>1,K1 is K-1,
remy_loop(K1,Es,N1,N2),
remy_step(Es,NewEs,N2,N3).

an example of output

?- remy_loop(2,Edges,0,N).
Edges = [e(left, A, B), e(right, A,C),

e(right,C,D), e(left,C,E)],
N = 4.
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From sets of edges to trees as Prolog terms

the predicate bind_nodes/2 iterates over edges, and for each internal
node it binds it with terms provided by the constructor c/2, left or right,
depending on the type of the edge

bind_nodes([],e).
bind_nodes([X|Xs],Root):-X=e(_,Root,_),
maplist(bind_internal,[X|Xs]),
maplist(bind_leaf,[X|Xs]).

bind an internal node with constructor c/2

bind_internal(e(left,c(A,_),A)).
bind_internal(e(right,c(_,B),B)).

bind a leaf node with the constant v/0

bind_leaf(e(_,_,Leaf)):-Leaf=e->true;true.
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Running the algorithm

the predicate remy_term/2 puts the two main steps together

remy_term(K,B):-remy_loop(K,Es,0,_),bind_nodes(Es,B).

uniformly random generation of a random term with 4 internal nodes and
timings for a large tree:

?- remy_term(4,T).
T = c(c(e, e), c(c(e, e), e)) .
?- time(remy_term(1000,_)).
526,895 inferences, 0.066 CPU in 0.078s (7,995,978 Lips)

we obtain a 2-Motzkin tree generator from the binary tree generator via
the bijection given by the (bi-directional) predicate cat_mot/2

mot_gen(N,M):-N>0,remy_term(N,C),cat_mot(C,M).

this is unlikely to be a uniformly random generator as l/1 nodes cover all
colors except color 0 covered by r/1, and, via the bijection, the total
count is a Catalan number rather than a Motzkin number
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Decorating Motzkin trees to lambda terms

if one wants uniformly random Motzkin trees a Boltzmann sampler or one
based on via holonomic equations can be used

we can mimic (actually in a stronger way) the ideas behind the “natural
size” that favors variables closer to their binders

one can build for each list of binders from a leaf to the root, a distribution
that decays exponentially with each step

nat2probs(0,[]).
nat2probs(N,Ps):-N>0,Sum is 1-1/2 N̂,Last is 1-Sum,Inc is Last/N,
make_probs(N,Inc,1,Ps).

at each step, the probability to continue further is reduced to half

make_probs(0,_,_,[]).
make_probs(K,Inc,P0,[P|Ps]):-K>0,K1 is K-1,P1 is P0/2, P is P1+Inc,
make_probs(K1,Inc,P1,Ps).
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The decoration algorithm

given a Motzkin tree, we decorate each leaf v/0 by turning it into a
natural number representing a de Bruijn index

the value of the de Bruijn index is determined for each leaf independently
by walking up on the chain of lambda binders with decaying probabilities

decorate(v,0,v(X))-->[X]. % free variable
decorate(v,N,K)-->{N>0,nat2probs(N,Ps),walk_probs(Ps,0,K)},[].
decorate(l(X),N,l(Y))-->{N1 is N+1},decorate(X,N1,Y).
decorate(r(X),N,r(Y))-->decorate(X,N,Y).
decorate(a(X,Y),N,a(A,B))-->decorate(X,N,A),decorate(Y,N,B).

Plain lambda terms are generated as follows:

plain_gen(N,T,FreeVars):-mot_gen(N,B),decorate(B,0,T,FreeVars,[]).
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Retrying for closed terms

to ensure that a term is closed, we restarts until the list of free variables is
empty

we also returning the number of retries

closed_gen(N,T,I):- Lim is 100+2 m̂in(N,24),try_closed_gen(Lim,0,I,N,T).

restarts are managed by the predicate try_closed_gen/5, which,
when the decorated term is not closed, tries generating a new term

try_closed_gen(Lim,I,J,N,T):- I<Lim,
( mot_gen(N,B),decorate(B,0,T,[],[])*->J=I
; I1 is I+1, try_closed_gen(Lim,I1,J,N,T)
).
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Example of generation of a random closed term

random closed lambda terms obtained by decorating motzkin trees.

?- closed_gen(10,T,I).
T = l(l(l(r(r(r(a(l(2), 2))))))),
?- closed_gen(2000,_,I).
I = 3 .

with a size definition that counts variables as being of size 0 or 1, these
lambda terms are actually of exactly the same size as their Motzkin tree
skeletons
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Generating random simply typed terms

as before, we decorate the 2-Motzkin trees with de Bruijn indices
we interleave the decoration process with early rejection of types that do
not unify or de Bruijn indices that lead to terms that are not closed
interesting size definitions depend mostly on the weight we attach to the
de Bruijn indices
⇒ we customize the code to “plug-in” a size definition of our choice
in fact, one can use statistics from real programs to mimic any distribution
of the de Bruijn indices

linChoice(K,Ts,I,T0):-K>0,I is random(K),nth0(I,Ts,T0).

expChoice(K,Ts,I,T):-K>0,N is 2^(K-1),
R is random(N),N1 is N>>1,
expChoice1(N1,R,Ts,T,0,I).

expChoice1(N,R,[X|_],Y,I,I):-R>=N,!,Y=X.
expChoice1(N,R,[_|Xs],Y,I1,I3):-N1 is N>>1,succ(I1,I2),
expChoice1(N1,R,Xs,Y,I2,I3).
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The random simply-typed closed lambda term generator

decorateTyped(M,X,T):-decorateTyped(M,X,T,0,[]).

decorateTyped(v,v(I),T,K,Ts):-
linChoice(K,Ts,I,T0), % <= plug-in here the size definition!
unify_with_occurs_check(T,T0).

decorateTyped(l(X),l(A),(S->T),N,Ts):-succ(N,SN),
decorateTyped(X,A,T,SN,[S|Ts]).

decorateTyped(r(X),r(A),(_->T),N,Ts):-
decorateTyped(X,A,T,N,Ts).

decorateTyped(a(X,Y),a(A,B),T,N,Ts):-
decorateTyped(X,A,(S->T),N,Ts),
decorateTyped(Y,B,S,N,Ts).

ranTyped(N,MaxI,MaxJ,X,T,I,J):-
between(1,MaxI,I),
mot_gen(N,Mot),%ppp(I=Mot),
between(1,MaxJ,J),
decorateTyped(Mot,X,T),

!.
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Example of random simply typed term of natural size 8

l

l

r

a

r

r

v

1

v

0

→

→

→

UV

→

U→

→

XZ

Y

X

steps(1*2) natsize(8)+heapsize(7)+tsize(6)
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Running the random simply-typed term generator

Can we generate terms of natural size 1000?

?- ranTyped(400).
% 11,982,837 inferences, 1.170 CPU in 1.181 seconds (99% CPU, 10243256 Lips)

... big boring term here ...

steps(64*43)
natsize(486)+heapsize(399)+tsize(146)

?- ranTyped(400).
% 122,666,661 inferences, 11.919 CPU in 12.005 seconds (99% CPU, 10291572 Lips)

... big boring term here ...

steps(644*10)
natsize(1162)+heapsize(399)+tsize(21)
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Conclusions

we have introduced abstraction mechanisms that “forget” properties of
the difficult class of simply-typed lambda terms, to reveal interesting
structural properties

k-colored terms subsume linear and affine terms and are likely to be
usable to fine-tune random generators to more closely match
color-distributions in lambda terms representing real programs

type-repelling skeletons might be useful for efficient algorithms built on
avoiding all “small” type-repelling skeletons stored in a database

the new bijection between binary terms and 2-colored Motzkin terms and
the generation algorithms centered on the distinction between free and
binding lambda constructors has been useful to accelerate generation of
affine and linear terms and random terms via Rémy’s algorithm

the tools used: a language as simple as (mostly) Horn Clause Prolog can
handle elegantly combinatorial generation problems when the synergy
between sound unification, backtracking and DCGs is put at work
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Questions?

slides: http://www.cse.unt.edu/~tarau/research/2017/slides_cla17.pdf

draft paper: http://www.cse.unt.edu/~tarau/research/2017/repel.pdf

code: http://www.cse.unt.edu/~tarau/research/2017/repel.pro

Picasso:
Questions tempt you to tell lies, particularly when there is no answer.
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