Enumerating Lambda Terms By Weighted Length of Their de Bruijn Representation

Bernhard Gittenberger

joint work with Olivier Bodini and Zbigniew Gołębiewski

Institut für Diskrete Mathematik und Geometrie
Technische Universität Wien
and
LIPN Department of Computer Science
Université Paris Nord Wrocław University of Technology

Definition of lambda terms

$$
T::=x|\lambda x . T| T * T \quad \rightarrow \quad T::=S^{n} 0|\lambda T| T * T
$$

$\lambda x . T$: abstraction, unary node $(T * T)$: application, binary node $\lambda y .((\lambda x . x) *(\lambda x . y)) \rightarrow \lambda(\lambda 1 * \lambda 2) \rightarrow \lambda((\lambda 0) *(\lambda(S 0)))$

Definition of lambda terms

m-open lambda terms

General notion of size

$$
\begin{aligned}
|0| & =a \\
|S| & =b \\
|\lambda M| & =|M|+c \\
|M N| & =|M|+|N|+d
\end{aligned}
$$

Assumptions

(1) a, b, c, d are nonnegative integers,
(2) $a+d \geq 1$,
(3) $b, c \geq 1$,
(4) $\operatorname{gcd}(b, c, a+d)=1$.

General notion of size

size: $2 a+b+3 c+d$

General notion of size

- natural counting (Bendkowski, Grygiel, Lescanne, Zaionc 2015):

$$
a=b=c=d=1
$$

- less natural counting (Bendkowski, Grygiel, Lescanne, Zaionc 2015): $a=0, b=c=1, d=2$
- binary lambda calculus (Tromp 2006): $b=1, a=c=d=2$

Combinatorial specifications and generating functions

Let $\left(\mathcal{A},|\cdot|_{\mathcal{A}}\right),\left(\mathcal{B},|\cdot|_{\mathcal{B}}\right)$ be comb. structures with generating functions

$$
\begin{aligned}
& A(z)=\sum_{n \geq 0} a_{n} z^{n}=\sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text { and } \\
& B(z)=\sum_{n \geq 0} b_{n} z^{n}=\sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}} .
\end{aligned}
$$

Combinatorial specifications and generating functions

Let $\left(\mathcal{A},|\cdot|_{\mathcal{A}}\right),\left(\mathcal{B},|\cdot|_{\mathcal{B}}\right)$ be comb. structures with generating functions

$$
\begin{aligned}
& A(z)=\sum_{n \geq 0} a_{n} z^{n}=\sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text { and } \\
& B(z)=\sum_{n \geq 0} b_{n} z^{n}=\sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}} .
\end{aligned}
$$

- If $\mathcal{A} \cap \mathcal{B}=\emptyset$ and $\mathcal{C}=\mathcal{A} \cup \mathcal{B}$ with

$$
|x|_{\mathcal{C}}:= \begin{cases}|x|_{\mathcal{A}} & \text { if } x \in \mathcal{A} \\ |x|_{\mathcal{B}} & \text { if } x \in \mathcal{B}\end{cases}
$$

then $c_{n}=a_{n}+b_{n}$ and $C(z)=A(z)+B(z)$.

Combinatorial specifications and generating functions

Let $\left(\mathcal{A},|\cdot|_{\mathcal{A}}\right),\left(\mathcal{B},|\cdot|_{\mathcal{B}}\right)$ be comb. structures with generating functions

$$
\begin{aligned}
& A(z)=\sum_{n \geq 0} a_{n} z^{n}=\sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text { and } \\
& B(z)=\sum_{n \geq 0} b_{n} z^{n}=\sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}} .
\end{aligned}
$$

- If $\mathcal{A} \cap \mathcal{B}=\emptyset$ and $\mathcal{C}=\mathcal{A} \cup \mathcal{B}$ with

$$
|x|_{\mathcal{C}}:= \begin{cases}|x|_{\mathcal{A}} & \text { if } x \in \mathcal{A} \\ |x|_{\mathcal{B}} & \text { if } x \in \mathcal{B}\end{cases}
$$

then $c_{n}=a_{n}+b_{n}$ and $C(z)=A(z)+B(z)$.

- If $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ and $|(a, b)|_{\mathcal{C}}=|a|_{\mathcal{A}}+|b|_{\mathcal{B}}$ then $C(z)=A(z) \cdot B(z)$.

Combinatorial specifications and generating functions

Let $\left(\mathcal{A},|\cdot|_{\mathcal{A}}\right),\left(\mathcal{B},|\cdot|_{\mathcal{B}}\right)$ be comb. structures with generating functions

$$
\begin{aligned}
& A(z)=\sum_{n \geq 0} a_{n} z^{n}=\sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text { and } \\
& B(z)=\sum_{n \geq 0} b_{n} z^{n}=\sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}} .
\end{aligned}
$$

- If $\mathcal{A} \cap \mathcal{B}=\emptyset$ and $\mathcal{C}=\mathcal{A} \cup \mathcal{B}$ with

$$
|x|_{\mathcal{C}}:= \begin{cases}|x|_{\mathcal{A}} & \text { if } x \in \mathcal{A} \\ |x|_{\mathcal{B}} & \text { if } x \in \mathcal{B}\end{cases}
$$

then $c_{n}=a_{n}+b_{n}$ and $C(z)=A(z)+B(z)$.

- If $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ and $|(a, b)|_{\mathcal{C}}=|a|_{\mathcal{A}}+|b|_{\mathcal{B}}$ then $C(z)=A(z) \cdot B(z)$.
- If $\mathcal{C}=\operatorname{SEQ}(A)$ and $\left|\left(a_{1}, \ldots, a_{k}\right)\right|_{\mathcal{C}}=\sum_{i=1}^{k}\left|a_{i}\right|_{\mathcal{A}}$ then $C(z)=\frac{1}{1-A(z)}$.

Combinatorial specification and lambda terms

$$
\mathcal{L}=\operatorname{SEQ}(\mathcal{S}) \times \mathcal{Z} \cup \mathcal{U} \times \mathcal{L} \cup \mathcal{A} \times \mathcal{L}^{2}
$$

- \mathcal{L} - the class of lambda terms,
- \mathcal{Z} - the class of zeros,
- \mathcal{S} - the class of successors,
- \mathcal{U} - the class of abstractions,
- \mathcal{A} - the class of applications.

Combinatorial specification and lambda terms

$$
\mathcal{L}=\operatorname{SEQ}(\mathcal{S}) \times \mathcal{Z} \cup \mathcal{U} \times \mathcal{L} \cup \mathcal{A} \times \mathcal{L}^{2}
$$

- \mathcal{L} - the class of lambda terms,
- \mathcal{Z} - the class of zeros,
- \mathcal{S} - the class of successors,
- \mathcal{U} - the class of abstractions,
- \mathcal{A} - the class of applications.

Remark: $\mathcal{Z}, \mathcal{S}, \mathcal{U}, \mathcal{A}$ contain only one atomic object.

Combinatorial specification and lambda terms

$$
\mathcal{L}=\operatorname{SEQ}(\mathcal{S}) \times \mathcal{Z} \cup \mathcal{U} \times \mathcal{L} \cup \mathcal{A} \times \mathcal{L}^{2}
$$

- \mathcal{L} - the class of lambda terms,
- \mathcal{Z} - the class of zeros,
- \mathcal{S} - the class of successors,
- \mathcal{U} - the class of abstractions,
- \mathcal{A} - the class of applications.

Remark: $\mathcal{Z}, \mathcal{S}, \mathcal{U}, \mathcal{A}$ contain only one atomic object.
Thus

$$
L(z)=z^{a} \sum_{j=0}^{\infty} z^{b j}+z^{c} L(z)+z^{d} L(z)^{2},
$$

$\left[z^{n}\right] L(z)=$ number of lambda terms of size n.

m-open terms and functional equations

Let

$$
\mathcal{L}_{m}=\operatorname{SEQ}_{\leq m-1}(\mathcal{S}) \times \mathcal{Z} \cup \mathcal{U} \times \mathcal{L}_{m+1} \cup \mathcal{A} \times \mathcal{L}_{m}^{2}
$$

m-open terms and functional equations

Let

$$
\mathcal{L}_{m}=\operatorname{SEQ}_{\leq m-1}(\mathcal{S}) \times \mathcal{Z} \cup \mathcal{U} \times \mathcal{L}_{m+1} \cup \mathcal{A} \times \mathcal{L}_{m}^{2}
$$

- $L_{m, n}$ - the number of m-open lambda terms of size n,
- $L_{m}(z)=\sum_{n \geq 0} L_{m, n} z^{n} \quad\left(\left[z^{n}\right] L_{m}(z)=L_{m, n}\right)$

$$
L_{m}(z)=z^{a} \sum_{j=0}^{m-1} z^{b j}+z^{c} L_{m+1}(z)+z^{d} L_{m}(z)^{2}
$$

m-open terms and functional equations

Let

$$
\mathcal{L}_{m}=\operatorname{SEQ}_{\leq m-1}(\mathcal{S}) \times \mathcal{Z} \cup \mathcal{U} \times \mathcal{L}_{m+1} \cup \mathcal{A} \times \mathcal{L}_{m}^{2}
$$

- $L_{m, n}$ - the number of m-open lambda terms of size n,
- $L_{m}(z)=\sum_{n \geq 0} L_{m, n} z^{n} \quad\left(\left[z^{n}\right] L_{m}(z)=L_{m, n}\right)$

$$
L_{m}(z)=z^{a} \sum_{j=0}^{m-1} z^{b j}+z^{c} L_{m+1}(z)+z^{d} L_{m}(z)^{2}
$$

- $L_{0}(z)$ is the gen. fun. of the set \mathcal{L}_{0} of closed lambda terms,
- $L_{\infty}(z)$ is the gen. fun. of the set $\mathcal{L}_{\infty}=\mathcal{L}$ of all lambda terms.

$L_{\infty}(z)$ - all terms

Solving

$$
L_{\infty}(z)=z^{a} \sum_{j=0}^{\infty} z^{b j}+z^{c} L_{\infty}(z)+z^{d} L_{\infty}(z)^{2} .
$$

we get

$$
L_{\infty}(z)=\frac{1-z^{c}-\sqrt{\left(1-z^{c}\right)^{2}-\frac{4 z^{a+d}}{1-z^{b}}}}{2 z^{d}},
$$

which defines an analytic function in a neighbourhood of $z=0$.
$L_{\infty}(z)-$ all terms
Solving

$$
L_{\infty}(z)=z^{a} \sum_{j=0}^{\infty} z^{b j}+z^{c} L_{\infty}(z)+z^{d} L_{\infty}(z)^{2} .
$$

we get

$$
L_{\infty}(z)=\frac{1-z^{c}-\sqrt{\left(1-z^{c}\right)^{2}-\frac{4 z^{a+d}}{1-z^{b}}}}{2 z^{d}}
$$

which defines an analytic function in a neighbourhood of $z=0$.
Theorem (Flajolet, Odlyzko 1990)
If $\alpha \in \mathbb{R} \backslash \mathbb{N}$ and $f(z) \sim\left(1-\frac{z}{\rho}\right)^{\alpha}$ as $z \rightarrow \rho$ within a Δ-domain, then

$$
\left[z^{n}\right] f(z) \sim \frac{n^{-\alpha-1}}{\Gamma(-\alpha)} \rho^{-n}, \text { as } n \rightarrow \infty
$$

$L_{\infty}(z)$ - all terms

Proposition

Let $\rho=$ RootOf $\left\{\left(1-z^{b}\right)\left(1-z^{c}\right)^{2}-4 z^{a+d}\right\}$. Then

$$
L_{\infty}(z)=a_{\infty}-b_{\infty} \sqrt{1-\frac{z}{\rho}}+\mathrm{O}\left(\left|1-\frac{z}{\rho}\right|\right),
$$

for some constants $a_{\infty}>0, b_{\infty}>0$ that depend on a, b, c, d.
$L_{\infty}(z)-$ all terms

Proposition
Let $\rho=$ RootOf $\left\{\left(1-z^{b}\right)\left(1-z^{c}\right)^{2}-4 z^{a+d}\right\}$. Then

$$
L_{\infty}(z)=a_{\infty}-b_{\infty} \sqrt{1-\frac{z}{\rho}}+\mathrm{O}\left(\left|1-\frac{z}{\rho}\right|\right),
$$

for some constants $a_{\infty}>0, b_{\infty}>0$ that depend on a, b, c, d.
Corollary
The coefficients of $L_{\infty}(z)$ satisfy

$$
L_{\infty, n} \sim \frac{b_{\infty}}{2 \sqrt{\pi}} \rho^{-n} n^{-3 / 2}, \text { as } n \rightarrow \infty .
$$

Theorem (G., Gołębiewski 2016)
Let $\rho=\operatorname{RootOf}\left\{\left(1-z^{b}\right)\left(1-z^{c}\right)^{2}-4 z^{a+d}\right\}$. Then there exist positive constants \underline{C} and \bar{C} (depending on a, b, c, d and m) such that the number of m-open lambda terms of size n satisfies

$$
\liminf _{n \rightarrow \infty} \frac{L_{m, n}}{\underline{C} n^{-\frac{3}{2}} \rho^{-n}} \geq 1 \text { and } \quad \limsup _{n \rightarrow \infty} \frac{L_{m, n}}{\bar{C} n^{-\frac{3}{2}} \rho^{-n}} \leq 1,
$$

Remark

In case of given a, b, c, d and m we can compute numerically such constants \underline{C} and \bar{C}.

Theorem (G., Gołębiewski 2016)
Let $\rho=\operatorname{RootOf}\left\{\left(1-z^{b}\right)\left(1-z^{c}\right)^{2}-4 z^{a+d}\right\}$. Then there exist positive constants \underline{C} and \bar{C} (depending on a, b, c, d and m) such that the number of m-open lambda terms of size n satisfies

$$
\liminf _{n \rightarrow \infty} \frac{L_{m, n}}{\underline{C} n^{-\frac{3}{2}} \rho^{-n}} \geq 1 \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{L_{m, n}}{\bar{C} n^{-\frac{3}{2}} \rho^{-n}} \leq 1,
$$

Remark

In case of given a, b, c, d and m we can compute numerically such constants \bar{C} and \bar{C}.
For instance, for natural counting we have

$$
\begin{aligned}
& \underline{C}^{(n a t)} \approx 0.07790995266 \ldots, \\
& \bar{C}^{(n a t)} \approx 0.07790998229 \ldots .
\end{aligned}
$$

Key idea: Replacing $L_{m}(z)$

We have

$$
L_{m}(z)=z^{a} \sum_{j=0}^{m-1} z^{b j}+z^{c} L_{m+1}(z)+z^{d} L_{m}(z)^{2}
$$

Key idea: Replacing $L_{m}(z)$

We have

$$
L_{m}(z)=z^{a} \sum_{j=0}^{m-1} z^{b j}+z^{c} L_{m+1}(z)+z^{d} L_{m}(z)^{2}
$$

$\mathcal{L}_{m}^{(h)}$ - lambda terms in \mathcal{L}_{m} where the length of each string of successors is bounded by h

$$
L_{m}^{(h)}(z)= \begin{cases}z^{a} \sum_{j=0}^{m-1} z^{b j}+z^{c} L_{m+1}^{(h)}(z)+z^{d} L_{m}^{(h)}(z)^{2} & \text { if } m<h \\ z^{a} \sum_{j=0}^{h-1} z^{b j}+z^{c} L_{h}^{(h)}(z)+z^{d} L_{h}^{(h)}(z)^{2} & \text { if } m \geq h\end{cases}
$$

because for $m \geq h$ we have $L_{m}^{(h)}(z)=L_{h}^{(h)}(z)$.
\rightsquigarrow upper and lower bounds.

Theorem

Let $\rho=\operatorname{RootOf}\left\{\left(1-z^{b}\right)\left(1-z^{c}\right)^{2}-4 z^{a+d}\right\}$. Then there exists a positive constant C (depending on a, b, c, d and m) such that the number of m-open lambda terms of size n satisfies

$$
L_{m, n} \sim C n^{-\frac{3}{2}} \rho^{-n}
$$

Theorem
Let $\rho=\operatorname{RootOf}\left\{\left(1-z^{b}\right)\left(1-z^{c}\right)^{2}-4 z^{a+d}\right\}$. Then there exists a positive constant C (depending on a, b, c, d and m) such that the number of m-open lambda terms of size n satisfies

$$
L_{m, n} \sim C n^{-\frac{3}{2}} \rho^{-n}
$$

Proof idea: We know that

$$
\lim _{m \rightarrow \infty} L_{m}(z)=L_{\infty}(z)=a_{\infty}-b_{\infty} \sqrt{1-\frac{z}{\rho}} .
$$

Theorem

Let $\rho=$ RootOf $\left\{\left(1-z^{b}\right)\left(1-z^{c}\right)^{2}-4 z^{a+d}\right\}$. Then there exists a positive constant C (depending on a, b, c, d and m) such that the number of m-open lambda terms of size n satisfies

$$
L_{m, n} \sim C n^{-\frac{3}{2}} \rho^{-n}
$$

Proof idea: We know that

$$
\lim _{m \rightarrow \infty} L_{m}(z)=L_{\infty}(z)=a_{\infty}-b_{\infty} \sqrt{1-\frac{z}{\rho}}
$$

Replace $L_{m}(z)$ by $L_{\infty}(z)$ and trace back:

$$
a_{m}:=a_{\infty}, \quad b_{m}:=b_{\infty} ; \quad \quad L_{m, m}(z):=L_{\infty}(z)
$$

$$
\begin{aligned}
L_{m, m}(z) & =L_{\infty}(z)=a_{\infty}-b_{\infty} \sqrt{1-\frac{z}{\rho}} \\
L_{i, m}(z) & =z^{a} \sum_{j=0}^{i-1} z^{j b}+z^{c} L_{i+1, m}(z)+z^{d} L_{i, m}(z)^{2}
\end{aligned}
$$

Then

$$
L_{i, m}(z)=a_{i, m}-b_{i, m} \sqrt{1-\frac{z}{\rho}}
$$

$$
L_{i, m}(z)=a_{i, m}-b_{i, m} \sqrt{1-\frac{z}{\rho}}
$$

$$
L_{i, m}(z)=a_{i, m}-b_{i, m} \sqrt{1-\frac{z}{\rho}}
$$

Lemma

The sequences $\left(a_{0, m}\right)_{m \geq 0}$ and $\left(b_{0, m}\right)_{m \geq 0}$ are convergent.
Proof.
We know that $\lim _{m \rightarrow \infty} L_{0, m}(z)=L_{0}(z)$, uniformly in $[0, \rho]$ and that $L_{0, m}(z)$ is decreasing. Thus

$$
a_{0, m}=L_{0, m}(\rho) \longrightarrow L_{0}(\rho)=: a_{0}, \text { as } m \rightarrow \infty .
$$

b_{0}, m is increasing and bounded by b_{∞}, thus converges to b_{0}.
The theorem follows now from the uniform convergence of $L_{0, m}(z)$ and the local shape of these functions.

Lambda terms containing q abstractions

$\mathcal{L}_{m, q} \ldots$ class of m-open lambda terms with exactly q abstractions, $L_{m, q, n} \ldots$ number of those terms being of size n, $L_{m, q}(z)=\sum_{n \geq 0} L_{m, q, n} z^{n}$.

Lambda terms containing q abstractions

$\mathcal{L}_{m, q} \ldots$ class of m-open lambda terms with exactly q abstractions, $L_{m, q, n} \ldots$ number of those terms being of size n,
$L_{m, q}(z)=\sum_{n \geq 0} L_{m, q, n} z^{n}$.
Then

$$
L_{m, 0}(z)=z^{a} \sum_{j=0}^{m-1} z^{b j}+z^{d} L_{m, 0}(z)^{2}
$$

and thus

$$
L_{m, 0}(z)=\frac{1-\sqrt{1-4 z^{a+d} \sum_{j=0}^{m-1} z^{b j}}}{2 z^{d}}
$$

Lambda terms containing q abstractions

We have

$$
L_{m, 0}(z)=z^{a} \sum_{j=0}^{m-1} z^{b j}+z^{d} L_{m, 0}(z)^{2},
$$

and thus

$$
L_{m, 0}(z)=\frac{1-\sqrt{1-4 z^{a+d} \sum_{j=0}^{m-1} z^{b j}}}{2 z^{d}} .
$$

For general q :

$$
L_{m, q}(z)=z^{c} L_{m+1, q-1}(z)+z^{d} \sum_{\ell=0}^{q} L_{m, \ell}(z) L_{m, q-\ell}(z),
$$

thus

$$
L_{m, q}(z)=\frac{\left(z^{c} L_{m+1, q-1}(z)+z^{d} \sum_{\ell=1}^{q-1} L_{m, \ell}(z) L_{m, q-\ell}(z)\right)}{\sqrt{1-4 z^{a+d} \sum_{j=0}^{m-1} z^{b j}}} .
$$

Lambda terms containing q abstractions

Lemma

Let $\delta_{m}(z)=\sqrt{1-4 z^{a+d} \sum_{j=0}^{m-1} z^{b j}}$. Then, for all $m, q \geq 0$, there exists a rational function $R_{m, q}(z)$ such that

$$
L_{m, q}(z)=-\frac{z^{c q} \delta_{m+q}(z)}{2 z^{d} \prod_{i=0}^{-1} \delta_{m+i}(z)}+R_{m, q}(z) .
$$

Moreover, the denominator of $R_{m, q}(z)$ is of the form $\prod_{i=0}^{q-1} \delta_{m+i}(z)^{\alpha_{i}}$ where the exponents $\alpha_{0}, \ldots, \alpha_{q-1}$ are positive integers.

Proof.

Induction on q.

Lambda terms containing q abstractions

Corollary

Let $\xi_{m}=\operatorname{RootOf}\left\{1-4 z^{a+d} \sum_{j=0}^{m-1} z^{b j}\right\}$ (dominant singularity of $\delta_{m}(z)$). Then $\xi_{m+q}<\xi_{m+q-1}$ is the dominant singularity of $L_{m, q}(z)$ and

$$
L_{m, q}(z)=R_{m, q}\left(\xi_{m+q}\right)-C_{m, q}\left(1-\frac{z}{\xi_{m+q}}\right)^{\frac{1}{2}}+\mathrm{O}\left(\left|1-\frac{z}{\xi_{m+q}}\right|\right),
$$

where

$$
C_{m, q}=\frac{\xi_{m+q}^{c q-d} \sqrt{\xi_{m+q}^{a+d} \sum_{j=0}^{m+q-1}(a+d+b j) \xi_{m+q}^{b j}}}{\prod_{i=0}^{q-1} \delta_{m+i}\left(\xi_{m+q}\right)} .
$$

Corollary

Then the number of m-open lambda terms with exactly q abstractions and size n is

$$
L_{m, q, n} \sim C_{m, q} \frac{\xi_{m+q}^{-n}}{2 \sqrt{\pi n^{3}}}, \quad \text { as } \quad n \rightarrow \infty .
$$

Boltzmann sampling

Singular Boltzmann output size according to Boltzmann distribution

$$
\mathbb{P} N=n=\frac{a_{n} x \rho^{n}}{A(\rho)}
$$

where $A(\rho)$ is the generating function and ρ its dominant singularity.

Boltzmann sampling

Singular Boltzmann output size according to Boltzmann distribution

$$
\mathbb{P} N=n=\frac{a_{n} x \rho^{n}}{A(\rho)}
$$

where $A(\rho)$ is the generating function and ρ its dominant singularity.
The sampler: Construct superclass $\mathcal{L}_{0, N} \supseteq \mathcal{L}_{0}$ tending to \mathcal{L}_{0} and reject unwanted results.

$$
\begin{cases}L_{N, 0} & =z L_{N, 1}+z L_{N, 0}^{2}, \\ L_{N, 1} & =z L_{N, 2}+z L_{N, 1}^{2}+z, \\ L_{N, 2} & =z L_{N, 3}+z L_{N, 2}^{2}+z+z^{2}, \\ \ldots & =\ldots, \\ L_{N, N-1} & =z L_{N, N}+z L_{N, N-1}^{2}+z \frac{1-z^{N-1}}{1-z}, \\ L_{N, N} & =z L_{N, N}+z L_{N, N}^{2}+\frac{z}{1-z}\end{cases}
$$

Boltzmann sampling

Singular Boltzmann output size according to Boltzmann distribution

$$
\mathbb{P} N=n=\frac{a_{n} x \rho^{n}}{A(\rho)}
$$

where $A(\rho)$ is the generating function and ρ its dominant singularity.
The sampler: Construct superclass $\mathcal{L}_{0, N} \supseteq \mathcal{L}_{0}$ tending to \mathcal{L}_{0} and reject unwanted results.

$$
\begin{cases}L_{N, 0} & =z L_{N, 1}+z L_{N, 0}^{2}, \\ L_{N, 1} & =z L_{N, 2}+z L_{N, 1}^{2}+z, \\ L_{N, 2} & =z L_{N, 3}+z L_{N, 2}^{2}+z+z^{2}, \\ \ldots & =\ldots, \\ L_{N, N-1} & =z L_{N, N}+z L_{N, N-1}^{2}+z \frac{1-z^{N-1}}{1-z}, \\ L_{N, N} & =z L_{N, N}+z L_{N, N}^{2}+\frac{z}{1-z}\end{cases}
$$

Rejection if de Bruijn index larger than N drawn in ΓL_{N}.

Boltzmann sampling

Extra rejection:

- Costs bounded by object size

Boltzmann sampling

Extra rejection:

- Costs bounded by object size
- Unwanted terms are open terms in $\mathcal{L}_{0, N}$:

$$
\frac{\left[z^{n}\right] L_{0}(z)}{\left[z^{n}\right] L_{N, 0}(z)} \longrightarrow 1
$$

Speed is exponential: For $N=20$, the proportion of closed terms is 0.999999998 .

Boltzmann sampling

Experiments with $N=20$:
$\mathbb{P}\{$ unary $\} \approx 0.2955977425, \quad \mathbb{P}\{$ binary $\}=\mathbb{P}\{$ leaf $\} \approx 0.3522011287$.

Boltzmann sampling

Experiments with $N=20$:
$\mathbb{P}\{$ unary $\} \approx 0.2955977425, \quad \mathbb{P}\{$ binary $\}=\mathbb{P}\{$ leaf $\} \approx 0.3522011287$.
Average number of leaves in a term of size n is asymptotically $0.3522011287 \ldots n$.

Boltzmann sampling

Experiments with $N=20$ ：
$\mathbb{P}\{$ unary $\} \approx 0.2955977425, \quad \mathbb{P}\{$ binary $\}=\mathbb{P}\{$ leaf $\} \approx 0.3522011287$.
Average number of leaves in a term of size n is asymptotically 0．3522011287．．．n．
$X_{N}:=\#$ leaves in $\mathcal{L}_{N, 0}=\#$ leaves in $\mathcal{L}_{N, N}$.
Thus，all moments of X_{N} and $X:=\#$ leaves in a closed term are asymptotically equal．

Theorem
Let X_{n} the number of variables in a lambda－term of size n ．Then

$$
\begin{gathered}
X_{n} \sim \mathcal{N}\left(\mu n, \sigma^{2} n\right) \\
\text { where } \mu=\sigma^{2} \approx \alpha \text { with } \alpha=\frac{1-\rho}{2}=0.3522011287 \ldots
\end{gathered}
$$

Boltzmann sampling

Sampler has same complexity as sampler for trees (linear in approximate size)
On laptop with CPU i7-5600U, clock rate 2.6 GHz , it is possible to draw a lambda-term of size in the range [1 000 000, 2000 000] in less than 10 minutes.

Boltzmann sampling

Sampler has same complexity as sampler for trees (linear in approximate size)
On laptop with CPU i7-5600U, clock rate 2.6 GHz , it is possible to draw a lambda-term of size in the range [1000000, 2000 000] in less than 10 minutes.

Figure: Three uniform random lambda-terms of size 2098, 2541, 2761.

Related work and perspectives

- Study further parameters of these terms (Sergey's talk)

Related work and perspectives

- Study further parameters of these terms (Sergey's talk)
- terms of bounded unary height cf. Bodini, Gardy, G. 2011 and Bodini, Gardy, G, Gołębiewski 2016

Related work and perspectives

- Study further parameters of these terms (Sergey's talk)
- terms of bounded unary height cf. Bodini, Gardy, G. 2011 and Bodini, Gardy, G, Gołębiewski 2016
- Shape characteristics of terms with bounded unary height (G., Larcher, in progress)

Related work and perspectives

- Study further parameters of these terms (Sergey's talk)
- terms of bounded unary height cf. Bodini, Gardy, G. 2011 and Bodini, Gardy, G, Gołębiewski 2016
- Shape characteristics of terms with bounded unary height (G., Larcher, in progress)
- restricting the number of variables bound by an abstraction cf. Bodini, Gardy, Jacquot 2010 (BCI/BCK), Bodini, Gardy, G., Jacquot 2013(gen. BCI), Bodini, G. 2014 (BCK_{2})
- Shape characteristics of BCI/BCK/gen BCI terms (G., Larcher, in progress)

Thank you!

