
Enumerating Lambda Terms By Weighted Length
of Their de Bruijn Representation

Bernhard Gittenberger

joint work with Olivier Bodini and Zbigniew Gołębiewski
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Definition of lambda terms

T ::= x |λx .T |T ∗ T → T ::= Sn0 |λT |T ∗ T
λx .T : abstraction, unary node (T ∗ T ) : application, binary node

λy .((λx .x) ∗ (λx .y))→ λ(λ1 ∗ λ2)→ λ((λ0) ∗ (λ(S0)))

λ.y

∗

λ.x λ.x

x y

λ

∗

λ λ

0 S

0
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Definition of lambda terms

λy .(λx .x ∗ λx .y) 6≡ λy .(λx .x ∗ λx .λz.z)
λ((λ0) ∗ (λ(S0))) 6≡ λ((λ0) ∗ (λ(λ0)))

λ

∗

λ λ

0 S

0

λ

∗

λ λ

0 λ

0
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m-open lambda terms
closed lambda term (0-open) 2-open lambda term

λ((λ0) ∗ (λ(S0))) λ((λ0) ∗ (λ(SSS0)))

λ

∗

λ λ

0 S

0

λ

∗

λ λ

0 S

S

S

0
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General notion of size

|0| = a
|S| = b
|λM| = |M|+ c
|MN| = |M|+ |N|+ d .

Assumptions
1 a,b, c,d are nonnegative integers,
2 a + d ≥ 1,
3 b, c ≥ 1,
4 gcd(b, c,a + d) = 1.

B. Gittenberger Lambda Term Enumeration by de Bruijn Size 5 / 26



General notion of size
λ((λ0) ∗ (λ(S0))) 6≡ λ((λ0) ∗ (λ(λ0)))

λ c

∗ d

λ c λ c

0 a S b

0 a

λ c

∗ d

λ c λ c

0 a λ c

0 a

size: 2a + b + 3c + d size: 2a + 4c + d

• natural counting (Bendkowski, Grygiel, Lescanne, Zaionc 2015):
a = b = c = d = 1

• less natural counting (Bendkowski, Grygiel, Lescanne, Zaionc
2015): a = 0, b = c = 1, d = 2

• binary lambda calculus (Tromp 2006): b = 1, a = c = d = 2
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Combinatorial specifications and generating functions
Let (A, | · |A), (B, | · |B) be comb. structures with generating functions

A(z) =
∑
n≥0

anzn =
∑
x∈A

z |x |A and

B(z) =
∑
n≥0

bnzn =
∑
x∈B

z |x |B .

• If A ∩ B = ∅ and C = A ∪ B with

|x |C :=

{
|x |A if x ∈ A,
|x |B if x ∈ B,

then cn = an + bn and C(z) = A(z) + B(z).
• If C = A× B and |(a,b)|C = |a|A + |b|B then C(z) = A(z) · B(z).
• If C = SEQ(A) and |(a1, . . . ,ak )|C =

∑k
i=1 |ai |A then C(z) = 1

1−A(z) .
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Combinatorial specification and lambda terms

L = SEQ(S)×Z ∪ U × L ∪ A× L2

• L – the class of lambda terms,
• Z – the class of zeros,
• S – the class of successors,
• U – the class of abstractions,
• A – the class of applications.

Remark: Z,S,U ,A contain only one atomic object.
Thus

L(z) = za
∞∑

j=0

zbj + zcL(z) + zdL(z)2,

[zn]L(z)=number of lambda terms of size n.
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m-open terms and functional equations

Let
Lm = SEQ≤m−1(S)×Z ∪ U × Lm+1 ∪ A× L2

m.

• Lm,n – the number of m-open lambda terms of size n,
• Lm(z) =

∑
n≥0 Lm,nzn ([zn] Lm(z) = Lm,n)

Lm(z) = za
m−1∑
j=0

zbj + zcLm+1(z) + zdLm(z)2

• L0(z) is the gen. fun. of the set L0 of closed lambda terms,
• L∞(z) is the gen. fun. of the set L∞ = L of all lambda terms.
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L∞(z) – all terms
Solving

L∞(z) = za
∞∑

j=0

zbj + zcL∞(z) + zdL∞(z)2.

we get

L∞(z) =
1− zc −

√
(1− zc)2 − 4za+d

1−zb

2zd ,

which defines an analytic function in a neighbourhood of z = 0.

Theorem (Flajolet, Odlyzko 1990)
If α ∈ R \ N and f (z) ∼ (1− z

ρ )α as z → ρ within a ∆-domain, then

[zn]f (z) ∼ n−α−1

Γ(−α)
ρ−n, as n→∞.
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L∞(z) – all terms

Proposition

Let ρ = RootOf
{

(1− zb)(1− zc)2 − 4za+d}. Then

L∞(z) = a∞ − b∞

√
1− z

ρ
+ O

(∣∣∣∣1− z
ρ

∣∣∣∣) ,
for some constants a∞ > 0,b∞ > 0 that depend on a,b, c,d.

Corollary
The coefficients of L∞(z) satisfy

L∞,n ∼
b∞

2
√
π
ρ−nn−3/2, as n→∞.
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Theorem (G., Gołębiewski 2016)

Let ρ = RootOf
{

(1− zb)(1− zc)2 − 4za+d}. Then there exist positive
constants C and C (depending on a,b, c,d and m) such that the
number of m-open lambda terms of size n satisfies

lim inf
n→∞

Lm,n

Cn−
3
2 ρ−n

≥ 1 and lim sup
n→∞

Lm,n

Cn−
3
2 ρ−n

≤ 1,

Remark
In case of given a,b, c,d and m we can compute numerically such
constants C and C.

For instance, for natural counting we have

C(nat) ≈ 0.07790995266 . . .,

C
(nat) ≈ 0.07790998229 . . ..
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Key idea: Replacing Lm(z)

We have

Lm(z) = za
m−1∑
j=0

zbj + zcLm+1(z) + zdLm(z)2.

L(h)m – lambda terms in Lm where the length of each string of
successors is bounded by h

L(h)
m (z) =

{
za∑m−1

j=0 zbj + zcL(h)
m+1(z) + zdL(h)

m (z)2 if m < h,
za∑h−1

j=0 zbj + zcL(h)
h (z) + zdL(h)

h (z)2 if m ≥ h,

because for m ≥ h we have L(h)
m (z) = L(h)

h (z).
 upper and lower bounds.
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Theorem
Let ρ = RootOf

{
(1− zb)(1− zc)2 − 4za+d}. Then there exists a

positive constant C (depending on a,b, c,d and m) such that the
number of m-open lambda terms of size n satisfies

Lm,n ∼ Cn−
3
2 ρ−n

Proof idea: We know that

lim
m→∞

Lm(z) = L∞(z) = a∞ − b∞

√
1− z

ρ
.

Replace Lm(z) by L∞(z) and trace back:

am := a∞, bm := b∞; Lm,m(z) := L∞(z).
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Lm,m(z) = L∞(z) = a∞ − b∞

√
1− z

ρ
,

Li,m(z) = za
i−1∑
j=0

z jb + zcLi+1,m(z) + zdLi,m(z)2.

Then

Li,m(z) = ai,m − bi,m

√
1− z

ρ
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Li,m(z) = ai,m − bi,m

√
1− z

ρ

Lemma
The sequences (a0,m)m≥0 and (b0,m)m≥0 are convergent.

Proof.
We know that lim

m→∞
L0,m(z) = L0(z), uniformly in [0, ρ] and that L0,m(z)

is decreasing. Thus

a0,m = L0,m(ρ) −→ L0(ρ) =: a0, as m→∞.

b0,m is increasing and bounded by b∞, thus converges to b0.

The theorem follows now from the uniform convergence of L0,m(z) and
the local shape of these functions.
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Lambda terms containing q abstractions

Lm,q . . . class of m-open lambda terms with exactly q abstractions,
Lm,q,n . . . number of those terms being of size n,
Lm,q(z) =

∑
n≥0 Lm,q,nzn.

Then

Lm,0(z) = za
m−1∑
j=0

zbj + zdLm,0(z)2,

and thus

Lm,0(z) =
1−

√
1− 4za+d

∑m−1
j=0 zbj

2zd .
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Lambda terms containing q abstractions
We have

Lm,0(z) = za
m−1∑
j=0

zbj + zdLm,0(z)2,

and thus

Lm,0(z) =
1−

√
1− 4za+d

∑m−1
j=0 zbj

2zd .

For general q:

Lm,q(z) = zcLm+1,q−1(z) + zd
q∑
`=0

Lm,`(z)Lm,q−`(z),

thus

Lm,q(z) =

(
zcLm+1,q−1(z) + zd ∑q−1

`=1 Lm,`(z)Lm,q−`(z)
)

√
1− 4za+d

∑m−1
j=0 zbj

.
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Lambda terms containing q abstractions

Lemma

Let δm(z) =
√

1− 4za+d
∑m−1

j=0 zbj . Then, for all m,q ≥ 0, there exists
a rational function Rm,q(z) such that

Lm,q(z) = −
zcqδm+q(z)

2zd
∏q−1

i=0 δm+i(z)
+ Rm,q(z).

Moreover, the denominator of Rm,q(z) is of the form
∏q−1

i=0 δm+i(z)αi

where the exponents α0, . . . , αq−1 are positive integers.

Proof.
Induction on q.
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Lambda terms containing q abstractions
Corollary

Let ξm = RootOf{1− 4za+d ∑m−1
j=0 zbj} (dominant singularity of δm(z)).

Then ξm+q < ξm+q−1 is the dominant singularity of Lm,q(z) and

Lm,q(z) = Rm,q(ξm+q)− Cm,q

(
1− z

ξm+q

) 1
2

+ O
(∣∣∣∣1− z

ξm+q

∣∣∣∣) ,
where

Cm,q =
ξcq−d

m+q

√
ξa+d

m+q
∑m+q−1

j=0 (a + d + bj)ξbj
m+q∏q−1

i=0 δm+i(ξm+q)
.

Corollary
Then the number of m-open lambda terms with exactly q abstractions
and size n is

Lm,q,n ∼ Cm,q
ξ−n

m+q

2
√
πn3

, as n→∞.
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Boltzmann sampling
Singular Boltzmann output size according to Boltzmann distribution

PN = n =
anxρn

A(ρ)

where A(ρ) is the generating function and ρ its dominant singularity.

The sampler: Construct superclass L0,N ⊇ L0 tending to L0 and reject
unwanted results.

LN,0 = zLN,1 + zL2
N,0,

LN,1 = zLN,2 + zL2
N,1 + z,

LN,2 = zLN,3 + zL2
N,2 + z + z2 ,

. . . = . . . ,

LN,N−1 = zLN,N + zL2
N,N−1 + z

1− zN−1

1− z
,

LN,N = zLN,N + zL2
N,N +

z
1− z

Rejection if de Bruijn index larger than N drawn in ΓLN .
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N,2 + z + z2 ,

. . . = . . . ,

LN,N−1 = zLN,N + zL2
N,N−1 + z

1− zN−1

1− z
,

LN,N = zLN,N + zL2
N,N +

z
1− z

Rejection if de Bruijn index larger than N drawn in ΓLN .
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Boltzmann sampling
Singular Boltzmann output size according to Boltzmann distribution

PN = n =
anxρn

A(ρ)

where A(ρ) is the generating function and ρ its dominant singularity.
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Boltzmann sampling

Extra rejection:
• Costs bounded by object size

• Unwanted terms are open terms in L0,N :

[zn]L0(z)

[zn]LN,0(z)
−→ 1.

Speed is exponential: For N = 20, the proportion of closed terms
is 0.999999998.
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Boltzmann sampling
Experiments with N = 20:

P{unary} ≈ 0.2955977425, P{binary} = P{leaf} ≈ 0.3522011287.

Average number of leaves in a term of size n is asymptotically
0.3522011287...n.
XN := # leaves in LN,0 = # leaves in LN,N .

Thus, all moments of XN and X := # leaves in a closed term are
asymptotically equal.

Theorem
Let Xn the number of variables in a lambda-term of size n. Then

Xn ∼ N (µn, σ2n)

where µ = σ2 ≈ α with α =
1− ρ

2
= 0.3522011287....
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Boltzmann sampling

Sampler has same complexity as sampler for trees (linear in
approximate size)
On laptop with CPU i7-5600U, clock rate 2.6 GHz, it is possible to draw
a lambda-term of size in the range [1 000 000, 2 000 000] in less than
10 minutes.

Figure: Three uniform random lambda-terms of size 2098, 2541, 2761.
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Related work and perspectives

• Study further parameters of these terms (Sergey’s talk)

• terms of bounded unary height
cf. Bodini, Gardy, G. 2011 and Bodini, Gardy, G, Gołębiewski
2016

• Shape characteristics of terms with bounded unary height
(G., Larcher, in progress)

• restricting the number of variables bound by an abstraction
cf. Bodini, Gardy, Jacquot 2010 (BCI/BCK), Bodini, Gardy, G.,
Jacquot 2013(gen. BCI), Bodini, G. 2014 (BCK2)

• Shape characteristics of BCI/BCK/gen BCI terms (G., Larcher, in
progress)
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Thank you!
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