Enumerating Lambda Terms By Weighted Length of Their de Bruijn Representation

Bernhard Gittenberger

joint work with Olivier Bodini and Zbigniew Gołębiewski

Institut für Diskrete Mathematik und Geometrie Technische Universität Wien

and

LIPN Université Paris Nord Department of Computer Science Wrocław University of Technology

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition of lambda terms

 $T ::= x | \lambda x.T | T * T \rightarrow T ::= S^n 0 | \lambda T | T * T$ $\lambda x.T : abstraction, unary node \qquad (T * T) : application, binary node$ $\lambda y.((\lambda x.x) * (\lambda x.y)) \rightarrow \lambda(\lambda 1 * \lambda 2) \rightarrow \lambda((\lambda 0) * (\lambda (S0)))$

Definition of lambda terms

A (10) A (10)

H 5

m-open lambda terms

General notion of size

$$|0| = a$$

$$|S| = b$$

$$|\lambda M| = |M| + c$$

$$|MN| = |M| + |N| + d.$$

Assumptions

a, b, c, d are nonnegative integers,
 a + d ≥ 1,
 b, c ≥ 1,
 gcd(b, c, a + d) = 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General notion of size

э

< 回 > < 三 > < 三 >

General notion of size

- natural counting (Bendkowski, Grygiel, Lescanne, Zaionc 2015):
 a = b = c = d = 1
- less natural counting (Bendkowski, Grygiel, Lescanne, Zaionc 2015): a = 0, b = c = 1, d = 2
- binary lambda calculus (Tromp 2006): b = 1, a = c = d = 2

Combinatorial specifications and generating functions

Let $(\mathcal{A}, |\cdot|_{\mathcal{A}}), (\mathcal{B}, |\cdot|_{\mathcal{B}})$ be comb. structures with generating functions

$$A(z) = \sum_{n \ge 0} a_n z^n = \sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text{ and}$$
$$B(z) = \sum_{n \ge 0} b_n z^n = \sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}}.$$

く 同 ト く ヨ ト く ヨ ト -

Combinatorial specifications and generating functions Let $(\mathcal{A}, |\cdot|_{\mathcal{A}}), (\mathcal{B}, |\cdot|_{\mathcal{B}})$ be comb. structures with generating functions

$$A(z) = \sum_{n \ge 0} a_n z^n = \sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text{ and}$$
$$B(z) = \sum_{n \ge 0} b_n z^n = \sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}}.$$

• If $\mathcal{A} \cap \mathcal{B} = \emptyset$ and $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$ with

$$|x|_\mathcal{C} := egin{cases} |x|_\mathcal{A} & ext{ if } x \in \mathcal{A}, \ |x|_\mathcal{B} & ext{ if } x \in \mathcal{B}, \end{cases}$$

then $c_n = a_n + b_n$ and C(z) = A(z) + B(z).

< 回 > < 回 > < 回 > -

Combinatorial specifications and generating functions Let $(\mathcal{A}, |\cdot|_{\mathcal{A}}), (\mathcal{B}, |\cdot|_{\mathcal{B}})$ be comb. structures with generating functions

$$\begin{split} A(z) &= \sum_{n \geq 0} a_n z^n = \sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text{ and} \\ B(z) &= \sum_{n \geq 0} b_n z^n = \sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}}. \end{split}$$

• If $\mathcal{A} \cap \mathcal{B} = \emptyset$ and $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$ with

$$|x|_{\mathcal{C}} := \begin{cases} |x|_{\mathcal{A}} & \text{if } x \in \mathcal{A}, \\ |x|_{\mathcal{B}} & \text{if } x \in \mathcal{B}, \end{cases}$$

then $c_n = a_n + b_n$ and C(z) = A(z) + B(z). • If $C = A \times B$ and $|(a, b)|_C = |a|_A + |b|_B$ then $C(z) = A(z) \cdot B(z)$.

< 回 > < 回 > < 回 > -

Combinatorial specifications and generating functions Let $(\mathcal{A}, |\cdot|_{\mathcal{A}}), (\mathcal{B}, |\cdot|_{\mathcal{B}})$ be comb. structures with generating functions

$$A(z) = \sum_{n \ge 0} a_n z^n = \sum_{x \in \mathcal{A}} z^{|x|_{\mathcal{A}}} \text{ and}$$
$$B(z) = \sum_{n \ge 0} b_n z^n = \sum_{x \in \mathcal{B}} z^{|x|_{\mathcal{B}}}.$$

• If $\mathcal{A} \cap \mathcal{B} = \emptyset$ and $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$ with

$$|x|_{\mathcal{C}} := \begin{cases} |x|_{\mathcal{A}} & \text{if } x \in \mathcal{A}, \\ |x|_{\mathcal{B}} & \text{if } x \in \mathcal{B}, \end{cases}$$

then $c_n = a_n + b_n$ and C(z) = A(z) + B(z).

- If $C = A \times B$ and $|(a, b)|_{C} = |a|_{A} + |b|_{B}$ then $C(z) = A(z) \cdot B(z)$.
- If $\mathcal{C} = \text{SEQ}(A)$ and $|(a_1, \ldots, a_k)|_{\mathcal{C}} = \sum_{i=1}^k |a_i|_{\mathcal{A}}$ then $\mathcal{C}(z) = \frac{1}{1 A(z)}$.

< 回 > < 回 > < 回 > -

Combinatorial specification and lambda terms

$$\mathcal{L} = \mathsf{Seq}(\mathcal{S}) imes \mathcal{Z} \ \cup \ \mathcal{U} imes \mathcal{L} \ \cup \ \mathcal{A} imes \mathcal{L}^2$$

- \mathcal{L} the class of lambda terms,
- \mathcal{Z} the class of zeros,
- S the class of successors,
- \mathcal{U} the class of abstractions,
- \mathcal{A} the class of applications.

Combinatorial specification and lambda terms

$$\mathcal{L} = \mathsf{Seq}(\mathcal{S}) imes \mathcal{Z} \ \cup \ \mathcal{U} imes \mathcal{L} \ \cup \ \mathcal{A} imes \mathcal{L}^2$$

- \mathcal{L} the class of lambda terms,
- \mathcal{Z} the class of zeros,
- S the class of successors,
- \mathcal{U} the class of abstractions,
- \mathcal{A} the class of applications.

Remark: $\mathcal{Z}, \mathcal{S}, \mathcal{U}, \mathcal{A}$ contain only one atomic object.

Combinatorial specification and lambda terms

$$\mathcal{L} = \mathsf{SEQ}(\mathcal{S}) imes \mathcal{Z} \ \cup \ \mathcal{U} imes \mathcal{L} \ \cup \ \mathcal{A} imes \mathcal{L}^2$$

- \mathcal{L} the class of lambda terms,
- \mathcal{Z} the class of zeros,
- S the class of successors,
- \mathcal{U} the class of abstractions,
- \mathcal{A} the class of applications.

Remark: $\mathcal{Z}, \mathcal{S}, \mathcal{U}, \mathcal{A}$ contain only one atomic object. Thus

$$L(z) = z^a \sum_{j=0}^{\infty} z^{bj} + z^c L(z) + z^d L(z)^2,$$

 $[z^n]L(z)$ =number of lambda terms of size n.

m-open terms and functional equations

Let

$$\mathcal{L}_m = \mathbf{SEQ}_{\leq m-1}(\mathcal{S}) \times \mathcal{Z} \ \cup \ \mathcal{U} \times \mathcal{L}_{m+1} \ \cup \ \mathcal{A} \times \mathcal{L}_m^2.$$

2

イロト イポト イヨト イヨト

m-open terms and functional equations

Let

$$\mathcal{L}_m = \mathsf{SEQ}_{\leq m-1}(\mathcal{S}) \times \mathcal{Z} \ \cup \ \mathcal{U} \times \mathcal{L}_{m+1} \ \cup \ \mathcal{A} \times \mathcal{L}_m^2.$$

- *L_{m,n}* the number of *m*-open lambda terms of size *n*,
- $L_m(z) = \sum_{n \ge 0} L_{m,n} z^n$ $([z^n] L_m(z) = L_{m,n})$

$$L_m(z) = z^a \sum_{j=0}^{m-1} z^{bj} + z^c L_{m+1}(z) + z^d L_m(z)^2$$

3

イロト 不得 トイヨト イヨト

m-open terms and functional equations

Let

$$\mathcal{L}_m = \mathsf{SEQ}_{\leq m-1}(\mathcal{S}) \times \mathcal{Z} \ \cup \ \mathcal{U} \times \mathcal{L}_{m+1} \ \cup \ \mathcal{A} \times \mathcal{L}_m^2.$$

- *L_{m,n}* the number of *m*-open lambda terms of size *n*,
- $L_m(z) = \sum_{n \ge 0} L_{m,n} z^n$ $([z^n] L_m(z) = L_{m,n})$

$$L_m(z) = z^a \sum_{j=0}^{m-1} z^{bj} + z^c L_{m+1}(z) + z^d L_m(z)^2$$

- $L_0(z)$ is the gen. fun. of the set \mathcal{L}_0 of closed lambda terms,
- $L_{\infty}(z)$ is the gen. fun. of the set $\mathcal{L}_{\infty} = \mathcal{L}$ of all lambda terms.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$L_{\infty}(z)$ – all terms Solving

$$L_{\infty}(z) = z^a \sum_{j=0}^{\infty} z^{bj} + z^c L_{\infty}(z) + z^d L_{\infty}(z)^2.$$

we get

$$L_{\infty}(z) = rac{1-z^c - \sqrt{(1-z^c)^2 - rac{4z^{a+d}}{1-z^b}}}{2z^d},$$

which defines an analytic function in a neighbourhood of z = 0.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

$L_{\infty}(z)$ – all terms Solving

$$L_{\infty}(z) = z^a \sum_{j=0}^{\infty} z^{bj} + z^c L_{\infty}(z) + z^d L_{\infty}(z)^2.$$

we get

$$L_{\infty}(z) = rac{1-z^c - \sqrt{(1-z^c)^2 - rac{4z^{a+d}}{1-z^b}}}{2z^d},$$

which defines an analytic function in a neighbourhood of z = 0.

Theorem (Flajolet, Odlyzko 1990)

If $\alpha \in \mathbb{R} \setminus \mathbb{N}$ and $f(z) \sim (1 - \frac{z}{\rho})^{\alpha}$ as $z \to \rho$ within a Δ -domain, then

$$[z^n]f(z)\sim \frac{n^{-\alpha-1}}{\Gamma(-\alpha)}\rho^{-n}, \text{ as } n\to\infty.$$

< ロ > < 同 > < 回 > < 回 >

 $L_{\infty}(z)$ – all terms

Proposition

Let
$$\rho = \text{RootOf} \{ (1 - z^b)(1 - z^c)^2 - 4z^{a+d} \}$$
. Then

$$L_{\infty}(z) = a_{\infty} - b_{\infty}\sqrt{1-\frac{z}{
ho}} + O\left(\left|1-\frac{z}{
ho}\right|\right),$$

for some constants $a_{\infty} > 0$, $b_{\infty} > 0$ that depend on a, b, c, d.

 $L_{\infty}(z)$ – all terms

Proposition

Let
$$\rho = \text{RootOf} \{ (1 - z^b)(1 - z^c)^2 - 4z^{a+d} \}$$
. Then

$$L_{\infty}(z) = a_{\infty} - b_{\infty} \sqrt{1 - \frac{z}{\rho}} + O\left(\left|1 - \frac{z}{\rho}\right|\right),$$

for some constants $a_{\infty} > 0$, $b_{\infty} > 0$ that depend on a, b, c, d.

Corollary

The coefficients of $L_{\infty}(z)$ satisfy

$$L_{\infty,n}\sim rac{b_\infty}{2\sqrt{\pi}}
ho^{-n}n^{-3/2}, \ \text{as }n
ightarrow\infty.$$

イロト イポト イヨト イヨト

Theorem (G., Gołębiewski 2016)

Let $\rho = \text{RootOf} \{ (1 - z^b)(1 - z^c)^2 - 4z^{a+d} \}$. Then there exist positive constants <u>C</u> and <u>C</u> (depending on a, b, c, d and m) such that the number of m-open lambda terms of size n satisfies

$$\liminf_{n\to\infty}\frac{L_{m,n}}{\underline{C}n^{-\frac{3}{2}}\rho^{-n}}\geq 1 \quad and \quad \limsup_{n\to\infty}\frac{L_{m,n}}{\overline{C}n^{-\frac{3}{2}}\rho^{-n}}\leq 1,$$

Remark

In case of given a, b, c, d and m we can compute numerically such constants <u>C</u> and <u>C</u>.

< ロ > < 同 > < 回 > < 回 >

Theorem (G., Gołębiewski 2016)

Let $\rho = \text{RootOf} \{ (1 - z^b)(1 - z^c)^2 - 4z^{a+d} \}$. Then there exist positive constants <u>C</u> and <u>C</u> (depending on a, b, c, d and m) such that the number of m-open lambda terms of size n satisfies

$$\liminf_{n\to\infty}\frac{L_{m,n}}{\underline{C}n^{-\frac{3}{2}}\rho^{-n}}\geq 1 \quad and \quad \limsup_{n\to\infty}\frac{L_{m,n}}{\overline{C}n^{-\frac{3}{2}}\rho^{-n}}\leq 1,$$

Remark

In case of given a, b, c, d and m we can compute numerically such constants <u>C</u> and <u>C</u>.

For instance, for natural counting we have

$$\underline{C}^{(nat)} \approx 0.07790995266...,$$

 $\overline{C}^{(nat)} \approx 0.07790998229....$

< ロ > < 同 > < 回 > < 回 >

Key idea: Replacing $L_m(z)$

We have

$$L_m(z) = z^a \sum_{j=0}^{m-1} z^{bj} + z^c L_{m+1}(z) + z^d L_m(z)^2.$$

æ

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Key idea: Replacing $L_m(z)$

We have

$$L_m(z) = z^a \sum_{j=0}^{m-1} z^{bj} + z^c L_{m+1}(z) + z^d L_m(z)^2.$$

 $\mathcal{L}_m^{(h)}$ – lambda terms in \mathcal{L}_m where the length of each string of successors is bounded by *h*

$$L_m^{(h)}(z) = \begin{cases} z^a \sum_{j=0}^{m-1} z^{bj} + z^c L_{m+1}^{(h)}(z) + z^d L_m^{(h)}(z)^2 & \text{if } m < h, \\ z^a \sum_{j=0}^{h-1} z^{bj} + z^c L_h^{(h)}(z) + z^d L_h^{(h)}(z)^2 & \text{if } m \ge h, \end{cases}$$

because for $m \ge h$ we have $L_m^{(h)}(z) = L_h^{(h)}(z)$. \rightsquigarrow upper and lower bounds.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let $\rho = \text{RootOf} \{ (1 - z^b)(1 - z^c)^2 - 4z^{a+d} \}$. Then there exists a positive constant *C* (depending on *a*, *b*, *c*, *d* and *m*) such that the number of *m*-open lambda terms of size *n* satisfies

$$L_{m,n}\sim {\it Cn}^{-rac{3}{2}}
ho^{-n}$$

4 **A** N A **B** N A **B** N

Theorem

Let $\rho = \text{RootOf} \{ (1 - z^b)(1 - z^c)^2 - 4z^{a+d} \}$. Then there exists a positive constant *C* (depending on *a*, *b*, *c*, *d* and *m*) such that the number of *m*-open lambda terms of size *n* satisfies

$$L_{m,n}\sim Cn^{-rac{3}{2}}
ho^{-n}$$

Proof idea: We know that

$$\lim_{m\to\infty} L_m(z) = L_\infty(z) = a_\infty - b_\infty \sqrt{1-\frac{z}{\rho}}.$$

A D A D A D A

Theorem

Let $\rho = \text{RootOf} \{ (1 - z^b)(1 - z^c)^2 - 4z^{a+d} \}$. Then there exists a positive constant *C* (depending on *a*, *b*, *c*, *d* and *m*) such that the number of *m*-open lambda terms of size *n* satisfies

$$L_{m,n}\sim Cn^{-rac{3}{2}}
ho^{-n}$$

Proof idea: We know that

$$\lim_{m\to\infty} L_m(z) = L_\infty(z) = a_\infty - b_\infty \sqrt{1-\frac{z}{\rho}}.$$

Replace $L_m(z)$ by $L_{\infty}(z)$ and trace back:

 $a_m := a_\infty, \qquad b_m := b_\infty; \qquad \qquad L_{m,m}(z) := L_\infty(z).$

4 **A** N A **B** N A **B** N

$$egin{aligned} & L_{m,m}(z) = L_{\infty}(z) = a_{\infty} - b_{\infty} \sqrt{1 - rac{z}{
ho}}, \ & L_{i,m}(z) = z^a \sum_{j=0}^{i-1} z^{jb} + z^c L_{i+1,m}(z) + z^d L_{i,m}(z)^2. \end{aligned}$$

Then

$$L_{i,m}(z) = a_{i,m} - b_{i,m}\sqrt{1-rac{z}{
ho}}$$

æ

◆□▶ ◆圖▶ ◆理≯ ◆理≯

$$L_{i,m}(z) = a_{i,m} - b_{i,m}\sqrt{1-\frac{z}{\rho}}$$

B. Gittenberger

Lambda Term Enumeration by de Bruijn Size

Ξ.

▲口▶ ▲圖▶ ▲理≯ ▲理≯

$$L_{i,m}(z) = a_{i,m} - b_{i,m}\sqrt{1-rac{z}{
ho}}$$

Lemma

The sequences $(a_{0,m})_{m\geq 0}$ and $(b_{0,m})_{m\geq 0}$ are convergent.

Proof.

We know that $\lim_{m\to\infty} L_{0,m}(z) = L_0(z)$, uniformly in $[0, \rho]$ and that $L_{0,m}(z)$ is decreasing. Thus

$$a_{0,m} = L_{0,m}(\rho) \longrightarrow L_0(\rho) =: a_0, \text{ as } m \to \infty.$$

 b_0 , *m* is increasing and bounded by b_∞ , thus converges to b_0 .

The theorem follows now from the uniform convergence of $L_{0,m}(z)$ and the local shape of these functions.

Lambda terms containing q abstractions

 $\mathcal{L}_{m,q} \dots$ class of *m*-open lambda terms with exactly *q* abstractions, $L_{m,q,n} \dots$ number of those terms being of size *n*, $L_{m,q}(z) = \sum_{n \ge 0} L_{m,q,n} z^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lambda terms containing q abstractions

1

 $\mathcal{L}_{m,q} \dots$ class of *m*-open lambda terms with exactly *q* abstractions, $L_{m,q,n} \dots$ number of those terms being of size *n*, $L_{m,q}(z) = \sum_{n \ge 0} L_{m,q,n} z^n$.

Then

$$L_{m,0}(z) = z^a \sum_{j=0}^{m-1} z^{bj} + z^d L_{m,0}(z)^2,$$

and thus

$$L_{m,0}(z) = rac{1 - \sqrt{1 - 4z^{a+d}\sum_{j=0}^{m-1}z^{bj}}}{2z^d}.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Lambda terms containing *q* abstractions We have

$$L_{m,0}(z) = z^a \sum_{j=0}^{m-1} z^{bj} + z^d L_{m,0}(z)^2,$$

and thus

$$L_{m,0}(z) = rac{1 - \sqrt{1 - 4z^{a+d} \sum_{j=0}^{m-1} z^{bj}}}{2z^d}.$$

For general q:

$$L_{m,q}(z) = z^{c}L_{m+1,q-1}(z) + z^{d}\sum_{\ell=0}^{q}L_{m,\ell}(z)L_{m,q-\ell}(z),$$

thus

$$L_{m,q}(z) = \frac{\left(z^{c}L_{m+1,q-1}(z) + z^{d}\sum_{\ell=1}^{q-1}L_{m,\ell}(z)L_{m,q-\ell}(z)\right)}{\sqrt{1 - 4z^{a+d}\sum_{j=0}^{m-1}z^{bj}}}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lambda terms containing q abstractions

Lemma

Let $\delta_m(z) = \sqrt{1 - 4z^{a+d} \sum_{j=0}^{m-1} z^{bj}}$. Then, for all $m, q \ge 0$, there exists a rational function $R_{m,q}(z)$ such that

$$L_{m,q}(z) = -rac{z^{cq} \delta_{m+q}(z)}{2z^d \prod_{i=0}^{q-1} \delta_{m+i}(z)} + R_{m,q}(z).$$

Moreover, the denominator of $R_{m,q}(z)$ is of the form $\prod_{i=0}^{q-1} \delta_{m+i}(z)^{\alpha_i}$ where the exponents $\alpha_0, \ldots, \alpha_{q-1}$ are positive integers.

Proof.

Induction on q.

< 回 > < 回 > < 回 >

Lambda terms containing *q* abstractions Corollary

Let $\xi_m = \text{RootOf}\{1 - 4z^{a+d} \sum_{j=0}^{m-1} z^{bj}\}$ (dominant singularity of $\delta_m(z)$). Then $\xi_{m+q} < \xi_{m+q-1}$ is the dominant singularity of $L_{m,q}(z)$ and

$$L_{m,q}(z) = R_{m,q}(\xi_{m+q}) - C_{m,q}\left(1 - rac{z}{\xi_{m+q}}
ight)^{rac{1}{2}} + \mathrm{O}\left(\left|1 - rac{z}{\xi_{m+q}}
ight|
ight),$$

where

$$C_{m,q} = rac{\xi_{m+q}^{cq-d} \sqrt{\xi_{m+q}^{a+d} \sum_{j=0}^{m+q-1} (a+d+bj) \xi_{m+q}^{bj}}}{\prod_{i=0}^{q-1} \delta_{m+i}(\xi_{m+q})}$$

Corollary

Then the number of m-open lambda terms with exactly q abstractions and size n is

$$L_{m,q,n} \sim C_{m,q} rac{\xi_{m+q}^{-n}}{2\sqrt{\pi n^3}}, \quad \mathrm{as} \quad n o \infty.$$

Lambda Term Enumeration by de Bruijn Size

Singular Boltzmann output size according to Boltzmann distribution

$$\mathbb{P}N=n=\frac{a_nx\rho^n}{A(\rho)}$$

where $A(\rho)$ is the generating function and ρ its dominant singularity.

イロト イポト イヨト イヨト

Singular Boltzmann output size according to Boltzmann distribution

$$\mathbb{P}N=n=\frac{a_nx\rho^n}{A(\rho)}$$

where $A(\rho)$ is the generating function and ρ its dominant singularity.

The sampler: Construct superclass $\mathcal{L}_{0,N} \supseteq \mathcal{L}_0$ tending to \mathcal{L}_0 and reject unwanted results.

$$\begin{cases} L_{N,0} &= zL_{N,1} + zL_{N,0}^{2}, \\ L_{N,1} &= zL_{N,2} + zL_{N,1}^{2} + z, \\ L_{N,2} &= zL_{N,3} + zL_{N,2}^{2} + z + z^{2}, \\ \dots &= \dots, \\ L_{N,N-1} &= zL_{N,N} + zL_{N,N-1}^{2} + z\frac{1 - z^{N-1}}{1 - z}, \\ L_{N,N} &= zL_{N,N} + zL_{N,N}^{2} + \frac{z}{1 - z} \end{cases}$$

く 同 ト く ヨ ト く ヨ ト -

Singular Boltzmann output size according to Boltzmann distribution

$$\mathbb{P}N=n=\frac{a_nx\rho^n}{A(\rho)}$$

where $A(\rho)$ is the generating function and ρ its dominant singularity.

The sampler: Construct superclass $\mathcal{L}_{0,N} \supseteq \mathcal{L}_0$ tending to \mathcal{L}_0 and reject unwanted results.

$$\begin{cases} L_{N,0} &= zL_{N,1} + zL_{N,0}^{2}, \\ L_{N,1} &= zL_{N,2} + zL_{N,1}^{2} + z, \\ L_{N,2} &= zL_{N,3} + zL_{N,2}^{2} + z + z^{2}, \\ \dots &= \dots, \\ L_{N,N-1} &= zL_{N,N} + zL_{N,N-1}^{2} + z\frac{1 - z^{N-1}}{1 - z}, \\ L_{N,N} &= zL_{N,N} + zL_{N,N}^{2} + \frac{z}{1 - z} \end{cases}$$

Rejection if de Bruijn index larger than N drawn in ΓL_N .

Extra rejection:

· Costs bounded by object size

크

Extra rejection:

- · Costs bounded by object size
- Unwanted terms are open terms in $\mathcal{L}_{0,N}$:

$$\frac{[z^n]L_0(z)}{[z^n]L_{N,0}(z)}\longrightarrow 1.$$

Speed is exponential: For N = 20, the proportion of closed terms is 0.999999998.

伺 ト イヨ ト イヨ ト

Experiments with N = 20:

 $\mathbb{P}\{\text{unary}\}\approx 0.2955977425,\qquad \mathbb{P}\{\text{binary}\}=\mathbb{P}\{\text{leaf}\}\approx 0.3522011287.$

Experiments with N = 20:

 $\mathbb{P}\{\text{unary}\} \approx 0.2955977425, \mathbb{P}\{\text{binary}\} = \mathbb{P}\{\text{leaf}\} \approx 0.3522011287.$

Average number of leaves in a term of size *n* is asymptotically 0.3522011287...*n*.

Experiments with N = 20:

 $\mathbb{P}\{\text{unary}\} \approx 0.2955977425, \mathbb{P}\{\text{binary}\} = \mathbb{P}\{\text{leaf}\} \approx 0.3522011287.$

Average number of leaves in a term of size *n* is asymptotically 0.3522011287...*n*.

 $X_N := \#$ leaves in $\mathcal{L}_{N,0} = \#$ leaves in $\mathcal{L}_{N,N}$.

Thus, all moments of X_N and X := # leaves in a closed term are asymptotically equal.

Theorem

Let X_n the number of variables in a lambda-term of size n. Then

$$X_n \sim \mathcal{N}(\mu n, \sigma^2 n)$$

where
$$\mu = \sigma^2 \approx \alpha$$
 with $\alpha = \frac{1 - \rho}{2} = 0.3522011287....$

4 D K 4 B K 4 B K 4 B K

Sampler has same complexity as sampler for trees (linear in approximate size) On laptop with CPU i7-5600U, clock rate 2.6 GHz, it is possible to draw a lambda-term of size in the range [1 000 000, 2 000 000] in less than 10 minutes.

Sampler has same complexity as sampler for trees (linear in approximate size)

On laptop with CPU i7-5600U, clock rate 2.6 GHz, it is possible to draw a lambda-term of size in the range [1 000 000, 2 000 000] in less than 10 minutes.

Figure: Three uniform random lambda-terms of size 2098, 2541, 2761.

• Study further parameters of these terms (Sergey's talk)

イロト イポト イヨト イヨト

- Study further parameters of these terms (Sergey's talk)
- terms of bounded unary height cf. Bodini, Gardy, G. 2011 and Bodini, Gardy, G, Gołębiewski 2016

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Study further parameters of these terms (Sergey's talk)
- terms of bounded unary height cf. Bodini, Gardy, G. 2011 and Bodini, Gardy, G, Gołębiewski 2016
 - Shape characteristics of terms with bounded unary height (G., Larcher, in progress)

- Study further parameters of these terms (Sergey's talk)
- terms of bounded unary height cf. Bodini, Gardy, G. 2011 and Bodini, Gardy, G, Gołębiewski 2016
 - Shape characteristics of terms with bounded unary height (G., Larcher, in progress)
- restricting the number of variables bound by an abstraction cf. Bodini, Gardy, Jacquot 2010 (BCI/BCK), Bodini, Gardy, G., Jacquot 2013(gen. BCI), Bodini, G. 2014 (BCK₂)
 - Shape characteristics of BCI/BCK/gen BCI terms (G., Larcher, in progress)

Thank you!

Lambda Term Enumeration by de Bruijn Size

æ